导航:首页 > 数据分析 > 大数据中有哪些技术

大数据中有哪些技术

发布时间:2023-01-03 07:03:03

大数据技术有哪些

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统),大规模基因序列分析比对技术,Web信息挖掘技术,多媒体数据并行化处理技术,影视制作渲染技术,其他各种行业的云计算和海量数据处理应用技术等。

② 大数据技术包括哪些

想要成为炙手可热的大数据技术人才,这些大数据的核心技术一定要知晓!

一、大数据基础阶段
大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis以及hadoop maprece hdfs yarn等。
1、Linux命令
对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令
2、 Redis
Redis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。
二、大数据存储阶段
大数据存储阶段需掌握的技术有:hbase、hive、sqoop等。
1、HBase
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
2、Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
三、大数据架构设计阶段
大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等。
1、Kafka
Kafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!
2、Flume
Flume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。
3、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
四、大数据实时计算阶段
大数据实时计算阶段需掌握的技术有:Mahout、Spark、storm。
1、Spark
Spark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。
2、storm
Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。
五、大数据数据采集阶段
大数据数据采集阶段需掌握的技术有:Python、Scala。
1、Python与数据分析
Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。
2、Scala
Scala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!
以上只是一些简单的大数据核心技术总结,比较零散,想要学习大数据的同学,还是要按照一定到的技术路线图学习!

③ 请问大数据的关键技术有哪些

1.分布式存储系统(HDFS)。2.MapRece分布式计算框架。3.YARN资源管理平台。4.Sqoop数据迁移工具。5.Mahout数据挖掘算法版库。权6.HBase分布式数据库。7.Zookeeper分布式协调服务。8.Hive基于Hadoop的数据仓库。9.Flume日志收集工具。

④ 大数据技术包括哪些

大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。

1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。

2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,

3、基础架构:云存储、分布式文件存储等。

4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。

5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

7、模型预测:预测模型、机器学习、建模仿真。

8、结果呈现:云计算、标签云、关系图等。

⑤ 大数据方面核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式回存储、数据库、答数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

⑥ 大数据分析技术有哪些

1、数据收集


对于任何的数据剖析来说,首要的就是数据收集,因而大数据剖析软件的第一个技能就是数据收集的技能,该东西能够将分布在互联网上的数据,一些移动客户端中的数据进行快速而又广泛的收集,一起它还能够敏捷的将一些其他的平台中的数据源中的数据导入到该东西中,对数据进行清洗、转化、集成等,然后构成在该东西的数据库中或者是数据集市傍边,为联络剖析处理和数据挖掘提供了根底。


2、数据存取


数据在收集之后,大数据剖析的另一个技能数据存取将会继续发挥作用,能够联系数据库,方便用户在运用中贮存原始性的数据,而且快速的收集和运用,再有就是根底性的架构,比如说运贮存和分布式的文件贮存等,都是比较常见的一种。


3、数据处理


数据处理能够说是该软件具有的最中心的技能之一,面对庞大而又杂乱的数据,该东西能够运用一些计算方法或者是计算的方法等对数据进行处理,包括对它的计算、归纳、分类等,然后能够让用户深度的了解到数据所具有的深度价值。


4、计算剖析


计算剖析则是该软件所具有的另一个中心功能,比如说假设性的查验等,能够帮助用户剖析出现某一种数据现象的原因是什么,差异剖析则能够比较出企业的产品销售在不同的时刻和区域中所显示出来的巨大差异,以便未来更合理的在时刻和地域中进行布局。


5、相关性剖析


某一种数据现象和别的一种数据现象之间存在怎样的联系,大数据剖析通过数据的增加减少改变等都能够剖析出二者之间的联系,此外,聚类剖析以及主成分剖析和对应剖析等都是常用的技能,这些技能的运用会让数据开发更接近人们的应用方针。

⑦ 大数据包含哪些技术

大数据包含数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。
更多关于大数据包含哪些技术,进入:https://m.abcgonglue.com/ask/f3c8621615834978.html?zd查看更多内容

⑧ 大数据技术包括哪些

大数据技术,就是从各种类型的数据中快速获得有价值信息的技术。大数据领域已经涌现出了大量新的技术,它们成为大数据采集、存储、处理和呈现的有力武器。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。重点要突破分布式高速高可靠数据爬取或采集、高速数据全映像等大数据收集技术;突破高速数据解析、转换与装载等大数据整合技术;设计质量评估模型,开发数据质量技术。

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿

零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

大数据采集一般分为大数据智能感知层:主要包括数据传感体系、网络通信体系、传感适配体系、智能识别体系及软硬件资源接入系统,实现对结构化、半结构化、非结构化的海量数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理等。必须着重攻克针对大数据源的智能识别、感知、适配、传输、接入等技术。基础支撑层:提供大数据服务平台所需的虚拟服务器,结构化、半结构化及非结构化数据的数据库及物联网络资源等基础支撑环境。重点攻克分布式虚拟存储技术,大数据获取、存储、组织、分析和决策操作的可视化接口技术,大数据的网络传输与压缩技术,大数据隐私保护技术等。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。开发可靠的分布式文件系统(DFS)、能效优化的存储、计算融入存储、大数据的去冗余及高效低成本的大数据存储技术;突破分布式非关系型大数据管理与处理技术,异构数据的数据融合技术,数据组织技术,研究大数据建模技术;突破大数据索引技术;突破大数据移动、备份、复制等技术;开发大数据可视化技术。

开发新型数据库技术,数据库分为关系型数据库、非关系型数据库以及数据库缓存系统。其中,非关系型数据库主要指的是NoSQL数据库,分为:键值数据库、列存数据库、图存数据库以及文档数据库等类型。关系型数据库包含了传统关系数据库系统以及NewSQL数据库。

开发大数据安全技术。改进数据销毁、透明加解密、分布式访问控制、数据审计等技术;突破隐私保护和推理控制、数据真伪识别和取证、数据持有完整性验证等技术。

⑨ 大数据处理的关键技术有哪些

大数据开发涉及到的关键技术:

大数据采集技术

大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

大数据处理技术

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

大数据分析及挖掘技术

大数据处理的核心就是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。

大数据展示技术

在大数据时代下,数据井喷似地增长,分析人员将这些庞大的数据汇总并进行分析,而分析出的成果如果是密密麻麻的文字,那么就没有几个人能理解,所以我们就需要将数据可视化。

数据可视化技术主要指的是技术上较为高级的技术方法,这些技术方法通过表达、建模,以及对立体、表面、属性、动画的显示,对数据加以可视化解释。

阅读全文

与大数据中有哪些技术相关的资料

热点内容
linux端口镜像 浏览:820
iphone5屏幕清尘 浏览:157
机顶盒密码怎么改 浏览:672
w7系统下载32位教程 浏览:618
pcb文件包括哪些内容 浏览:598
g00文件 浏览:607
用bat程序删除程序 浏览:516
dnf鬼泣90版本打安图恩 浏览:668
245倒角编程怎么计算 浏览:599
可以买生活用品的app有哪些 浏览:175
cad在c盘产生的文件夹 浏览:541
联想手机解锁工具 浏览:696
瑞银3887win10 浏览:833
学网络编程哪个好 浏览:805
手机vmos导入的文件在哪里 浏览:115
苹果手机可以把文件传到华为吗 浏览:63
海川化工下载的文件默认到哪里 浏览:343
学唱粤语歌app 浏览:975
qq游戏生死狙击玩不了 浏览:120
win10邮件不显示图片 浏览:922

友情链接