㈠ 什么是大数据技术与应用专业
大数据是眼下抄非常时髦的热词,比如大数据分析,大数据精准营销,大数据开发,同时也催生出了一些与大数据处理相关的职业,通过对数据的挖掘分析来影响企业的商业决策。随着大数据在国内的发展,大数据相关人才却出现了供不应求的状况,大数据高级研发工程师、大数据分析师更是被媒体称为“未来最具发展潜力的职业之一
㈡ 大数据技术与应用是学什么的
大数据技术与应用主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
大数据技术与应用研究方向是将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术相结合的“互联网+”前沿科技专业。本专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。
主要岗位:大数据项目实施工程师、大数据平台运维工程师、大数据平台开发工程师等。
㈢ 大数据应用到底是做什么的
对于“大数据”,研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才回能具答有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。维基网络的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。随着云时代的来临,大数据也吸引了越来越多的关注。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
㈣ 大数据分析和应用的基础是什么
大数据分析和应用的基础是分布式原理
因为数据量大,因此单机不能处理,因此用到版分布式存储和计算
如何在此权基础上获得更佳的性能 那就是要掌握分布式相关的原理,比如分布式计算Maprece知道数据流式怎么走的,
分布式分析基本都是基于这个范式,虽然用起来和单机一样,但是能不能写出高效的算法 你必须懂原理
㈤ 大数据时代,大数据概念,大数据分析是什么意思
大数据概念就是指大数据,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据时代是IT行业术语。最早提出“大数据”时代到来的是全球知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值(Value)。
(5)时空大数据分析与应用是什么扩展阅读:
大数据分析的实例应用:
数据分析成为巴西世界杯赛事外的精彩看点。伴随赛场上球员的奋力角逐,大数据也在全力演绎世界杯背后的分析故事。
一向以严谨著称的德国队引入专门处理大数据的足球解决方案,进行比赛数据分析,优化球队配置,并通过分析对手数据找到比赛的“制敌”方式;谷歌、微软、Opta等通过大数据分析预测赛果...... 大数据,不仅成为赛场上的“第12人”,也在某种程度上充当了世界杯的"预言帝"。
大数据分析邂逅世界杯,是大数据时代的必然发生,而大数据分析也将在未来改变我们生活的方方面面。
㈥ 大数据技术与应用专业是什么 大数据技术与应用专业的介绍
1、大数据技术与应用专业一般指大数据技术与应用(高校计算机类专业)。
2、大数据技术与应用研究方向是将大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术相结合的“互联网+”前沿科技专业。
3、本专业旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
4、大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。
㈦ 大数据分析与应用平台 是什么样的系统
首先要确定您所说的大数据是怎样的数据,目前一般的大数据可以有两种做法:内
1、对于关系型的容大数据,用EMC的greenplum,这个数据库属于MPP,对于OLAP类型的大数据分析运算,有很多的项目在用这个;
2、对于非关系型的大数据,行业的事实标准的hadoop,其实hadoop是一个架构,包括map-rece,hive,hbase,pig,zookeeper等等,不过hadoop是做离弦的大数据分析,数据往往要计算几天才能得到结果;如果要做实时的大数据分析,就要用到Storm。
您可以网络一下,现在这方面的资料非常多。
㈧ 大数据技术与应用是什么,具体是做什么的,就业前景如何
大数据是众多学科与统计学交叉产生的一门新兴学科。大数据牵扯的回数据挖掘、云计算一类答的,所以是计算机一类的专业。分布比较广,应用行业较多。
大数据
零售业:主要集中在客户营销分析上,通过大数据技术可以对客户的消费信息进行分析。获知客户的消费习惯、消费方向等,以便商场做好更合理商品、货架摆放,规划市场营销方案、产品推荐手段等。
金融业:在金融行业里头,数据即是生命,其信息系统中积累了大量客户的交易数据。通过大数据可以对客户的行为进行分析、防堵诈骗、金融风险分析等。
医疗业:通过大数据可以辅助分析疫情信息,对应做出相应的防控措施。对人体健康的趋势分析在电子病历、医学研发和临床试验中,可提高诊断准确性和药物有效性等。
制造业:该行业对大数据的需求主要体现在产品研发与设计、供应链管理、生产、售后服务等。通过数据分析,在产品研发过程中免除掉一些不必要的步骤,并且及时改善产品的制造与组装的流程。
㈨ 院士专家谈 - 时空大数据:地理信息产业融合发展必由之路
作 者 :中国工程院院士 王家耀
地理信息产业是以现代测绘和地理信息系统、遥感、卫星导航定位等技术为基础,以地理信息资源开发利用为核心,从事地理信息获取、处理、应用的高技术服务业。自20世纪60年代地理信息系统提出以来,其应用逐渐拓展到多个行业,从产生、成长到壮大,地理信息产业发展取得了可喜成绩。
当前,我国的经济和 社会 发展已经进入新的 历史 阶段, 社会 主要矛盾已经转化为人民日益增长的美好生活需要和不平衡不充分的发展之间的矛盾;以5G、云计算、大数据、边缘计算、物联网等为代表的新技术快速发展,人工智能技术也因深层神经网络的成功而获得了巨大进步;随着我国行政体制改革和自然资源管理体系的建立,地理信息产业已融入自然资源管理体系中。面对新的 社会 需求、新的技术进步和新的管理体系要求,亟待根据国家大政方针、 社会 生产需要、技术发展趋势、产业发展规律,做好地理信息产业的工程技术、商业模式、产品类型的转型升级与融合创新,进一步提高地理信息产业发展的质量和水平。
地理信息产业融合发展的驱动力——人工智能
信息化的发展遵循从数字化到网络化再到智能化的规律,地理信息产业的发展亦如此,智能化是地理信息产业融合发展的高级阶段。
“互联网 ”改变了地理信息产业发展的思维方式。“互联网 ”的本质是跨界融合。“基础地理信息 ”和“通用时空大数据平台 ”的本质也是跨界融合。“ ”是核心,提出跨界融合的解决方案是关键。只有这样,才能更充分地发挥基础地理信息和通用时空大数据平台的“基础”和“通用”作用,实现地理信息产业到时空大数据产业的转型升级。
云计算具有的信息资源管理、处理和应用的“全面弹性”,可以支撑“地理信息产业”到“时空大数据产业”的转型。时空大数据产业化需要超强计算能力的支持。云计算作为一种新的计算模式,通过“池化”和“云化”把数千台甚至上万台机器都放在一个“池子”里面,这是“资源弹性”;并在“资源弹性”即基础设施即服务(IaaS)之上增加了一层“应用弹性”,包括平台即服务(PaaS)和软件即服务(SaaS),以满足时空大数据的“应用弹性”需求。云计算支撑时空大数据处理的分布式、协作(同)化和智能化;通过任务分解,解决分布式问题;通过工作流重构,解决并行问题;通过算法调度,解决协作(同)化问题。
时空大数据产业
——属于第四产业的范畴
时空大数据,指基于统一时空基准活动或存在于时间和空间与位置直接或间接相关联的大数据。据此,时空大数据由时空框架数据和时空变化数据两大类数据组成。
时空框架数据指基于统一时空基准的卫星导航定位数据(含连续运行参考站 CORS数据)、遥感影像数据、地图数据、地名数据等。时空变化数据包括 社会 经济人文数据、位置轨迹数据、与位置相关联的空间媒体数据、社交网络数据、搜索引擎数据、视频观测数据、生态环境监测数据等。时空变化数据聚合(关联)在时空框架数据上,就构成了时空大数据。时空大数据具有位置、属性、时间、尺度、分辨率、多样性、异构性、多维性、价值隐含性、快速性等特性。时空大数据产业,指以天空地海传感器网络为基础,以时空信息“获取(传感网) 处理(生产) 应用(服务)”为产业链,以人工智能等新兴信息技术为支撑,以数据密集型计算为特征的知识密集型信息产业,属于从第三产业中分离出来的第四产业的范畴。同地理信息产业相比较,时空大数据产业内涵要宽泛得多,规模要大得多,类型更具多维性和多样性,知识更密集,速度更快,产品更加多样化和个性化,其应用领域更加广阔,具有良好的产业发展前景。
时空大数据产业化的核心
——时空大数据平台
时空大数据平台是时空大数据产业化的核心。
它是指把各种分散的和分割的大数据即时空框架数据和时空变化数据汇聚到一个特定的平台上,并使之发生持续的聚合效应。这种聚合效应就是通过数据多维融合和关联分析与数据挖掘,揭示事物的本质规律,对事物做出更加快捷、更加全面、更加精准和更加有效的研判和预测。从这个意义上讲,时空大数据平台是大数据的核心价值,是大数据发展的高级形态,是大数据时代的解决方案。从产业化的角度讲,通用时空大数据平台是指将时空框架数据汇聚在一个特定平台上,利用这个平台生产军民两用的基础测绘地理信息产品。
所谓“通用时空大数据平台+”模式,即以通用时空大数据平台作为框架,聚合民用、军用的时空变化数据,分别构成时空大数据平台。“通用时空大数据平台+民用”模式,即将地方政府各部门各行业的政务、自然资源、规划、交通、水利、管网、人口、经济、人文、 社会 、医疗、教育、电力、公安等数据汇聚在通用时空大数据平台上,使之成为新型智慧城市的“智脑”,通过持续的聚合效应,生成各类(种)民用深加工知识产品,为政府综合决策、各部门各行业和 社会 公众提供智能化服务。
时空大数据产业化是通过时空大数据平台产业化实现的。因为时空大数据产业化是一个新问题,应该走一条从基础研究起步的产业化创新之路。这条创新之路首先要研究和建立以数据科学为核心的时空大数据理论体系。目前,“数据科学”的边界还不清晰,时空大数据理论研究薄弱,更未形成时空大数据的理论体系,而这是时空大数据产业化的基础。因此,这条创新之路要研究和建立以“数据隐含价值 计算发现价值 应用实现价值”为核心,以“数据获取(传感器网) 处理(生产) 应用(服务)”为产业链的时空大数据产业化技术体系。走在这条创新之路上的人,更要研究和设计包括软件产品、硬件产品、软硬件集成产品、各类(种)应用平台产品和数字产品在内的时空大数据产品体系。
总之,在当前全球数字经济快速发展的大背景下,数字化的知识和信息作为关键生产要素,以数字技术为核心驱动力量,以现代信息网络为重要载体,通过数字技术与实体经济深度融合,数字经济能够不断提高经济 社会 的数字化、网络化、智能化水平,以加速重构经济发展与 社会 治理模式。地理信息产业作为处理位置数据的核心产业,可以积极推动其基于“通用时空大数据平台+”模式深度融入数字产业化、产业数字化、数字化治理与数据价值化领域,积极融入自然资源管理工作整体布局,主动引领以地理信息为基础的新型智慧城市、实景三维中国、新型基础测绘建设,推进地理信息产业向全产业链发展,扩大地理信息产品供给面,加大地理信息消费级产品研发,鼓励新应用、培育新市场,让地理信息产品通过生态建设、智慧管理、数字经济服务国家战略建设并惠及全 社会 ,从而促使地理信息产业向时空大数据产业的融合发展与转型升级。
㈩ 什么是智慧城市时空大数据与云平台
智慧城市是在数字城市、平安城市等基础框架之上建立的全新实体,通过物联网将现实世界与数字世界进行有效融合,自动和实时地感知现实世界中人和物的各种状态和变化,由云计算中心处理其中海量和复杂的计算与控制,为城市管理和公众提供各种智能化的服务。
从国家政策来看,中国“863计划”智慧城市项目总体技术体系架构在科技部863计划“智慧城市(一期)”项目的支持下,863计划智慧城市项目(一期)总体组提出了“六横两纵”的智慧城市技术框架。“六横”层层递进,最下层的是城市的感知层,再是传输层,再上面依次分别是处理层、支撑服务层、应用服务层,最上面是智慧应用层,贯穿全局的是安全保障体系以及标准与评测。
而要真正实现智慧城市,必须引入大数据技术,主要包含三大方面的需求,通过以下三个方面才能实现海量数据的搜集、处理、加工、分析,并真正作用于具体细分行业:
一、大数据融合技术
我国智慧城市建设面临的重大挑战之一,是城市系统之间由于标准问题无法有效集成,形成信息孤岛。因此,在大数据融合技术领域,一方面要加强大数据标准建设,另一方面要加强海量异构数据建模与融合、海量异构数据列存储与索引等关键技术研发,为给予底层数据集成的信息共享提供标准和技术保障。
二、大数据处理技术
大规模数据在智慧城市系统流动过程中,出于传输效率、数据质量与安全等因素的考虑,需要对大规模数据进行预处理。大数据处理技术往往需要与基于云计算的并行分布式技术相结合,这也是目前国际产业界普遍采用的技术方案。
三、大数据分析和挖掘技术
大数据分析与挖掘技术为智慧城市治理提供了强大的决策支持能力。相比于大数据融合和处理技术,大数据分析与挖掘技术更为复杂,是国际学术界和产业界面临的极具挑战性的技术难题。
随着大数据技术的不断发展,以及行业用户对大数据技术的需求日渐明显,大数据行业应用遍地开花。小编通过金鹏信息在智慧城市大数据应用的探索,分享一些国内外的实际案例供借鉴。
1.国内的智慧城市
2013年3月,北京市的“智慧朝阳服务网”正式上线。通过大数据技术的处理、分析手段,从支撑库提炼出数据后发送到服务管理系统,然后通过服务门户,包括微信、微博、移动应用、服务网站、机顶盒等多元化的方式与不同的用户群体进行沟通。
2.国外的智慧城市
瑞典首都斯德哥尔摩市政府在通往市中心的道路上设置了18个路边控制站,通过使用RFID技术以及利用激光、照相机和先进的自由车流路边系统,自动识别进入市中心的车辆,自动向在周一至周五(节假日除外)6:30到18:30之间进出市中心的注册车辆收税。通过收取“道路堵塞税”减少了车流,交通拥堵降低了25%,交通排队所需的时间下降50%,道路交通废气排放量减少了8%-14%,二氧化碳等温室气体排放量下降了40%。
3.智慧医疗
金鹏信息医疗制定了基于英特尔大数据解决方案的区域卫生数据中心建设目标,在郑州区域卫生数据中心形成了完整的大数据解决方案。经过反复测试和调优,这一区域卫生大数据计算架构可以满足海量数据(一亿条以上记录数)的高并发检索和实时数据分析的性能要求,满足了“智慧”的大数据需求。
4.智慧警务
通过充分利用云计算、物联网、大数据和视频智慧分析技术、GIS(地理信息系统)、GPS(全球定位系统)、移动通信网络、移动警务智能系统、数字集成等前沿科技,实现警务工作现代化、智能化、流程化、可视化。
5.智慧交通
郑州建立智能公交系统,使公交车信息就在地图上显示出来:如最近的一辆公交车还有5分钟到站,满员;下一辆公交车还有10分钟到站,有空座,可以选择乘坐;下楼2分钟,走到站台1分钟,余下7分钟,还有时间坐下喝杯热茶。
6.智慧消防
郑州建立智能消防系统,报警人只需拨打119,系统将立刻定位报警人当前位置,并调用位置所在区域监控摄像头,确定灾情地点和火势情况。
7.智慧城市规划
在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息进行挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。
金鹏信息智慧城市解决方案