㈠ 数据分析师在工作中会遇到什么难题
最容易碰到的问题就是自己分析的数据不准确,导致辛苦了半天,分析出来的结果不具备参考价值,甚至都是错误的。
我有一个同事就是做数据分析师的。当然,我们公司目前这方面的工作刚刚起步,还很不成熟,所有相关的数据库还没有建立完毕,处于正在建立的阶段。收集数据的方式也是在摸索中进行。所以收集到的数据很有可能是不准确的。
有一次,领导要求我这个朋友对市场收集回来的关于市场目标群体的消费习惯,兴趣爱好进行数据分析,找出其中的规律。于是我这个朋友就找到市场部的同事要来了近三年的市场活动数据,对接客服,要到了近三年的客户消费信息和记录。光是文件夹本身就有几十兆的大小,可想而知这些数据是多么的庞大。
经过几个日夜的不懈努力,终于初见成效,将这些数据进行了系统的梳理和分类。可是在分类过程中,发现其中一些关于市场活动的数据前后存在矛盾的现象。参加活动的人数和实际转化的人数对不上,有的时候现场转化的人数比实际参加活动的人数还要多。这显然是存在问题的。
于是他就找到了相关部门的相关人员了解情况。工作人员看完之后,又核对了一下自己手头的记录,发现确实有一些数据没有及时更新,而且数据录入的时候出现了一些问题,导致数据录错了。
我这个同事当时听完之后想死的心都有,就是因为数据出现问题,他这几天的工作都白干了,班也白加了。最终没有在规定的时间完成工作,还被领导说了一顿。
作为数据分析师来讲,分析的数据一定要是准确的,不然,所有工作都是百搭。
㈡ 生产管理中的数据分析
生产管理中的数据分析
生产系统在大多数情况下是一个内向型的组织,相对比较封闭,无论是连续型生产模式还是离散型生产模式,都可以用类似的分析方法和思路。
生产制造过程大概分为四大类阶段,即传统生产、精益生产、数据化生产、智能生产。不同的阶段,数据分析能够发挥的作用也不同。
在传统生产阶段下,数据化程度不足,缺少信息系统的支持,多数的数据都是以记录表、纸张、条子等形式存在,都被锁在柜子里,数据分析能够起到的作用是有限的,处理数据的成本是非常高的。
在精益生产阶段中引入了大量数据分析的内容,包括全面质量管理,以及精益生产管理中的各种数据指标和分析方法都开始用数据来说话,包括典型的看板管理就是数字化的管理模式。用数据可以看到公司的行为、用可视化的方式可以让全员能够看到自己的进度、看到产品的质量。
第三个阶段是数据化生产,通过数据我们可以知道整个生产过程在发生什么,该怎么生产才能更好地满足客户的需求,如何更好地满足客户的个性化需求。数据化让所有的过程更加清晰和透明,让更多的信息产生智慧。
第四个阶段是智能生产,通过全供应链流程的通信管理,让工厂为消费者的个性化、高效地生产。更多的无人参与的工厂会涌现,更多的灵活生产的生产线会产生,智能化生产是未来一二十年的基本生产模式。
目前中国的企业大多数都仍然处在传统生产模式中,中国企业要想跟进国际企业的进程,必须要在数据化管理上弯道超车,必须要加快数字化建设,让数据成为企业决策的依据,让数据本身能够产生管理的智慧和生产的智慧。
智能生产的基础是数据化,数据化的基础是信息化,信息化的基础是管理的正规化。目前有很多工厂还在用管理手工作坊的方式管理着生产,特别是在三四线城市的工厂中,工人没有经过严格的工厂化的培训,还在用“差不多就行”的思想在工厂里工作。虽然中国是世界制造大国,但我们的管理能力、生产制造能力、研发能力、生产线设计能力、机器设备的配套能力都远远落后其他国家。虽然我们有很多先进的工厂,但工厂里除了员工是中国的,其他都是进口的,如设备是进口的、原材料是进口。我们必须要突破,必须在管理上要改善。正规化管理、信息化建设、数据化管理是我们奔向智能化管理的必经之路,无法跳跃,但是我们可以用最快的速度补齐短板。国外用几十年、上百年走过的工业化之路,我们可以用短短的三四十年来完成,而数据化管理是我们的跳板,必须要把握。
在生产管理领域的数据分析中,有四个维度是需要数据化的,而且这四个维度之间是相互作用的。这四个维度分别是产量(Quantity)、品质(Quality)、成本(Cost)和交期(Time),为了方便记忆这里缩写为 TCQQ。
1.产量
我们需要从产能的角度思考生产产量,例如产能是多少;我们实际产出了多少;我们的产能利用率是多少;我们生产产量的波动性是多少;产能或者订单是否稳定,如果不稳定,那么我们如何配置资源,减少产能闲置;如何在高峰期满足生产,如何在低峰期减少闲置;如何规划未来的产能;如何通过灵活生产来平衡产能;是否需要淡季储备,这一系列的问题都与产量相关。
2.品质
全面的品质管理包括品质达成情况是怎么样的;次品率是多少;返修率是多少;投诉率是多少;退货率是多少;消费者对品质的评价是什么;品质是否是公司产品的竞争力;对比竞争对手,我们的品质是否领先;我们的产品是否创新了,是否引领市场了;我们的产品生命周期是否足够长;我们除了生产管理强调了品质管理;其他部门是否也达到了品质管理的要求和标准,等等。
3.成本
成本方面的分析包括产品的成本结构是什么样的;订单的成本结构是否能够精准地算出;别人生产的成本率是多少;我们如何降低成本;哪些地方有降低成本的空间 ;哪些方面存在浪费 ;哪些浪费是可以消除的。
《精益生产》中列举了七大类浪费,我们在为生产制造型企业提供数据管理咨询服务的时候,把这种精益管理思想数据化,并推延到整个公司的管理中,总结出“十大企业管理资源浪费”,并用这些浪费的首字母组成了一个单词:DOWNTIMERS,下面分别介绍一下。
①产品不良(Defect): 产品生产出来不合格,无法销售,并且无法再次加工,那么这就浪费了材料,消耗了能源,耽搁了生产线生产,浪费了加工过程各种投入,甚至影响公司的销售,延长订单交期,导致客户不满。
②过度加工(Over Proction):一件商品从消费者满意角度看,加工 N 道工序最为合适,如果超过这些工序就是过度加工。过度加工会将不必要的生产投入注入产品中,并未得到消费者更高的评价,或者消费者根本就感知不到,因此造成公司投入上的浪费 ;过度包装也是一种过度加工的类型。
③等待(Wait):等待是指人、财、物在时间上的浪费。无论是物料的等待还是人员的等待都是企业管理过程中的资源浪费。物料等待时间过长导致的是订单交期延长;在产库存量增加,也会带来资金浪费;等待中的材料需要存放,也会导致仓储费用增加;人员的等待也是浪费,例如下一道工序等待上一道工序完成。所有的等待都可以看作是闲置,或者不产生价值的时间,例如公司约定 8 点开会,早到的人 7:50 到场,有些人 8:15 才到场,然后会议 8:20 才开始,早到的人提前了 30 分钟,这个半小时就是闲置时间,是浪费,所以说高效的公司一定是非常守时的,守时是对所有与会者的尊重。几乎所有的公司中都存在或多或少的闲置浪费,这种浪费如果不消除,那么公司就很难控制成本。
④无价值流程(Non-Value-AddedProcess):无价值流程是指不产生价值的流程、工艺、过程。业务流程、生产工艺、管理过程等在好多的情况下都有不产出价值的内容。例如火车站的检票程序,你会发现进站的时候乘务员会查一遍火车票和身份证,上车前乘务员还要查一遍火车票和身份证,这两次检查其中有一次就是无价值的。而北京南站取消了第一道检票流程,只在上车前才查身份证和火车票,从而让乘客的进站时间大大缩短,这样的流程安排让更多人把去火车站的提前时间缩短,滞留在北京南站的人数也会大幅度减少。
⑤运输或中转位移(Transportation) :工厂中的物料移动、人员移动都不产生任何价值,移动距离越大,浪费越大,所以先进的工厂都通过立体的设计减少物料的移动和人员的移动。当物料的等待时间和人员的等待时间价值不同时,流程设计也会不同。当人员成本高时,物料移动;当物料成本高时,人员移动。除生产高净值产品的生产线外,绝大多数的工厂都是物料围绕着人员转的,所以有了流水线的设计。在公司管理上,人员的移动距离也是一种浪费,如果人员能够在一个办公室中,那么绝对不要开设更多的办公地点,这样一方面会让沟通被弱化,另外也带来移动的浪费。员工在上下班路上的时间也是人工成本上的浪费,虽然劳动合同上并未把员工在上下班路上的时间计入工作时间,但是这个时间也是员工付出的成本之一,也会被员工计入对薪资的期望中。如果可能,要尽可能地将员工上下班路上的时间缩到最小,因为这个时间并不产生任何价值,还会消耗大量的社会资源。一个城市的规划也是如此,在 20 世纪 90 年代,中国的城市发展希望走“功能区”模式,即将商务区、工厂区、行政区、高科技区、居住区、文化娱乐区等分开建设,这种功能区的建设让很多人都在同一个方向移动,不能很好地分散人流,导致交通压力大,出行效降低,同时无效的上下班移动距离,增加了大量的社会成本,也涌现了“鬼城”、“睡城”等特殊现象。繁华商业区因为只有上班的地方而没有居住的地方,所以在晚上成了“鬼城”;而居住区白天无人居住,晚上都回来睡觉,所以成了“睡城”。城市功能不分散导致很多人的移动距离增加,这种模式应该逐渐在城市发展中被淘汰。
⑥智力冗余(IntellectRendancy):一个高级技工从事普通的体力劳动,这就是一种智力的冗余。如果按照高级技工的工资给其付酬,也是浪费,因为这在无形之中给公司带来了费用的增加;除非你是出于竞争战略考虑:虽然我不能给这个高级人才提供适合他的工作,但我必须把他圈在我的公司中,因为他一旦去了竞争对手的公司,那么我的公司面临的竞争压力就会非常大了。很多公司中都存在或多或少的智力冗余现象,因为一家公司在识人、用人上存在能力不足和信息不对称,就会出现优秀人才得不到重用的现象。当然,有些公司需要从流程上避免智力冗余现象,例如,服装厂的一个裁缝工人是高级技工,工资比普通工人要高很多,但如果在工艺流程上,他还需要缝纫工去领料、送料、修剪毛边、剪线头,那么就是智力冗余的不良工艺设计。
⑦动作冗余(Motion):我们在从事劳动的时候都会由一些基本的动作来完成,如果动作不合理,就会造成动作上的浪费。据说计算机键盘是根据字符在英文中出现的最大频率来设计的,以便让手指头在键盘上的移动距离最小,从而大幅度节省手指在打字移动的距离和时间,提高效率。这个设计是按照英文习惯设计的,但不见得适合中文、法文、意大利文等其他语言,这里就是效率的问题。历史上英文字母出现的频率和现代社会中英文字母出现的频率已经大大不同,而键盘按键布局的变化会导致打字速度大幅度降低,从而会提高学习成本,所以最初的设计非常重要。
工厂中的动作设计也需要科学地评估、合理设计,要降低学习成本。
⑧超额库存(Excess Stock/Inventory): “库存是万恶之源”,每个公司都希望大幅度削减库存,包括工厂中的库存和流通环节的库存。物品的存放就是浪费,社会物资快速流动起来才能创造更多的价值。超额的库存是由于生产计划不准确、销售预测不准确导致的,很多企业因为库存问题被拖垮。产品生产出来卖不出去、采购的物料用不完、生产交期过长,这些都将高流动性的企业经营现金流固化到库存中,甚至成了长期的库存。降低库存甚至零库存需要通过数据化管理,需要通过商业模式创新。
⑨返工或者重复工作(Rework):返工、返修、重复都是极大的浪费,产品质量不合格,可能需要返工,例如一个零件尺寸要求为 11.55 米,你却加工成了 11.56米,超过了标准,就需要再铣掉 0.01 米,这个过程就是返工;而如果你将零件加工成了11.54米就成了废品(Defect),而11.56米的零件是不合格品。一篇文章反复修改,一个方案反复讨论,一个模型反复设计,都是重复工作,最好将这种工作减少到最小,虽然有些工作是不可能一步到位的。
⑩停机、停下(Stop) :我们在开车时,如果要停车,需要慢慢踩刹车。再次启动时也需要慢慢提速。如果停车的次数过多,则会大幅度延长我们到达目的地的时间。工厂中的加工也是如此,有些时候我们需要停机检修,需要对锅炉进行清洗等,这些都是浪费;公司管理中也存在这种浪费,当项目停下来又再启动时需要花费时间,只有一鼓作气将一件事情做完才最高效。
4.交期
交期是指从客户下达订单到客户获得产品和服务的周期。任何一个人都希望能立马获得并能够使用产品。工厂的客户也一样,客户希望下达订单之后能够马上收到产品,并能够快速投入使用,让整个的供应周期降低到最短。这是一个理想的状态,在多数非库存生产的企业中都存在交期的问题。而交期一方面代表着客户的满意度,代表着企业适应市场变化的能力。更为重要的是,交期也代表着企业的周转效率。
笔者曾经服务过一个年产值 20 亿元人民币的外加工工厂。当一个订单从国外发送过来之后,企业就组织生产并与原材料采购同步,整个周期是 18 天,而实际有效的生产的周期是 7 天。
㈢ 数据分析过程中容易犯的几个错误
数据分析过程中容易犯的几个错误
数据分析的作用不必多说,在网站运营、网络推广等方面都需要数据分析作为支撑,所谓兵马未动,数据先行,数据分析是我们做网络推广必须要掌握的技能。通过观察学员们在做数据分析的过程中以及最后的数据情况,发现大家最容易犯的几个错误,在此也帮大家总结一下。
1、没有明确分析数据的目的
咱们要分析一个数据,首先要明确自己的目的,为什么要收集和分析这样一份数据,也是只有明确了目的之后,才能够把握好接下来应该收集哪些数据,应该怎么收集数据,应该分析哪些数据等。
2、没有合理安排时间
数据分析也要合理安排时间,一般我们有几个步骤,收集数据>>整理数据>>分析数据>>美化表格,在做这些之前,我们要预估一下每一个步骤需要花多少时间,哪一步比较重要,需要花更多的时间等,这些都要在开始收集数据前就计划好,然后在操作的过程中在规定的时间里完成每一个步骤。
3、重收集轻分析
培训里有不少同学就犯了这样的一个错误,做任务的时间为3个星期,却用了两个多星期来收集数据,最后基本没有时间去分析,紧赶慢赶最后交上来一份没有怎么分析的数据。数据分析重点应该在于分析,应该以最快的速度收集完数据,才有更多的时间整理和分析,最后经过分析的数据才是最有价值的。
4、收集数据太多,导致无法整理及分析
在我们开始收集数据的时候,容易犯的一个毛病就是看到什么内容比较符合的就都收集下来,这样的情况是数据越来越多,表格里文档里的内容越来越多,到最后一看,自己都晕了,该怎么整理和分析啊!其实我们在收集数据的时候也要有一个标准,什么样的数据是我们需要的,什么数据是不符合条件的,作一个初步的判断,这样就可以减少后面整理的更多工作量了。
5、不懂得分析哪些数据
这是比较普遍的问题,收集了数据后不知道要分析哪些项目,哪些数据点才能体现出分析的目的。其实这也是前面说的目的不明确造成的,不清楚为什么要收集这份数据,这份数据是用来做什么用的,那就不会有一个评判标准,就没有办法找到数据的要点。比如我们要分析排名前十的在线旅游网站,那就要知道什么样的旅游网站才是最好的,最好的在线旅游网站应该具备什么条件,把这些条件列出来,然后根据条件去收集网站的数据,最后满足所有条件的网站就是最好的旅游网站之一了。
6、表格不美观,不清晰
咱们做数据分析一般使用的是excel表格记录,一份美观清晰的表格不仅使我们可以清楚的看到这份数据的重点,方便查到所想要的数据,我们在收集数据的过程中,也可以提高我们收集和分析数据的效率。Excel还不熟练的同学,建议多找些教程,然后多练习,最后得到一份漂亮的数据,自己看着也舒服。
7、不能坚持
数据收集和分析是一件非常闷的工作,不管是收集还是分析,海量的数据里,经常会让人摸不着头绪,数据越多,整理分析起来越麻烦,也越容易让人烦燥,坚持不了的就会半途而废。所以,做好以上6点,也就是明确目标、合理安排时间、把握重点、懂得取舍数据、制作精美表格,都可以让你更轻松的完成数据的收集和分析。
以上是小编为大家分享的关于数据分析过程中容易犯的几个错误的相关内容,更多信息可以关注环球青藤分享更多干货
㈣ 数据处理经历了哪几个阶段
1.数据采集\x0d\x0a了解数据采集的意义在于真正了解数据的原始面貌,包括数据产生的时间、条件、格式、内容、长度、限制条件等。这会帮助数据分析师更有针对性的控制数据生产和采集过程,避免由于违反数据采集规则导致的数据问题;同时,对数据采集逻辑的认识增加了数据分析师对数据的理解程度,尤其是数据中的异常变化。\x0d\x0a在数据采集阶段,数据分析师需要更多的了解数据生产和采集过程中的异常情况,如此才能更好的追本溯源。另外,这也能很大程度上避免“垃圾数据进导致垃圾数据出”的问题。\x0d\x0a2.数据的加工整理\x0d\x0a在明确数据分析目标基础上收集到的数据,往往还需要进行必要的加工整理后才能真正用于分析建模。数据的加工整理通常包括数据缺失值处理、数据的分组、基本描述统计量的计算、基本统计图形的绘制、数据取值的转换、数据的正态化处理等,它能够帮助人们掌握数据的分布特征,是进一步深入分析和建模的基础。\x0d\x0a3.数据分析\x0d\x0a数据分析相对于数据挖掘更多的是偏向业务应用和解读,当数据挖掘算法得出结论后,如何解释算法在结果、可信度、显著程度等方面对于业务的实际意义,如何将挖掘结果反馈到业务操作过程中便于业务理解和实施是关键。\x0d\x0a4.数据展现\x0d\x0a数据展现即数据可视化的部分,数据分析师如何把数据观点展示给业务的过程。数据展现除遵循各公司统一规范原则外,具体形式还要根据实际需求和场景而定。基本素质要求如下:\x0d\x0a工具:PPT、Excel、Word甚至邮件都是不错的展现工具,任意一个工具用好都很强大。\x0d\x0a形式:图文并茂的基本原则更易于理解,生动、有趣、互动、讲故事都是加分项。\x0d\x0a原则:领导层喜欢读图、看趋势、要结论,执行层欢看数、读文字、看过程。\x0d\x0a场景:大型会议PPT最合适,汇报说明Word最实用,数据较多时Excel更方便。\x0d\x0a最重要一点,数据展现永远辅助于数据内容,有价值的数据报告才是关键。
㈤ .在计算机数据采集、数字化处理的过程中主要存在哪些问题如何避免这些问题
一是每一个数据点的时间。另一个就是采样率设置的问题。
第一是每一个数据点的时间,在NI的数据采集中是通过T0和dt来确定的,T0就是开始数据采集的初始时间,是任务开始时,数据次啊及卡读取的计算机时间,dt二个数据点之间间隔的时间,是采样率的倒数,比如1K采样率,dt就是1/1000=0.001=1毫秒。在施工DAQmxRead.vi的时候要选择波形输出而不是DBL输出,波形输出就带有这些信息,而DBL就只有数据而没有时间信息了。
另一个就是采样率设置的问题。数据采集卡的采样脉冲一般是由它的内部时钟源进行分频后得到的,所以采样率是不是非常准确,得看时钟源是否能被整数倍地分频到指定的采样率。
㈥ 分娩过程中,有哪些要注意的问题
在明确自身以哪种方式孕妇分娩以后,不管最终决策是什么样的,都需要始终保持心灵的宁静、情绪的舒适。
在全部分娩过程中,孕妇要信赖医师,相互配合医师,防止太多的精神压力,祝福各位孕妈妈顺利孕妇分娩!
选择顺产生完孩子两小时必须 紧密观查出血,生完孩子两小时被称作“第四分娩过程”,由于产后大出血大多数产生在这里两个小时之内,这段时间孕妇仍必须 留到待产室观查,如一切正常两小时后送到医院病房歇息,真真正正完毕孕妇分娩。
㈦ 数据预处理的方法有哪些
数据预处理的方法有:数据清理、数据集成、数据规约和数据变换。
1、数据清洗
数据清洗是通过填补缺失值,平滑或删除离群点,纠正数据的不一致来达到清洗的目的。简单来说,就是把数据里面哪些缺胳膊腿的数据、有问题的数据给处理掉。总的来讲,数据清洗是一项繁重的任务,需要根据数据的准确性、完整性、一致性、时效性、可信性和解释性来考察数据,从而得到标准的、干净的、连续的数据。
(1)缺失值处理
实际获取信息和数据的过程中,会存在各类的原因导致数据丢失和空缺。针对这些缺失值,会基于变量的分布特性和变量的重要性采用不同的方法。若变量的缺失率较高(大于80%),覆盖率较低,且重要性较低,可以直接将变量删除,这种方法被称为删除变量。
若缺失率较低(小于95%)且重要性较低,则根据数据分布的情况用基本统计量填充(最大值、最小值、均值、中位数、众数)进行填充,这种方法被称为缺失值填充。对于缺失的数据,一般根据缺失率来决定“删”还是“补”。
(2)离群点处理
离群点(异常值)是数据分布的常态,处于特定分布区域或范围之外的数据通常被定义为异常或噪声。我们常用的方法是删除离群点。
(3)不一致数据处理
实际数据生产过程中,由于一些人为因素或者其他原因,记录的数据可能存在不一致的情况,需要对这些不一致数据在分析前进行清理。例如,数据输入时的错误可通过和原始记录对比进行更正,知识工程工具也可以用来检测违反规则的数据。
2、数据集成
随着大数据的出现,我们的数据源越来越多,数据分析任务多半涉及将多个数据源数据进行合并。数据集成是指将多个数据源中的数据结合、进行一致存放的数据存储,这些源可能包括多个数据库或数据文件。在数据集成的过程中,会遇到一些问题,比如表述不一致,数据冗余等,针对不同的问题,下面简单介绍一下该如何处理。
(1)实体识别问题
在匹配来自多个不同信息源的现实世界实体时,如果两个不同数据库中的不同字段名指向同一实体,数据分析者或计算机需要把两个字段名改为一致,避免模式集成时产生的错误。
(2)冗余问题
冗余是在数据集成中常见的一个问题,如果一个属性能由另一个或另一组属性“导出”,则此属性可能是冗余的。
(3)数据值的冲突和处理
不同数据源,在统一合并时,需要保持规范化,如果遇到有重复的,要去重。
㈧ 数据质量管理的分析影响数据质量的因素
影响数据质量的因素主要来源于四方面:信息因素、技术因素、流程因素和管理因素。
信息因素:产生这部分数据质量问题的原因主要有:元数据描述及理解错误、数据度量的各种性质(如:数据源规格不统一)得不到保证和变化频度不恰当等。
技术因素:主要是指由于具体数据处理的各技术环节的异常造成的数据质量问题。数据质量问题的产生环节主要包括数据创建、数据获取、数据传输、数据装载、数据使用、数据维护等方面的内容。
流程因素:是指由于系统作业流程和人工操作流程设置不当造成的数据质量问题,主要来源于系统数据的创建流程、传递流程、装载流程、使用流程、维护流程和稽核流程等各环节。
管理因素:是指由于人员素质及管理机制方面的原因造成的数据质量问题。如人员培训、人员管理、培训或者奖惩措施不当导致的管理缺失或者管理缺陷。
㈨ 在数据库设计过程中要注意哪些问题
在数据库设计过程中要注意以下三个问题:(1)数据库设计过程中要注意充分调动用户的积极性。用户的积极参与是数据库设计成功的关键因素之一。用户最了解自己的业务
㈩ 统计数据收集过程中可能有哪些误差
统计数据收集过程中可能有:登记性误差(也叫观测性误差或调查性误差)和代表性误差(分系统性代表误差、偶然性代表误差) 。
规避:登记性误差:认真仔细,被观测者的配合等。系统性代表误差难以计算和控制,偶然性代表误差无法避免,但可以计算和控制 。
统计数据对现象进行测量的结果。比如, 对经济活动总量的测量可以得到国内生产总值(GDP)数据;对股票价格变动水平的测量可以得到股票价格指数的数据;对人口性别的测量可以得到男或女这样的数据。
(10)数据生产过程中会出现什么问题扩展阅读
统计数据搜集的组织形式有普查、抽样调查、统计报表、重点调查、典型调查等。
1、普查:普查是为了某种特定的目的而专门组织的一次性的全面调查,用以搜集重要国情国力和资源状况的全面资料,为政府制定规划、方针政策提供依据。
2、抽样调查:抽样调查是实际应用中最广泛的一种调查方法,他是从调查对象的总体中随机抽取一部分单位座位样本进行调查,并根据样本调查结果来推断总体数量特征的一种非全面调查方法。
3、统计报表:统计报表是一种以全面调查为主的调查方式,它是由政府主管部门根据统计法规,以统计表格形式和行政手段自上而下布置,而后由企、事业单位自下而上层层汇总上报逐级提供基本统计数据的一种调查方式
4、重点调查:重点调查是专门组织的一种非全面调查,它是在总体中选择个别的或部分重点单位进行调查,以了解总体的基本情况。