❶ 如何构建商业银行数据分析能力
构建商业银行数据分析能力的步骤如下:
1、建立科学的数据管理工作机制。数据管理工作机制是数据管理体系的“奠基石”。数据管理工作机制的建设依赖于银行高层管理人员的重视和不断推动,同时也需要建立相应的数据管理机制的决策和控制机制。有效的数据管理需要明确专门的部门或组织承担整个银行的数据管理和应用职责。该组织负责从战略的角度进行统筹和规划,确定数据管理的范围,明确数据资产的归属、使用和管理等流程,明确数据管理的组织、功能、角色和职责,以及确定数据管理的工具、技术和平台等内容,切实有效促进数据共享、提高数据价值。 建立统一的数据标准规范。
2、数据标准规范是数据管理体系的“粘合剂”。它是改进、保障和提高数据质量的依据,也是数据管理工作成败的关键。数据标准化旨在促成数据标准的形成和使用而进行的与之相关的一整套数据标准规范,即制订和实施数据标准、提高数据管理水平的过程。数据标准的制订需要参考行业监管和标准机构已制定的数据标准,同时也应参考各个部门内部使用的特定数据的定义,制订出数据标准体系框架,可以分为基础类数据标准、业务类数据标准和应用类数据标准等,并在此标准基础上进行细分。在数据标准体系框架下,通过对数据标准的梳理工作,以在业务属性和技术属性层面实现全行的数据标准化。
3、 建立持续的数据质量管理规范。数据质量管理是数据管理体系的“助推器”。它是对支持业务需求的数据进行全面的质量管理,保障各项数据管理工作能够得到有效落实,达到数据准确、完整的目标,并能够提供有效的增值服务的重要基础。数据质量管理包括数据质量管理团队建设、数据质量管理制度建设、数据质量管理流程建设以及数据质量管理监控平台建设等,其中,数据质量管理监控平台建设至关重要。在数据统一管理的框架下,银行需要依据数据在数据生命周期的各个阶段的特性,建立数据质量管理监控平台,及时发现数据质量问题,不断改善数据的使用质量,降低数据质量导致的业务风险,实现数据更大的应用价值,满足业务分析和管理决策的需要。
4、建立完善的数据安全防范规范。数据安全防范是数据管理体系的“防护罩”。
数据安全管理问题的解决,可以从以下5个角度着手:(1)制度及流程规范。通过建立数据安全和数据保密的相关管理制度和流程,合理划分数据安全级别,规范数据在数据生命周期中的安全。(2)数据安全意识。加强对数据拥有者、数据管理者和数据使用者的安全意识培养,提高数据对于银行业务的重要性认识。(3)数据保密性。系统中的个人身份信息、银行账户信息等是否要进行加密,以避免数据被非法访问。(4)应用系统的访问控制。通过对应用系统的访问权限统一管理及单点登录,达到防止非法访问的目的。(5)数据安全审计。建立数据安全审计机制,检查数据中的安全风险,防患于未然。 数据分析是实现数据资产增值的重要手段 数据分析是指一整套技术、流程与应用工具,通过建立分析模型对数据进行核对、检查、复算、判断等操作,将样本数据的现实状态与理想状态进行比较,从而发现潜在的风险线索并搜集证据的过程。在实际应用中,数据分析可帮助银行做出判断,以便采取适当行动。因此,数据分析的过程就是组织有目的地收集数据、分析数据,最终使数据实现资产增值。
❷ 可供银行挖掘的外部征信数据都来自哪里
可供银行挖掘的外部征信数据包括内部、外部两大部分,内部数据包括客户信用卡、存款、理财、网银、个贷、小企业贷等信息,
外部数据包括专业市场数据库、社区居民数据库、各商会和产业链数据库等,以及央行征信系统信息,
目前互联网大数据服务商提供征信的有芝麻信用、前海平安,风控与决策的有神州融,做评分的有FICO。