❶ 大数据培训大概要多少钱
您好,很开心为您解答。
大数据培训大概在2万左右(面授课),但如果是线上授课,估计会便宜点。
但费用不能作为评价一家大数据培训机构好不好的决定性因素,需要从师资力量、机构口碑、就业情况等多方面考察。
❷ 企业大数据项目实施过程中遇到的那些挑战
企业大数据项目实施过程中遇到的那些挑战
说到大数据,人们很多还停留在概念的阶段,不过对于一些企业来说,大数据已经就在眼前,业务的需求驱使着IT部门不得不去做大数据的分析与处理。企业需要大数据的分析和处理,但是大数据并不是想象中的那么简单,在实际部署实施的过程中会遇到很多方面的问题。
尤其是目前社交网络的兴起带来了更多的数据量,企业需要面对的挑战就越来越高,因为社交网络的数据本身就是一个无底洞。一位企业CTO说:“目前我们的数据来源基本都是在社交网络上面,我么收集这些数据加以分析,帮助企业理解这些人的消费规律以及个人偏好。”
企业大数据项目遇到的那些挑战
这位CTO所在的团队运营着一个可以产生12亿美元的数据平台,以及每天超过400万人的PB级数据集群。所在团队的大数据环境中包括了大量的开源平台,他们所用的技术包括:Hadoop、HBase,Hive,ElasticSearch,Scala,Storm,Node.js以及其他的很多工具。这确实是一个非常严峻的挑战。
我们通过企业大数据项目的具体实施过程不难看出,在实施的过程中技术与人是最关键的两个问题。选择一个成熟的技术,并且让最合适的人来进行实施,这样才会有一个比较合理的结果。
目前,以及有不少的企业开始进行部署自己的大数据项目,下面我们就为大家总结一下企业在部署大数据项目过程中遇到的那些难题与挑战。
复杂的数据计算与存储
大数据,顾名思义海量的数据是不可避免的。这项对于传统的数据分析而言,大数据需要大量的存储空间来进行数据存储,现在数据的产生量已经不是人们所能想象的,传统的存储介质与存储方式并不能满足如此快速的数据产生量。换句话来说,看看新浪微博、Facebook每分钟产生的数据量你就会明白了,电商更是夸张,阿里双十一,百亿的交易额,这样的数据量需要具有针对性的数据存储方式。
而从项目的整体出发,只是存储并不能算得上大数据。在存储之后还需要对海量的数据进行分析与计算,只有最后得出的分析结果才会对企业有所帮助。存储只是万里长征的第一步,大数据处理团队需要弄清楚这些数据背后的价值,需要合理的对数据进行归档,并且数据价值是需要进行计算分析得出的,庞大的数据量需要更加庞大的计算能力才能完成。
技术的成熟度的挑战
开源技术就好比一只小狗,它很可爱,也很好。但你需要养活它。就目前的技术发展而言,开源的大数据技术还并不是十分成熟,商业的大数据解决方案价格有非常昂贵,所以对于大部分企业来讲,开源貌似是唯一的解决方向。但开源技术并不能很好的适应每一个企业的具体业务线,所以企业还要投入大量的技术力量进行维护与二次开发。开源技术是条可爱的小狗,但是你需要养活他。
许多大数据技术是在建工程。虽然基础技术日趋完善,管理和配置的工具都处于起步阶段,让IT专业人员做工作解决的差距。企业的IT团队不得不开发工具,从管理的角度,从工作流程的角度,从配置等不同的角度出发。
期待,努力发现人才
之前讲了,大数据需要成熟的技术以及合适的人来执行,这里指的合适的人是一个真正的数据分析专家。而这样的人往往是可遇而不可求的,除非你花重金去其他公司去挖人,而且还不能确定这个人是否能适应这个团队。
其实从技术的角度出发,大数据的技术与工具正在迅速发展,但是这些技术与工具只掌握在少数人的手里,并不能得到大规模的应用。所以对于企业来讲,大数据的技术与人同样重要。拥有了成熟稳定的技术,但是没有可以执行它的人,那么大数据项目也会相当危险,没准什么时候就成为了企业财政的累赘。
3产品线与项目的对接想想模块化,准备投资
任何一个项目的组建都不可能是无成本的。每一个项目都会意味着人力与财力的投入。尤其是在大数据项目上,每一个关键的业务点都意味着大量的资源投入。相比于其他项目,大数据项目耗费的资源会更多,在基础设施上的投入,服务器、存储以及计算资源和开发人员的投入都是相当庞大的。
模块化的基础设施一直是重要的,因为它可以让IT团队能够处理的业务优先级的变化,并提供业务透明度。企业的IT团队有必要投资的管理和生产力工具。这就是20%,25%都集中在我的工程资源,生产力工具和工作流程管理。
将产品与业务线做对接
在企业中项目需要围绕着业务进行实施,再好的产品项目如果不能很好的与业务进行对接,也是不能实现其真正的价值。这很容易让大数据的专家紧密合作,产品专家和业务利弊谈,但它可以是难以贯彻的想法。越来越多在??过去的几年中,我们已经给他们带来了起来,因为双方都需要了解的另一边。
在很多失败的案例中我们不难看出,企业大数据产品的最终失败原因有一条就是产品不能很好的服务于企业核心业务,这样就会导致大量投入的资源变成没有价值体现的投入。
而成功的大数据产品就不是这样子。一个成功的大数据分析产品可以为企业揭示风险并且识别新的商业机会,并且可以根据客户的喜好进行商业活动,并获得洞察客户情绪-然后与该公司分享成果。大数据展示业务和IT事件有助于创造一个时髦围绕大数据分析的潜力。
领导层到技术人的思想贯彻
这里说的还是与人有关,大数据项目在企业中算是一个牵动企业发展战略的大项目。这需要从企业领导层到开发人员的整体投入。企业花了很多的时间映射可以利用大数据在我们的承保和理赔流程,并回馈业务线。项目团队需要企业从领导层到技术层从上倒下的支持。ACE集团的督导委员会,负责领导公司的大数据议程。令人惊讶的是,它不是堆叠技术人员。“这是很难得的任何科技。有四个技术人员和大约20商界领袖在那个队。
关键的事情之一是投资建设第一的技能和资源,在我们开始这段旅程。如果没有,我们将不得不一个不可接受的滞后值回业务。一位成功部署大数据项目的CTO说。
4把业务人员下放到项目中去把业务人员下放到项目中去
既然大数据项目是为了企业业务服务的,而对企业业务最为熟悉就是业务人员,在整个项目中业务人员的需求往往是必然的需求。
企业需要进行完全嵌入的做法,将一线的业务人员下派到项目的每一个关键环节。只要这样,整个项目完成之后才能更好的为业务服务。企业通过建立核心竞争力,搭配新的技能,在我们的业务统计人员,数据洗涤器,数据分析,工艺专家我们的赔款及承保专长。其实这是一只搭配的意识,分享知识,发展和创新,我们利用大数据帮助业务发展。
不要小看管理供应商或系统集成商
对于一些技术力量有限的企业来说,他们更喜欢寻找一个系统集成商或者方案供应商来进行外包。在这期间会进行方案招标,而每一家集成商的方案都不尽相同,而且没有一家可以提供即用的解决方案,对于供应商的管理也是一个挑战,整合所有不同的系统,将这些系统整合成为一个巨大的方案进行协同运行。
独立评估投资回报率
在很多企业中,使用大数据分析,改进和验证的营销活动的有效性。当大数据项目是成功的,每个人都希望它的一部分,当你走在你开始为公司创造新的收入,项目带来这么多钱,大家突然出来的木制品和希望声称。对于他的团队,问题解决了,当CFO加强仲裁,提供独立意见的投资回报率,公司就会更加承认大数据计划。
转变并不会在一夜之间发生。从多来源的数据采集,到通过深度分析获取洞察力,之间会是一段并不平坦的征程。毫无疑问,Hadoop等技术的日趋成熟,让企业用户可以更方便地、在更大的范围内收集业务的相关数据,但同时真正的挑战也会接踵而至。这就是如何高效地处理多来源的海量数据,并且为其找到适合的商业用途。
以上是小编为大家分享的关于企业大数据项目实施过程中遇到的那些挑战的相关内容,更多信息可以关注环球青藤分享更多干货
❸ 大数据储存解决方案
考没考虑用云盘存储。
❹ 智慧地图APP解决方案开发要多少钱
智慧地图APP解决方案开发要多少钱
如今,不少企业都想拥有属于自己企业或产品的手机APP,但其中最困扰企业主的问题就是:开发一款手机APP到底需要多少钱?
简单点来说,要视手机APP的需求及质量而言,价位一般在几千到十几万左右,更高端的价格更高。
二、手机APP平台不同,制作成本也不一样
现在市面上流行的手机APP制作平台主要有两种一般包括两种系统:安卓系统(Android)和苹果系统(IOS)。
一般来说,制作苹果系统的手机APP软件费用要比安卓平台的贵一些,因为苹果公司对苹果平台的封闭性和手机APP开发语言Objective-C的难度,都让APP开发者加大了苹果系统手机APP开发的难度。
三、APP制作成本包含参与人员的工资
通常情况下,开发一款APP需要产品经理、客户端工程师、后端工程师和UI设计师各一名,这已经是制作手机APP应用软件比较精简的配置了,所以这些参与人员的工资也是包含在APP制作成本当中的。这些工作人员的月薪加起来可能都会超过4、5万元。
四、APP开发公司的所在地
需要注意的是,同样实力的APP开发公司,在不同的城市也会导致APP的成本费用高一些
❺ 大数据解决方案哪家供应商好
大数据解决方案的选择需要考虑这几个方面的问题:
1.可视化分析;专
2. 数据挖掘属算法;
3. 预测性分析;
4. 语义引擎;
5.数据质量和数据管理;
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值https://www.hwclouds.com/bigdata/。
大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。
❻ 大数据解决方案都有哪些
在信息时代的我们,总会听到一些新鲜词,比如大数据,物联网,人工智能等等。而现在,物联网、大数据、人工智能已经走进了我们的生活,对于很多人看到的大数据的前景从而走进了这一行业,对于大数据的分析和解决是很多人不太了解的,那么大数据的解决方案都有哪些呢?一般来说,大数据的解决方案就有Apache Drill、Pentaho BI、Hadoop、RapidMiner、Storm、HPCC等等。下面就给大家逐个讲解一下这些解决方案的情况。
第一要说的就是Apache Drill。这个方案的产生就是为了帮助企业用户寻找更有效、加快Hadoop数据查询的方法。这个项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
第二要说的就是Pentaho BI。Pentaho BI 平台和传统的BI 产品不同,它是一个以数据流程为中心的,面向解决方案的框架。其目的在于将一系列企业级BI产品、开源软件、API等等组件集成起来,这样一来就方便了商务智能应用的开发。Pentaho BI的出现,使得一系列的面向商务智能的独立产品如Jfree、Quartz等等,能够集成在一起,构成一项复杂的、完整的商务智能解决方案。
然后要说的就是Hadoop。Hadoop 是一个能够对海量数据进行分布式处理的软件框架。不过Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。另外,Hadoop 依赖于社区服务器,所以Hadoop的成本比较低,任何人都可以使用。
接着要说的是RapidMiner。RapidMiner是世界领先的数据挖掘解决方案,有着先进的技术。RapidMiner数据挖掘任务涉及范围广泛,包括各种数据艺术,能简化数据挖掘过程的设计和评价。
Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来,其它知名的应用企业包括Groupon、淘宝、支付宝、阿里巴巴、Admaster等等。
最后要说的就是HPCC。什么是HPPC呢?HPCC是High Performance Computing and Communications(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆比特网络技术,扩展研究和教育机构及网络连接能力。
通过上述的内容,想必大家已经知道了大数据的解决方案了吧,目前世界范围内拥有的大数据解决方案种类较多,只有开发并使用好最先进的,最完备的大数据解决方案,一个公司,甚至一个国家才能走在世界前列。
❼ 2020年度大数据解决方案TOP50出炉!智领云榜上有名
近年来,我国大数据生态环境不断向好,产业发展维持高增长态势,大数据技术在与政府、企业核心业务的融合中,释放出了更多创新活力和应用潜能。
此次上榜企业,均属于大数据领域的驱动力量,也是其所在行业不可替代的创新主力。入选榜单进一步提升了智领云的品牌形象和影响力,更是对公司产品与技术实力的认可。
未来我们将不断挖掘大数据的巨大潜力,扩大自身专业性和影响力,更好地支撑企业数字化建设,落地更多的数字化创新应用,不断 探索 大数据产业链的融合应用,为各行各业数字化转型提供可实践的方法论与经验,并致力于为大数据与行业的融合创新不断贡献自己的力量。
关于智领云
武汉智领云 科技 有限公司成立于2016年8月,专注于云计算、大数据领域前沿技术的研发。公司创始团队成员来自于推特(Twitter)、苹果(Apple)和艺电(EA)等硅谷知名企业,是硅谷最早一批从事云计算和大数据研究与实践的技术专家,拥有十多年的云计算、大数据系统的系统架构和系统开发经验。公司作为拥有云计算、大数据领域核心技术的高 科技 企业获得了来自硅谷、国内知名投资人和投资机构的青睐。
公司为企业级客户提供云原生数据中台系统解决方案;帮助企业搭建数据和AI中台,轻松打造业务数据能力闭环,掌握全面、及时、更多维度的业务现状,提升数据驱动应用的迭代和发布速度;实现系统资产(人/资源/数据/应用) 在同一系统中的统一管理,建立数字化运营体系,并最终完成数据驱动的数字化转型。
公司在能源、教育、医疗 健康 、物联网、金融等行业同国内外很多知名企业和上市公司建立了合作关系,包括:D2IQ(Mesos平台的主要开发商),埃克森美孚(中国)、天源迪科、中电数据、天喻教育、深圳智宇、青岛赛维、广州畅驿、楚天云、华讯网络、南瑞集团等。公司与合作伙伴在多个领域中展开紧密的合作,充分利用各自的优势,共同为企业客户提供更有价值的云计算、大数据产品和技术服务。
❽ 大数据分析软件一般怎么收费
大数据分析软件一般根据用户的功能需求、使用人数等方面去定价,我们公司使用的是Smartbi,性价比和服务都不错。
❾ 大数据时代 大数据分析解决方案
大数据时代 大数据分析解决方案
大数据数据分析一般技巧
①通过中国互联网大数据了解产品的消费者需求偏好、增长趋势、同行竞争、消费数据、政策环境、广告消费、市场前景等,指导产品研发设计及市场定价策略;
②消费升级后,高端消费者在购买产品时关心的产品知识是什么,信任什么网络信息渠道,分析用户心理和关注因素,制定宣传策略和选择宣传方式;
③分析行业龙头的网络宣传策略,并了解消费者选择品牌时关注的购买因素,制定差异化营销策略,用消费者喜欢的内容和方式巧妙取胜;
大数据对于品牌推广作用
①借助大数据制定品牌推广策略,提升品牌知名度、影响力、良好口碑,集团公司整体形象宣传;
②通过大数据,锁定目标招商对象,为品牌做招商加盟宣传、品牌连锁店宣传,通过网络扩大招商影响;
③通过对企业品牌节假日促销/活动/开业/庆典/展会等的线上二次宣传,扩大活动营销效果;
④企业上市宣传、企业海外上市宣传、上市公司网络形象优化、上市公关服务;
⑤产品宣传、新品上市、产品扩大知名度、产品快速进行展现、产品线上宣传等。
大数据如何应用于电商推广
①电商品牌重要节庆宣传,如双十一促销、中秋节促销、年货节促销等。提前1-2个月覆盖精准客户关心的话题、分析潜在需求数据;
②电商品牌全年品牌推广计划,品牌全网宣传包年合作,全面打造淘品牌。通过大数据分析客户需求、关心元素、品牌排名等,刺激用户购买需求,提升品牌口碑。
依托多平台的大数据采集,以及大数据技术的分析与预测能力,能够使推广更加精准有效,给品牌企业带来更高的投资回报率。未来企业如想进一步提升品牌知名度并准确把握市场走向,进行大数据营销是必不可少的。
❿ 苹果app解决方案开发费用是多少
苹果app解决方案开发费用是多少
开发APP的费用,简单来说就是这个APP需要多少人、做多长时间、人员的工资是多少。
对于APP外包开发的报价,一般取决于下面几个因素:
1、APP做软件((致电手。叽l58--ll33--4744))支持平台:
常见的APP移动平台包括谷歌Android、苹果iOS(iPhone/iPad),做的手机APP是针对其中某一个、还是两个平台都需要,对应了不同的开发成本。
除了APP本身,很多APP还有网站版的管理后台,管理后台的开发成本也需要考虑在内。
2、开发人员工资
一般来说,外包项目报价的基础是开发人员的工资,而工资又是和工作年限、经验、水平等决定的。这里的开发人员包括产品经理、UI设计师、前端工程师、服务端工程师、iOS和Android客户端工程师等,不同的外包项目需要的开发人员不同。
举个例子,假设一个iOS开发工程师一月工资22000元(工资数值仅举例),按照每月21.75个工作日来计算每天的开发费用,这里是每天(22000/21.75)=1000元,如果你考虑20%的利润,则每天费用变为了1000x(1+20%)=1200元。详情大数据和APP详情报价致电一八六零零三一四起吴零(注:现实中,开发人员的工资之外,还有社保等其他人力成本支出)
3、产品功能的复杂程度
产品功能的复杂程度决定了所需要的开发人员和时间,开发需要30人/天和100人/天,价格是不同的。
接前面的例子,如果一个项目需要一个iOS开发工程师30人/天,那么按照1200元每天的价格,项目总费用就是(1200x30)=36000元。
4、外包团队经验和素质
如果是产品功能复杂的项目,外包团队的素质对最终结果影响很大,而好的团队则报价自然会更高一些。产品功能简单的项目,另当别论。
5、外包团队的所在地
同样能力的外包团队,在不同的城市也会导致开发成本的差异,比如在北京、深圳和上海的外包团队成本自然高一些,因为当地开发人员薪资和其他支出相对更高。
6、客户预算
如果产品需求很多,但是预算不够,那也白搭,因此客户应该根据预算了确定产品功能需求。
当然,一定会有甲乙双方讨价还价的过程,双方合作共赢才是王道。