1、从数据库导入
在大数据技术风靡起来前,关系型数据库(RDMS)是主要的数据分析与处理的途径。发展至今数据库技术已经相当完善,当大数据出现的时候,行业就在考虑能否把数据库数据处理的方法应用到大数据中,于是 Hive、Spark SQL 等大数据 SQL 产品就这样诞生。
2、日志导入
日志系统将我们系统运行的每一个状况信息都使用文字或者日志的方式记录下来,这些信息我们可以理解为业务或是设备在虚拟世界的行为的痕迹,通过日志对业务关键指标以及设备运行状态等信息进行分析。
3、前端埋点
为什么需要埋点?现在的互联网公司越来越关注转化、新增、留存,而不是简单的统计 PV、UV。这些分析数据来源通过埋点获取,前端埋点分为三种:手工埋点、可视化埋点、自动化埋点。
4、爬虫
时至至今, 爬虫的数据成为公司重要战略资源,通过获取同行的数据跟自己的数据进行支撑对比,管理者可以更好的做出决策。而且越难爬虫获取竞争对手的数据,对于公司来说是越有价值。
2. 大数据的中的数据是从哪里来的
大数据应用中的关键点有三个,首要的就是大数据的数据来源,我们在分析大数据的时候需要重视大数据中的数据来源,只有这样我们才能够做好大数据的具体分析内容。那么大家知不知道大数据的数据来源都是通过什么渠道获得的?下面就由小编为大家解答一下这个问题。
对于数据的来源很多人认为是互联网和物联网产生的,其实这句话是对的,这是因为互联网公司是天生的大数据公司,在搜索、社交、媒体、交易等各自核心业务领域,积累并持续产生海量数据。而物联网设备每时每刻都在采集数据,设备数量和数据量都与日俱增。这两类数据资源作为大数据的数据来源,正在不断产生各类应用。国外关于大数据的成功经验介绍,大多是这类数据资源应用的经典案例。还有一些企业,在业务中也积累了许多数据,从严格意义上讲,这些数据资源还算不上大数据,但对商业应用而言,却是最易获得和比较容易加工处理的数据资源,是我们常用的数据来源。
而数据的来源是我们评价大数据应用的第一个关注点。首先需要我们看这个应用是否真有数据支撑,数据资源是否可持续,来源渠道是否可控,数据安全和隐私保护方面是否有隐患。二是要看这个应用的数据资源质量如何,是好数据还是坏数据,能否保障这个应用的实效。对于来自自身业务的数据资源,具有较好的可控性,数据质量一般也有保证,但数据覆盖范围可能有限,需要借助其他资源渠道。对于从互联网抓取的数据,技术能力是关键,既要有能力获得足够大的量,又要有能力筛选出有用的内容。对于从第三方获取的数据,需要特别关注数据交易的稳定性。数据从哪里来是分析大数据应用的起点,只有我们找到了好的数据来源,我们就能够做好大数据的工作。这句需要我们去寻找数据比较密集的领域。
一般来说,我们获取数据的时候需要数据密集的行业中挖掘数据,主要就是金融、电信、服务行业等等,而金融是一个特别重要的数据密集领域。金融行业既是产生数据尤其是有价值数据的基地,又是数据分析服务的需求方和应用地。更为重要的是,金融行业具备充足的支付能力,将是大数据产业竞争的重要战场。许多大数据是通过在金融领域的应用辐射到了各个行业。
我们在这篇文章中为大家介绍了大数据的数据来源以及数据密集的领域,希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
3. 大数据主要来源于什么
来源:从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘。但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
(3)清远大数据获取哪里来扩展阅读:
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
4. 大数据有哪些来源
大数据分析的数据来源有很多种,包括公司或者机构的内部来源和外部来源。分为以下几类:
1)交易数据。包括POS机数据、信用卡刷卡数据、电子商务数据、互联网点击数据、“企业资源规划”(ERP)系统数据、销售系统数据、客户关系管理(CRM)系统数据、公司的生产数据、库存数据、订单数据、供应链数据等。
2)移动通信数据。能够上网的智能手机等移动设备越来越普遍。移动通信设备记录的数据量和数据的立体完整度,常常优于各家互联网公司掌握的数据。移动设备上的软件能够追踪和沟通无数事件,从运用软件储存的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)等。
3)人为数据。人为数据包括电子邮件、文档、图片、音频、视频,以及通过微信、博客、推特、维基、脸书、Linkedin等社交媒体产生的数据流。这些数据大多数为非结构性数据,需要用文本分析功能进行分析。
4)机器和传感器数据。来自感应器、量表和其他设施的数据、定位/GPS系统数据等。这包括功能设备会创建或生成的数据,例如智能温度控制器、智能电表、工厂机器和连接互联网的家用电器的数据。来自新兴的物联网(Io T)的数据是机器和传感器所产生的数据的例子之一。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)等。
5)互联网上的“开放数据”来源,如政府机构,非营利组织和企业免费提供的数据。
5. 网络大数据在什么地方获取
社区、论坛、微博、知乎、FACEBOOK、Twitter、Ins等社交媒体
网络、搜狗、360、谷歌、必应、雅虎等搜索引擎
美团、大众点评、58同城、赶集网等信息分类网站
企查查、天眼查等企业工商信息API
智联、BooS直聘、拉勾、中华英才、领英等招聘网站
阿里巴巴、慧聪、商业新知、软服之家等ToB类平台或行业网站
政府数据开放平台
北京市政务数据资源网、上海市政府数据服务网、天津市信息资源统一开放平台、开放广东、浙江政务服务网“数据开放”专题网站、武汉市政务公开数据服务网、长沙市政府门户网站数据开放平台、苏州市政府数据开放平台、成都市公共数据开放平台、数据开放--四川省人民政府网站……
国家相关部门统计信息网站
中国人民银行、中国银行业监督管理委员会、中国证券监督管理委员会、中国银保险监督管理委员会、中国国家统计局……
国外数据开放网站
纽约政府开放数据平台、美国官网数据超市、新加坡政府开放数据平台、休斯顿市开放数据门户网站、Academic Torrents、hadoopilluminated.com、美国人口普查局、世界银行开放数据搜索网站、费城开放数据平台……
资源节选自:
【Open Data】国外开放数据中心及政府数据开放平台汇总
最全的中国开放数据(open data)及政府数据开放平台汇总
6. 大数据如何获取
生活中到处都有数据,所有获取数据的途径也有很多,如:
淘宝店
假如我们开了一个淘宝的的话,我们就可以从淘宝里面的数据魔方这个运用里面获取大量的数据,这些数据我们需要好好分析。
微信公众号
利用微信公众号,我们也能够获得很多的大数据,我们投放广告,每天有每天的数据统计,每月有每月的数据统计,这些都是大数据时代下的小数据。
网络推广
我们利用网络推广来进行广告投放,这也是获取大数据的一种方式,利用网络推广来获取我们需要的各种大数据,不过,这需要我们先进行前期的投入。
智汇推
智汇推是腾讯旗下的一款商业的广告产品,我们也能够通过我们自己的广告模式来获取我们需要的最大化的数据,和其他的推广方式一样,这里也有每天的数据分析,我们同样可以获得大数据。
头条号
还有就是现在比较火的头条了,我们利用头条来进行我们自己公司的广告推广,从而获得我们需要的一些数据,进行统计,进行分析,得出结论,进而进行合理的投放,获得利益。
微博
微博也是一种获得大数据的推广方式之一,我们可以通过微博来进行企业的活动推广,进而从每日、每月的数据中获得我们需要的信息,让我们的推广模式进行改变,为企业节约成本,为企业带来收益。
7. 大数据公司的四种数据获取方法
大数据公司的四种数据获取方法_数据分析师考试
对于所有号称涉足大数据的互联网公司而言,可以从两方面判断其前景与价值,其一是否有稳定的数据源,其二是否有持续的变现能力,其中包含数据理解运用的经验积累。涉及大数据的公司发展在互联网时代如雨后春笋,除了巨头网络腾讯阿里巴巴外,还有一些成立时间不算久但底蕴深厚的公司。如国云数据、帆软等。不过不管公司多大,获取数据都是非常重要的基础。
就数据获取而言,大的互联网企业由于自身用户规模庞大,把自身用户的电商交易、社交、搜索等数据充分挖掘,已经拥有稳定安全的数据资源。那么对于其它大数据公司而言,目前大概有四类数据获取方法:
第一、利用广告联盟的竞价交易平台。比如你从广告联盟上购买某搜索公司广告位1万次展示,那么基本上搜索公司会给你10万次机会让你选取,每次机会实际上包含对客户的画像描述。如果你购买的量比较大,积累下来也能有一定的互联网用户数据资料,可能不是实时更新的资料。这也是为什么用户的搜索关键词通常与其它网站广告位的推荐内容紧密相关,实质上是搜索公司通过广告联盟方式,间接把用户搜索画像数据公开了。
第二、利用用户Cookie数据。Cookie就是服务器暂时存放在用户的电脑里的资料(.txt格式的文本文件),好让服务器用来辨认计算机。互联网网站可以利用cookie跟踪统计用户访问该网站的习惯,比如什么时间访问,访问了哪些页面,在每个网页的停留时间等。也就是说合法的方式某网站只能查看与该网站相关的Cookie信息,只有非法方式或者浏览器厂家有可能获取客户所有的Cookie数据。真正的大型网站有自己的数据处理方式,并不依赖Cookie,Cookie的真正价值应该是在没有登录的情况下,也能识别客户身份,是什么时候曾经访问过什么内容的老用户,而不是简单的游客。
第三、利用APP联盟。APP是获取用户移动端数据的一种有效手段,在APP中预埋SDK插件,用户使用APP内容时就能及时将信息汇总给指定服务器,实际上用户没有访问时,APP也能获知用户终端的相关信息,包括安装了多少个应用,什么样的应用。单个APP用户规模有限,数据量有限,但如某数据公司将自身SDK内置到数万数十万APP中,获取的用户终端数据和部分行为数据也会达到数亿的量级。
第四、与拥有稳定数据源公司进行战略合作。上述三种方式获取的数据均存在完整性、连续性的缺陷,数据价值有限。BAT巨头自身价值链较为健全,数据变现通道较为完备,不会轻易输出数据与第三方合作(获取除外)。政府机构的数据要么全部免费,要么属于机密,所以不会有商业性质的合作。拥有完整的互联网(含移动互联网)的通道数据资源,同时变现手段及能力欠缺的运营商,自然成为大数据合作的首选目标。
以上是小编为大家分享的关于大数据公司的四种数据获取方法的相关内容,更多信息可以关注环球青藤分享更多干货
8. 大数据到底是怎么来的
肯锡全球调研室得到的定义是:一种企业规模大到在得到、存储、管理方案、分析方面极大地超出了传统数据库软件工具专业能力范围的数据融合,具有很多的数据企业规模、快速的数据运行、各种各样的数据类型和实用价值密度低四大特性。
大数据专业性的战略意义不在于掌握极大的数据信息,而在于对这类含有现实意义的数据进行专业化处理。换而言之,倘若把大数据比作一种全产业链,那么这种全产业链进行盈利的关键,在于提高对数据的“生产量”,依据“生产制造”进行数据的“增值”。
从技术上看,大数据与大数据技术的关系好似一枚硬币的正反面一样密切联系。大数据必然不能用每台的计算机进行处理,尽量采用分布式架构。它的特性在于对很多数据进行分布式架构数据挖掘。但它尽量依靠大数据技术的分布式架构处理、分布式架构数据库和云端存储、虚拟化技术。
随着着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师卓越团队感觉,大数据(Bigdata)一般 用以叙述一个公司铸就的许多非结构性数据和半结构性数据,这类数据在一键下载到关系型数据库用于分析的情况下会开销过多时间和金钱。大数据分析常和大数据技术联系到一起,因为及时的大中小型数据集分析务必像MapRece一样的构架来向数十、数百或甚至数千的电脑分配工作上。
大数据务必与众不同的专业性,以有效地处理许多的承受经历时间内的数据。可用大数据的专业性,包括规模化并行处理(MPP)数据库、数据挖掘、分布式系统、分布式架构数据库、云计算技术、大数据技术和可扩展的分布式系统。
关于大数据到底是怎么来的,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
9. 大数据,云计算中的海量数据是哪里来的
都是为数据存储和处理服务的;都需要占用大量的存储和计算资源,因版而都要用到海量数权据存储技术、海量数据管理技术、MapRece等并行处理技术。因此,云计算和大数据是一个硬币的两面,云计算是大数据的 IT 基础,而大数据是云计算的一个杀手级应用。
10. 大数据来自哪里大数据会去哪里
大数据来自哪里?大数据会去哪里?
初识大数据,首先我们需要知道什么是大数据呢?用通俗一点的话来说就是一堆一堆又一堆的、海量的数据。通过网络我们知道“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”
在当下的互联网飞速发展的时代,任何一个技术都是为了达到某种目的而发展的,而大数据从根本上来说就是为了做决定存在的,大数据为企业的决策提供有力的依据。比如市场方针的制定,精准营销的目标群体、营销数据等等。大数据的存在不仅是为企业提供了数据支撑,而且为用户提供了更为便捷的信息和数据服务。
大数据体现的是数据的数量多,数据类型丰富。我们需要通过对数据的关系的的挖掘,才能最终将数据进行更好地利用。
谁是物联网?
物联网是什么呢?通俗的概念来讲,物联网就是通过网络信息技术和工业自动化控制技术将硬件和网络进行有效的集合并通过传感器进行对应的信息控制,以此达到对物件的自动控制的混合网络。通过网络我们知道“物联网(The Internet of things)就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用。”
随着工业控制、信息识别和互联网网络的发展,物联网将是下一个信息浪潮。
大数据与物联网的联系既有区别也关联。以小编的个人愚见,物联网行业如果需要有较好的发展,那么需要大数据强力的支持,而针对物联网行业的大数据,则是不断来源于物联网超级终端的数据采集。所以,物联网对大数据的要求相比于大数据对物联网的依赖更为严重。
大数据来自哪里?大数据会去哪里?
浅谈大数据的来源
大数据的来源这个问题其实很简单,大数据的来源无非就是我们通过各种数据采集器、数据库、开源的数据发布、GPS信息、网络痕迹(购物,搜索历史等)、传感器收集的、用户保存的、上传的等等结构化或者非结构化的数据。
浅谈大数据能够带给我们什么
大数据能给我们带来什么?很多公司现在都在炒大数据的概念,但是真正能做好的有几个呢?大数据重在积累、强在分析、利于运用。没有经过多年的有意的数据收集、没有经过严谨细心的数据分析。那么,如何来谈论大数据能给企业或者个人来带来便捷呢?
大数据能带给企业的项目立项的数据支撑、精准化营销、电商的仓位储备等等。但是针对个人用户有时候就是麻烦了,因为你随时都可以接收到很多的营销短信、隐私暴露太多。另外对于个人用户大数据的好处是可以快速找到自己想要东西、为用户提供信息服务、获取消费指导等等。换个角度看问题的话,小编认为应该是利大于弊。
大数据是怎么带给我们想要的支撑?
庞大的数据需要我们进行剥离、整理、归类、建模、分析等操作,通过这些动作后,我们开始建立数据分析的维度,通过对不同的维度数据进行分析,最终我们才能得到我们想到的数据和信息。
1、 项目立项前的市场数据分析为决策提供支撑;
2、 目标用户群体趋势分析为产品提供支撑和商务支撑;
3、 通过对运营数据的挖掘和分析为企业提供运营数据支撑;
4、 通过对用户行为数据进行分析,为用户提供生活信息服务数据支撑和消费指导数据支撑。
如何通过大数据挖掘潜在的价值?
模型对于大数据的含义
模型有直观模型,物理模型,思维模型,符合模型等。我们在进行数据挖掘前需要考虑我们需要用这些数据来干什么?需要建立怎么样的模型?然后根据模型与数据的关系来不断优化模型。
只有建立了正确的模型才能让数据的挖掘和分析更有便捷。