导航:首页 > 数据分析 > 银联智策行业大数据因子有哪些

银联智策行业大数据因子有哪些

发布时间:2022-11-17 12:58:46

大数据技术在金融行业的典型应用

大数据技术在金融行业的典型应用
近年来,大数据技术结合云计算、区块链、人工智能等新技术向金融领域渗透融合,释放出裂变式的创新活力和应用潜能,为金融行业包括财务公司带来巨大的机遇。
近年来,我国金融科技快速发展,在多个领域已经走在世界前列。大数据、人工智能、云计算、移动互联网等技术与金融业务深度融合,大大推动了我国金融业转型升级,助力金融更好地服务实体经济,有效促进了金融业整体发展。在这一发展过程中,又以大数据技术发展最为成熟、应用最为广泛。从发展特点和趋势来看,“金融云”快速建设落地奠定了金融大数据的应用基础,金融数据与其他跨领域数据的融合应用不断强化,人工智能正在成为金融大数据应用的新方向,金融行业数据的整合、共享和开放正在成为趋势,给金融行业带来了新的发展机遇和巨大的发展动力。

大数据在金融行业的典型应用场景
大数据涉及的行业过于广泛,除金融外,还包括政治、教育、传媒、医学、商业、工农业、互联网等多个方面,各行业对大数据的定义目前尚未统一。大数据的特点可归纳为“4V”。
第一,数据体量大(Volume), 海量性也许是与大数据最相关的特征。
第二,数据类型繁多(Variety),大数据既包括以事务为代表的传统结构化数据,还包括以网页为代表的半结构化数据和以视频、语音信息为代表的非结构化数据。
第三,价值密度低(Value),大数据的体量巨大,但数据中的价值密度却很低。比如几个小时甚至几天的监控视频中,有价值的线索或许只有几秒钟。
第四,处理速度快(Velocity),大数据要求快速处理,时效性强,要进行实时或准实时的处理。
金融行业一直较为重视大数据技术的发展。相比常规商业分析手段,大数据可以使业务决策具有前瞻性, 让企业战略的制定过程更加理性化,实现生产资源优化分配,依据市场变化迅速调整业务策略,提高用户体验以及资金周转率,降低库存积压的风险,从而获取更高的利润。
当前,大数据在金融行业典型的应用场景有以下几个方面:
在银行业的应用主要表现在两个方面:一是信贷风险评估。以往银行对企业客户的违约风险评估多基于过往的信贷数据和交易数据等静态数据,内外部数据资源整合后的大数据可提供前瞻性预测。二是供应链金融。利用大数据技术,银行可以根据企业之间的投资、控股、借贷、担保及股东和法人之间的关系,形成企业之间的关系图谱,利于企业分析及风险控制。
在证券行业的应用主要表现为:
一是股市行情预测。大数据可以有效拓宽证券企业量化投资数据维度, 帮助企业更精准地了解市场行情,通过构建更多元的量化因子,投研模型会更加完善。
二是股价预测。大数据技术通过收集并分析社交网络如微博、朋友圈、专业论坛等渠道上的结构化和非结构化数据,形成市场主观判断因素和投资者情绪打分,从而量化股价中人为因素的变化预期。
三是智能投资顾问。智能投资顾问业务提供线上投资顾问服务,其基于客户的风险偏好、交易行为等个性化数据,依靠大数据量化模型,为客户提供低门槛、低费率的个性化财富管理方案。
在互联网金融行业的应用,一是精准营销。大数据通过用户多维度画像,对客户偏好进行分类筛选,从而达到精准营销的目的。二是消费信贷。基于大数据的自动评分模型、自动审批系统和催收系统可降低消费信贷业务违约风险。
金融大数据的典型案例分析
为实时接收电子渠道交易数据,整合银行内系统业务数据。中国交通银行通过规则欲实现快速建模、实时告警与在线智能监控报表等功能,以达到实时接收官网业务数据,整合客户信息、设备画像、位置信息、官网交易日志、浏览记录等数据的目的。
该系统通过为交通银行卡中心构建反作弊模型、实时计算、实时决策系统,帮助拥有海量历史数据,日均增长超过两千万条日志流水的银行卡中心,形成电子渠道实时反欺诈交易监控能力。利用分布式实时数据采集技术和实时决策引擎,帮助信用卡中心高效整合多系统业务数据,处理海量高并发线上行为数据,识别恶意用户和欺诈行为,并实时预警和处置;通过引入机器学习框架,对少量数据进行分析、挖掘构建并周期性更新反欺诈规则和反欺诈模型。
系统上线后,该银行迅速监控电子渠道产生的虚假账号、伪装账号、异常登录、频繁登录等新型风险和欺诈行为;系统稳定运行,日均处理逾两千万条日志流水、实时识别出近万笔风险行为并进行预警。数据接入、计算报警、案件调查的整体处理时间从数小时降低至秒级,监测时效提升近3000倍,上线3个月已帮助卡中心挽回数百万元的风险损失。
网络的搜索技术正在全面注入网络金融。网络金融使用的梯度增强决策树算法可以分析大数据高维特点, 在知识分析、汇总、聚合、提炼等多个方面有其独到之处,其深度学习能力利用数据挖掘算法能够较好地解决大数据价值密度低等问题。网络“磐石”系统基于每日100亿次搜索行为,通过200多个维度为8.6亿账号精确画像,高效划分人群,能够为银行、互联网金融机构提供身份识别、反欺诈、信息检验、信用分级等服务。该系统累计为网络内部信贷业务拦截数十万欺诈用户,拦截数十亿不良资产、减少数百万人力成本,累计合作近500 家社会金融机构,帮助其提升了整体风险防控水平。
金融大数据应用面临的挑战及对策
大数据技术为金融行业带来了裂变式的创新活力,其应用潜力有目共睹,但在数据应用管理、业务场景融合、标准统一、顶层设计等方面存在的瓶颈也有待突破。
一是数据资产管理水平仍待提高。主要体现在数据质量不高、获取方式单一、数据系统分散等方面。
二是应用技术和业务探索仍需突破。主要体现在金融机构原有的数据系统架构相对复杂,涉及的系统平台和供应商较多,实现大数据应用的技术改造难度很大。同时,金融行业的大数据分析应用模型仍处于起步阶段,成熟案例和解决方案仍相对较少,需要投入大量的时间和成本进行调研和试错。系统误判率相对较高。
三是行业标准和安全规范仍待完善。金融大数据缺乏统一的存储管理标准和互通共享平台,对个人隐私的保护上还未形成可信的安全机制。
四是顶层设计和扶持政策还需强化。体现在金融机构间的数据壁垒较为明显,各自为战问题突出,缺乏有效的整合协同。同时,行业应用缺乏整体性规划,分散、临时、应激等特点突出,信息价值开发仍有较大潜力。
以上问题,一方面需要国家出台促进金融大数据发展的产业规划和扶持政策,同时,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。只有这样,大数据技术才能在金融行业中稳步应用发展,不断推动金融行业的发展提升。

㈡ 银联智策顾问(上海)有限公司怎么样

简介:银联智策顾问(上海)有限公司是中国银联专门从事大数据分析和战略咨询业务的子公司,成立于2012年,总部设于上海。银联智策拥有海内外经验丰富的咨询团队、大数据分析及应用平台,在充分挖掘全面、真实、实时的交易数据基础上,为广泛的行业合作伙伴提供各类高价值的数据分析产品和策略解决方案。银联智策面向银行、保险业、投融资行业、消费型企业及其他创新行业及机构,已向超过30家银行及行业机构提供专业服务,涉及银行卡业务、个人金融、精准营销、保险投资、小微企业金融、互联网金融、宏观经济和其他金融创新领域。银联智策现有产品包括宏观分析与指数、数据分析、策略分析和管理咨询四大板块,涵盖行业分析报告、客户全生命周期管理、精准营销及风险监控等多个产品系列。“银联智策消费综合评分体系UPAScores”是综合10余项模型、指数和细分的交易信用评估产品,以打分卡形式评价持卡人和商户的商业价值和潜力,易于使用并进行横向比较,是传统征信方法的有益补充,在风险控制、市场营销、产品设计等领域得到了广泛应用。
法定代表人:徐燕军
成立时间:2012-12-07
注册资本:1000万人民币
工商注册号:310108000532575
企业类型:其他有限责任公司
公司地址:上海市静安区恒丰路600号(1-5)幢1901-10室

㈢ 大数据100指数是什么

南方新浪大数据100指数将南方基金的专业股票研究优势与互联网“大数据”结合,在南方基金量化投资研究平台的基础上,通过新浪财经“大数据”定性和定量分析,找出股票热度预期、成长预期、估值提升预期与股价表现的同步关系,精选出具有超额预期年化预期收益预期的股票,建构、编制并发布策略指数。在当前的投资指数体系中,大数据100指数丰富和完善了指数体系,为市场提供新的投资工具,并有助于满足投资者多样化的投资需求。大数据100指数是什么?
一、指数代码与名称
指数代码:399415
指数简称:i100
指数中文名称:大数据100指数
指数英文名称:CNI BIG DATA 100 INDEX
指数代码:399416
指数简称:i300
指数中文名称:大数据300指数
指数英文名称:CNI BIG DATA 300 INDEX
二、基日与基点
大数据系列指数以2010年1月29日为基日,基日指数为1000。
三、选股原则
大数据系列指数样本股分别由在深圳证券交易所、上海证券交易所上市的100只、300只A股组成,按照下列原则选取:
1. 入围标准
(1)非ST、*ST的A股;
(2)有一定上市交易日期,一般为一年。
2. 选样方法
对样本空间的股票,按照财务因子得分、市场驱动因子得分和大数据得分进行模型优化,然后将计算的综合得分从高到低排序,选取排名在前100名的股票构成大数据100指数初始样本股,选取排名在前300名的股票构成大数据300指数初始样本股。
在综合得分排名相似的情况下,综合考虑公司的行业代表性及所属行业的发展前景、公司盈利记录等,优先选取指标优良的上市公司股票作为样本股。
单个股票的综合评分如下:
(1) 财务因子得分:计算市盈率PE、净资产预期年化预期收益率ROE、年度营业收入同比增长率、年度净利润同比增长率,剔除PE、ROE排名靠后的股票、剔除营业收入同比增长为负和年度净利润同比增长为负的股票;计算主营业收入和净利润同比和环比预测结果增长相对上期该指标的幅度变化作为业绩加速得分;通过因子模型计算上述得分作为财务因子总得分。
(2) 市场驱动因子得分:计算一个月股票换手率、波动率、价格变化率、流动性因子,通过量化因子模型计算得分作为市场驱动因子的总得分。
(3) 新浪大数据得分:根据新浪财经频道下的股票页面访问热度计算单个股票的热度得分、根据财经频道下的新闻报道正负面影响计算单个股票新闻报道得分、根据股票在微博上的正负面文章影响计算单个股票微博得分,综合上述得分并根据历史回测优化结果作为大数据得分。
四、指数计算方法
大数据系列指数平均分配样本股权重,采用派氏加权法,依据下列公式逐日连锁实时计算:
样本股:指纳入指数计算范围的股票。
样本股权数:为样本股的自由流通量,子项和母项的权数相同。
等权重因子:见“六、样本股权重调整”。
分子与分母:分子项中的乘积为样本股经过权重调整后的实时自由流通市值,分母项中的乘积为样本股经过权重调整后的上一交易日收市自由流通市值。
Σ:是指对纳入指数计算的样本股经过权重调整后的自由流通市值进行汇总。
自由流通量:是上市公司实际可供交易的流通股数量,它是无限售条件股份剔除“持股比例超过5%的下列三类股东及其一致行动人所持有的无限售条件股份”后的流通股数量:1国有(法人)股东;2战略投资者;3公司创建者、家族或公司高管人员。
自由流通市值:股票价格乘以自由流通量。
股票价格选取:每个交易日集合竞价开市后用样本股的开市价计算开市指数,其后在交易时间内用样本股的实时成交价计算实时指数,收市后用样本股的收市价计算收市指数。样本股当日无成交的,取上一交易日收市价。样本股暂停交易的,取成交价。
五、样本股调整
1. 样本股定期调整方法
大数据系列指数样本股实施月度定期调整,实施时间定于每月的第一个交易日。
2. 样本股临时调整方法
(1) 样本股暂停上市的,从其暂停上市日起,将相应样本股从指数计算中剔除,并选择选样空间中排名最高的非样本股补足。
(2) 样本股终止上市的,从进入退市整理期的第一个交易日起,将相应样本股从指数计算中剔除,并选择样本空间中排名最高的非样本股补足。
(3) 若样本股公司因重大违规行为(如财务报告重大造假)而可能被暂停或者终止交易的,将依据指数委员会的决定将其在指数样本中及时剔除,并选取选样空间中排名最高的非样本股作为样本股。
(4) 样本股公司发生收购、合并、分拆情形的处理,同巨潮100(4383.035, 141.11, 3.33%)指数。
六、样本股权重调整
1. 样本股权重分配
在指数计算中,设置等权重因子使每只样本股每期初始权重相等。
2. 等权重因子定期调整
当指数样本股发生定期调整时,指数同步进行相应的等权重因子调整,以调整实施倒数第5个交易日的收盘自由流通市值来计算调整时的等权重因子。
3. 等权重因子临时调整
在下一个定期调整日之前,等权重因子一般固定不变。
当出现样本股临时调整时,新进指数的股票继承被删除股票在调整前最后一个交易日的权重,据此计算新进股票的等权重因子。
当样本股出现退市或暂停上市时,其他样本股的权重调整因子不进行调整。
当样本股股本结构出现显著变化或者其它原因导致其权重发生突变时,将决定是否对权重调整因子进行临时调整。
七、指数的调整计算
同巨潮100指数。
八、指数的发布与管理
大数据系列指数由深圳证券信息有限公司与南方基金管理有限公司[微博]、新浪财经联合编制,其发布与管理同巨潮100指数。
九、免责声明
同巨潮100指数。
介绍阅读
新三板是什么?新三板指数介绍
三板做市指数是什么
三板成指是什么?三板成指编制方式

㈣ 常用的大数据技术有哪些

大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。

1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapRece产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。

2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,

3、基础架构:云存储、分布式文件存储等。

4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。

5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。

6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

7、模型预测:预测模型、机器学习、建模仿真。

8、结果呈现:云计算、标签云、关系图等。

㈤ 银联智惠大数据的优点有哪些

各行各业都有大数据,银联智惠最大的一个优势在于线下的消费场景数据产品,虽然现在都流行网购,但是线下消费也是一个不容忽视的环节, 银联智惠整合了线上以及线下的数据,覆盖范围更全面。

㈥ 大数据最常用的算法有哪些

奥地利符号计算研究所(Research Institute for Symbolic Computation,简称RISC)的Christoph Koutschan博士在自己的页面上发布了一篇文章,提到他做了一个调查,参与者大多数是计算机科学家,他请这些科学家投票选出最重要的算法,以下是这次调查的结果,按照英文名称字母顺序排序。

大数据等最核心的关键技术:32个算法

1、A* 搜索算法——图形搜索算法,从给定起点到给定终点计算出路径。其中使用了一种启发式的估算,为每个节点估算通过该节点的最佳路径,并以之为各个地点排定次序。算法以得到的次序访问这些节点。因此,A*搜索算法是最佳优先搜索的范例。

2、集束搜索(又名定向搜索,Beam Search)——最佳优先搜索算法的优化。使用启发式函数评估它检查的每个节点的能力。不过,集束搜索只能在每个深度中发现最前面的m个最符合条件的节点,m是固定数字——集束的宽度。

3、二分查找(Binary Search)——在线性数组中找特定值的算法,每个步骤去掉一半不符合要求的数据。

4、分支界定算法(Branch and Bound)——在多种最优化问题中寻找特定最优化解决方案的算法,特别是针对离散、组合的最优化。

5、Buchberger算法——一种数学算法,可将其视为针对单变量最大公约数求解的欧几里得算法和线性系统中高斯消元法的泛化。

6、数据压缩——采取特定编码方案,使用更少的字节数(或是其他信息承载单元)对信息编码的过程,又叫来源编码。

7、Diffie-Hellman密钥交换算法——一种加密协议,允许双方在事先不了解对方的情况下,在不安全的通信信道中,共同建立共享密钥。该密钥以后可与一个对称密码一起,加密后续通讯。

8、Dijkstra算法——针对没有负值权重边的有向图,计算其中的单一起点最短算法。

9、离散微分算法(Discrete differentiation)。

10、动态规划算法(Dynamic Programming)——展示互相覆盖的子问题和最优子架构算法

11、欧几里得算法(Euclidean algorithm)——计算两个整数的最大公约数。最古老的算法之一,出现在公元前300前欧几里得的《几何原本》。

12、期望-最大算法(Expectation-maximization algorithm,又名EM-Training)——在统计计算中,期望-最大算法在概率模型中寻找可能性最大的参数估算值,其中模型依赖于未发现的潜在变量。EM在两个步骤中交替计算,第一步是计算期望,利用对隐藏变量的现有估计值,计算其最大可能估计值;第二步是最大化,最大化在第一步上求得的最大可能值来计算参数的值。

13、快速傅里叶变换(Fast Fourier transform,FFT)——计算离散的傅里叶变换(DFT)及其反转。该算法应用范围很广,从数字信号处理到解决偏微分方程,到快速计算大整数乘积。

14、梯度下降(Gradient descent)——一种数学上的最优化算法。

15、哈希算法(Hashing)。

16、堆排序(Heaps)。

17、Karatsuba乘法——需要完成上千位整数的乘法的系统中使用,比如计算机代数系统和大数程序库,如果使用长乘法,速度太慢。该算法发现于1962年。

18、LLL算法(Lenstra-Lenstra-Lovasz lattice rection)——以格规约(lattice)基数为输入,输出短正交向量基数。LLL算法在以下公共密钥加密方法中有大量使用:背包加密系统(knapsack)、有特定设置的RSA加密等等。

19、最大流量算法(Maximum flow)——该算法试图从一个流量网络中找到最大的流。它优势被定义为找到这样一个流的值。最大流问题可以看作更复杂的网络流问题的特定情况。最大流与网络中的界面有关,这就是最大流-最小截定理(Max-flow min-cut theorem)。Ford-Fulkerson 能找到一个流网络中的最大流。

20、合并排序(Merge Sort)。

21、牛顿法(Newton’s method)——求非线性方程(组)零点的一种重要的迭代法。

22、Q-learning学习算法——这是一种通过学习动作值函数(action-value function)完成的强化学习算法,函数采取在给定状态的给定动作,并计算出期望的效用价值,在此后遵循固定的策略。Q-leanring的优势是,在不需要环境模型的情况下,可以对比可采纳行动的期望效用。

23、两次筛法(Quadratic Sieve)——现代整数因子分解算法,在实践中,是目前已知第二快的此类算法(仅次于数域筛法Number Field Sieve)。对于110位以下的十位整数,它仍是最快的,而且都认为它比数域筛法更简单。

24、RANSAC——是“RANdom SAmple Consensus”的缩写。该算法根据一系列观察得到的数据,数据中包含异常值,估算一个数学模型的参数值。其基本假设是:数据包含非异化值,也就是能够通过某些模型参数解释的值,异化值就是那些不符合模型的数据点。

25、RSA——公钥加密算法。首个适用于以签名作为加密的算法。RSA在电商行业中仍大规模使用,大家也相信它有足够安全长度的公钥。

26、Sch?nhage-Strassen算法——在数学中,Sch?nhage-Strassen算法是用来完成大整数的乘法的快速渐近算法。其算法复杂度为:O(N log(N) log(log(N))),该算法使用了傅里叶变换。

27、单纯型算法(Simplex Algorithm)——在数学的优化理论中,单纯型算法是常用的技术,用来找到线性规划问题的数值解。线性规划问题包括在一组实变量上的一系列线性不等式组,以及一个等待最大化(或最小化)的固定线性函数。

28、奇异值分解(Singular value decomposition,简称SVD)——在线性代数中,SVD是重要的实数或复数矩阵的分解方法,在信号处理和统计中有多种应用,比如计算矩阵的伪逆矩阵(以求解最小二乘法问题)、解决超定线性系统(overdetermined linear systems)、矩阵逼近、数值天气预报等等。

29、求解线性方程组(Solving a system of linear equations)——线性方程组是数学中最古老的问题,它们有很多应用,比如在数字信号处理、线性规划中的估算和预测、数值分析中的非线性问题逼近等等。求解线性方程组,可以使用高斯—约当消去法(Gauss-Jordan elimination),或是柯列斯基分解( Cholesky decomposition)。

30、Strukturtensor算法——应用于模式识别领域,为所有像素找出一种计算方法,看看该像素是否处于同质区域( homogenous region),看看它是否属于边缘,还是是一个顶点。

31、合并查找算法(Union-find)——给定一组元素,该算法常常用来把这些元素分为多个分离的、彼此不重合的组。不相交集(disjoint-set)的数据结构可以跟踪这样的切分方法。合并查找算法可以在此种数据结构上完成两个有用的操作:

查找:判断某特定元素属于哪个组。

合并:联合或合并两个组为一个组。

32、维特比算法(Viterbi algorithm)——寻找隐藏状态最有可能序列的动态规划算法,这种序列被称为维特比路径,其结果是一系列可以观察到的事件,特别是在隐藏的Markov模型中。

以上就是Christoph博士对于最重要的算法的调查结果。你们熟悉哪些算法?又有哪些算法是你们经常使用的?

㈦ 大数据风控在金融科技中的应用和问题

大数据风控在金融科技中的应用和问题
一、为什么要用大数据风控?
不论是银行还是消费金融公司,互联网小贷公司等其他金融机构,金融机构普遍有风控需求,底层业务逻辑几乎完全相同,只是面对客群,金融产品、风险偏好存在差异。
银行等传统机构本质上是风险经营。一方面,监管层对金融机构的风控能力提出很高要求, 另一方面,风控直接会影响金融机构的利润水平。
因此,大数据风控直接解决金融机构的核心需求,价值度最大。大数据风控能够能够在用户画像,反欺诈,信用评级等方面大大提高金融机构的效率和风控能力,是金融企业发展过程中必须结合的一项科技手段。
二、大数据产业情况介绍
目前大数据行业主要有三类玩家:
以人行征信、鹏元征信、前海征信、银联智策为主的数据机构,他们特点是和传统的银行,公安部,工商局,航空公司,社保局等国家机关合作,提供公民基本身份证信息、银行卡信息、航空出行信息、企业工商信息等,他们的特点是对外提供数据查询,数据丰富有价值,缺点是风控产品偏弱。以蚂蚁金服、腾讯征信、网络金融为主的互联网公司,他们的特点是各自都有一块基于电商、社交、搜索的巨量数据,同时一些外部数据,形成自己的风控产品和数据输出能力,这些互联网公司刚开始只是和自己的战略合作企业合作输出风控,现在也慢慢对外提供2B的风控产品。同盾科技、百融金服、帮盛科技、聚信立、数美科技等创业技术公司,在互联网巨头还没有对外提供风控技术和传统数据机构风控技术还不强的时候,他们的出现弥补了P2P金融和现金贷对风控产品的巨大需求,他们的数据是整合多方数据源,不断的为2B企业提供风控模型和数据,并且获得了一些网贷数据积累。
三、大数据风控的覆盖流程
大数据覆盖信贷领域各个流程,重点是获客、身份验证和授信环节,贷中后环节。
获客环节建立用户画像,跟踪用户完整生命周期;身份验证环节,通过身份验证,活体识别等技术解决申请人是否本人的问题,关联分析则是利用图关联技术,找出欺诈团伙;授信环节汇聚多方数据源,通过建模进行风险定价,金融科技服务商输出信用评分给机构使用;贷中后环节,主要是排查异常客户,及时报警,以及逾期客户失联修复等。

大数据在信贷过程中的应用
四、大数据风控的价值点分析

1.数据
大数据风控中什么是最重要的?
答案是:数据。
数据的大数据风控中的核心中的核心,没有什么比数据直接告诉金融机构某个目标客户是黑名单客户,逾期严重客户更简单和高效的事情了。
数据最好能有海量数据,覆盖足够多的用户;用户数据价值密度高、噪音少,数据清洗容易;用户数据维度多,能够形成丰富的用户画像;自身业务场景能够获取有价值数据 。
2.技术
对于有些金融机构来讲,如果风控标准很严格,其实排查不能准入的客户其实是不难的,但是对于大部分金融机构来讲,风控和业务是互斥的,为了提高业务量,就必须降低准入标准,但是又要防范风险,这就需要借助技术手段,通过反欺诈建模和信用建模方式,对一下白户进行评估,以及评估客户信用水平,以决定是否准入。
技术要求有强大的底层技术架构能力,良好的企业级产品输出能力和大数据清洗和建模能力,未来还需要结合Al等技术,形成智能的风控和反欺诈平台。
3.场景
理财,保险,汽车金融,现金贷等金融服务,对应的场景不同,对建模的要求也不同,建模能力要求对客户的业务场景非常理解,模型才能适合行业特征。需要经验丰富的建模团队和行业专家队伍;服务过行业标杆客户,了解客户的业务场景;深度理解业务需求。
五、大数据风控的在信贷中应用
我们以百融系统为例,介绍大数据风控在信贷过程中的流程:

百融大数据风控应用贷款流程
当前的信贷审批流程主要分为人工审核和自动审核,对于客户资质好,信用好的客户,只要能通过负面信息,欺诈信息,信用评估,那么系统自 动审批通过。对负面信息和欺诈风险没有通过的客户,系统可以自动拒绝或者申请人工复核,对于信用评分不高的客户,需要人工介入审核。
六、常用的大数据行业数据
央行征信报告:一般持牌金融机构有央行征信介入权限,包括个人的执业资格记录、行政奖励和处罚记录、法院诉讼和强制执行记录、欠税记录等。司法信息:最高法以及省市各级法院的最新公布名单,包括执行法院、立案时间、执行案号、执行标的、案件状态、执行依据、执行机构、生效法律文书确定的义务、被执行人的履行情况、失信被执行人的行为等信息。公安信息:覆盖公安系统涉案、在逃和有案底人员信息,包括案发时间、案件详情如诈骗案/生产、销售假药案等信息。信用卡信息:银行储蓄卡/信用卡支出、收入、 逾期等信息。航旅信息:包含过去一年中,每个季度的飞行城市、飞行次数、座位层次等数据。社交信息:包含社交账号匹配类型、社交账号性别、社交账号粉丝数等。运营商信息:核查运营商账户在网时长、在网状态、消费档次等信息。网贷黑名单:根据个人姓名和身份证号码验证是否有网贷逾期,黑名单信息。还有驾驶证状态,租车黑名单,电商消费记录等等。
七、大数据行业存在的问题
目前整个大数据行业面临的问题主要是客户隐私泄露问题,像公安,法院等信息由于信息敏感,其实是游走在法律监管空白地带。
在百行征信成立之前,各家数据机构的数据其实没有打通,数据的有效性会打折扣,预计百行征信数据出来之后,因为结合了各家数据之长,数据连贯性会好一些。
各个大数据公司在数据收集和清洗方式不同,会造成数据污染,这样输出的数据会有一定的不准确性。
目前公民数据主要来自于线下收集和网络行为记录,数据的存在一定的滞后性,单纯线下收集的数据存在一定的延迟性。
大数据还处于发展初期,目前比较大的问题还是数据量不够大,不够全,以及如何协调数据开放和公民隐私之间的矛盾,未来还需要结合人工智能和区块链,物联网等技术,实现数据的不可篡改,数据收集及时等能力,从而更好为金融服务。

㈧ 大数据包括哪些

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据内库、容数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。

㈨ 请问大数据的关键技术有哪些

1.分布式存储系统(HDFS)。2.MapRece分布式计算框架。3.YARN资源管理平台。4.Sqoop数据迁移工具。5.Mahout数据挖掘算法版库。权6.HBase分布式数据库。7.Zookeeper分布式协调服务。8.Hive基于Hadoop的数据仓库。9.Flume日志收集工具。

㈩ 大数据分析方法有哪些

1、因子分析方法


所谓因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。因子分析的方法约有10多种,如影像分析法,重心法、最大似然法、最小平方法、α抽因法、拉奥典型抽因法等等。


2、回归分析方法


回归分析方法就是指研究一个随机变量Y对另一个(X)或一组变量的相依关系的统计分析方法。回归分析是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。回归分析方法运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。


3、相关分析方法


相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系。


4、聚类分析方法


聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,不需要事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。


5、方差分析方法


方差数据方法就是用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。


6、对应分析方法


对应分析是通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。

阅读全文

与银联智策行业大数据因子有哪些相关的资料

热点内容
win10预装软件完全卸载软件 浏览:218
win10b站视频看不了 浏览:117
故事系qq 浏览:745
电脑软件里数据丢失是什么原因 浏览:214
用于文件和文件夹管理的都有哪些 浏览:281
汽车云车流app哪个好 浏览:334
看英语作文app软件哪个好 浏览:664
linux文件权限给其他用户设置 浏览:172
word文件匹配工具 浏览:986
api接口版本控制 浏览:579
iphone拍出虚焦 浏览:163
微信里的文件怎么打开 浏览:653
炫舞空白印象代码 浏览:345
维修用什么编程器好 浏览:824
新建压缩文件夹没了 浏览:700
阳西哪里招文件管理 浏览:324
腾讯文档目录文件名 浏览:509
编程指令s1s2q指的是什么 浏览:205
快手下载安卓电视版 浏览:811
有哪些app可以搜大学 浏览:972

友情链接