㈠ 有哪三种方法加密传输数据
加密数据有3种方法:
1 用系统自带的EFS加密,但要注意备份加密证书,另外在加密帐号下是看不到加密效果的。
2 用winrar的压缩加密,但速度慢,操作麻烦。
3 用超级加密3000加密数据,超级加密3000采用先进的加密算法,使你的数据加密后,真正的达到超高的加密强度,让你的加密数据无懈可击,没有密码无法解密。
您可以根据自己的实际需求选择一款属于自己的数据加密方法。
㈡ 如何加密传送文件
七种加密解密
E客学吧 http://teach.qsek.com 更新时间:2006-8-22 22:15:02
--------------------------------------------------------------------
本文一共介绍了七种方法:一:最简单的加密解密 二:转义字符""的妙用 三:使用Microsoft出品的脚本编码器Script Encoder来进行编码 (自创简单解码)
四:任意添加NUL空字符(十六进制00H) (自创)
五:无用内容混乱以及换行空格TAB大法
六:自写解密函数法
七:错误的利用 (自创)
在做网页时(其实是网页木马呵呵),最让人烦恼的是自己辛辛苦苦写出来的客户端IE运行的JAVASCRIPT代码常常被别人轻易的拷贝,实在让自己的心里有点不是滋味,要知道自己写点东西也挺累的......^*^
但我们也应该清楚地认识到因为JAVASCRIPT代码是在IE中解释执行,要想绝对的保密是不可能的,我们要做的就是尽可能的增大拷贝者复制的难度,让他知难而退(但愿~!~),下面我结合自己这几年来的实践,及个人研究的心得,和大家一起来探讨一下网页中JAVASCRIPT代码的加密解密技术。
以加密下面的JAVASCRIPT代码为例:
<SCRIPT LANGUAGE="JavaScript">
alert("黑客防线");
</SCRIPT>
一:最简单的加密解密
大家对于JAVASCRIPT函数escape()和unescape()想必是比较了解啦(很多网页加密在用它们),分别是编码和解码字符串,比如例子代码用escape()函数加密后变为如下格式:
alert%28%22%u9ED1%u5BA2%u9632%u7EBF%22%29%3B
如何?还看的懂吗?当然其中的ASCII字符"alert"并没有被加密,如果愿意我们可以写点JAVASCRIPT代码重新把它加密如下:
%61%6C%65%72%74%28%22%u9ED1%u5BA2%u9632%u7EBF%22%29%3B
呵呵!如何?这次是完全都加密了!
当然,这样加密后的代码是不能直接运行的,幸好还有eval(codeString)可用,这个函数的作用就是检查JavaScript代码并执行,必选项 codeString 参数是包含有效 JavaScript 代码的字符串值,加上上面的解码unescape(),加密后的结果如下:
<SCRIPT LANGUAGE="JavaScript">
var code=unescape("%61%6C%65%72%74%28%22%u9ED1%u5BA2%u9632%u7EBF%22%29%3B");
eval(code)
</SCRIPT>
是不是很简单?不要高兴,解密也就同样的简单,解密代码都摆给别人啦(unescape())!呵呵
二:转义字符""的妙用
大家可能对转义字符""不太熟悉,但对于JavaScript提供了一些特殊字符如:n (换行)、 r (回车)、' (单引号)等应该是有所了解的吧?其实""后面还可以跟八进制或十六进制的数字,如字符"a"则可以表示为:"141"或"x61"(注意是小写字符"x"),至于双字节字符如汉字"黑"则仅能用十六进制表示为"u9ED1"(注意是小写字符"u"),其中字符"u"表示是双字节字符,根据这个原理例子代码则可以表示为:
八进制转义字符串如下:
<SCRIPT LANGUAGE="JavaScript">
eval("")
</SCRIPT>
十六进制转义字符串如下:
<SCRIPT LANGUAGE="JavaScript">
eval("")
</SCRIPT>
这次没有了解码函数,因为JavaScript执行时会自行转换,同样解码也是很简单如下:
<SCRIPT LANGUAGE="JavaScript">
alert("")
</SCRIPT>
就会弹出对话框告诉你解密后的结果!
三:使用Microsoft出品的脚本编码器Script Encoder来进行编码
工具的使用就不多介绍啦!我是直接使用JavaScript调用控件Scripting.Encoder完成的编码!代码如下:
<SCRIPT LANGUAGE="JavaScript">
var Senc=new ActiveXObject("Scripting.Encoder");
var code='<SCRIPT LANGUAGE="JavaScript">rnalert("黑客防线");rn</SCRIPT>';
var Encode=Senc.EncodeScriptFile(".htm",code,0,"");
alert(Encode);
</SCRIPT>
编码后的结果如下:
<SCRIPT LANGUAGE="JScript.Encode">#@~^FgAAAA==@#@&lsDD`J黑客防线r#p@#@&FgMAAA==^#~@</SCRIPT>
够难看懂得吧?但相应的解密工具早已出来,而且连解密网页都有!因为其解密网页代码过多,我就不多说拉!给大家介绍一下我独创的解密代码,如下:
<SCRIPT LANGUAGE="JScript.Encode">
function decode()
alert(decode.toString());
</SCRIPT>
咋样?够简单吧?它是原理是:编码后的代码运行前IE会先对其进行解码,如果我们先把加密的代码放入一个自定义函数如上面的decode()中,然后对自定义函数decode调用toString()方法,得到的将是解码后的代码!
如果你觉得这样编码得到的代码LANGUAGE属性是JScript.Encode,很容易让人识破,那么还有一个几乎不为人知的window对象的方法execScript(),其原形为:
window.execScript( sExpression, sLanguage )
参数:
sExpression: 必选项。字符串(String)。要被执行的代码。
sLanguage : 必选项。字符串(String)。指定执行的代码的语言。默认值为 Microsoft JScript
使用时,前面的"window"可以省略不写!
利用它我们可以很好的运行编码后的JavaScript代码,如下:
<SCRIPT LANGUAGE="JavaScript">
execScript("#@~^FgAAAA==@#@&lsDD`J黑客防线r#p@#@&FgMAAA==^#~@","JScript.Encode")
</SCRIPT>
你可以利用方法二对其中的""号内的字符串再进行编码,使得"JScript.Encode"以及编码特征码"#@~^"不出现,效果会更好!
四:任意添加NUL空字符(十六进制00H)
一次偶然的实验,使我发现在HTML网页中任意位置添加任意个数的"空字符",IE照样会正常显示其中的内容,并正常执行其中的JavaScript 代码,而添加的"空字符"我们在用一般的编辑器查看时,会显示形如空格或黑块,使得原码很难看懂,如用记事本查看则"空字符"会变成"空格",利用这个原理加密结果如下:(其中显示的"空格"代表"空字符")
<S C RI P T L ANG U A G E =" J a v a S c r i p t ">
a l er t (" 黑 客 防 线") ;
< / SC R I P T>
如何?是不是显得乱七八糟的?如果不知道方法的人很难想到要去掉里面的"空字符"(00H)的!
五:无用内容混乱以及换行空格TAB大法
在JAVASCRIPT代码中我们可以加入大量的无用字符串或数字,以及无用代码和注释内容等等,使真正的有用代码埋没在其中,并把有用的代码中能加入换行、空格、TAB的地方加入大量换行、空格、TAB,并可以把正常的字符串用""来进行换行,这样就会使得代码难以看懂!如我加密后的形式如下:
<SCRIPT LANGUAGE="JavaScript">
"xajgxsadffgds";1234567890
625623216;var $=0;alert//@$%%&*()(&(^%^
//cctv function//
(//hhsaasajx xc
/*
asjgdsgu*/
"黑
客
防线"//ashjgfgf
/*
@#%$^&%$96667r45fggbhytjty
*/
//window
)
;"#@$#%@#432hu";212351436
</SCRIPT>
至少如果我看到这样的代码是不会有心思去分析它的,你哪?
六:自写解密函数法
这个方法和一、二差不多,只不过是自己写个函数对代码进行解密,很多VBS病毒使用这种方法对自身进行加密,来防止特征码扫描!下面是我写的一个简单的加密解密函数,
加密代码如下(详细参照文件"加密.htm"):
<SCRIPT LANGUAGE="JavaScript">
function compile(code)
{
var c=String.fromCharCode(code.charCodeAt(0)+code.length);
for(var i=1;i<code.length;i++){
c+=String.fromCharCode(code.charCodeAt(i)+code.charCodeAt(i-1));
}
alert(escape(c));
}
compile('alert("黑客防线");')
</SCRIPT>
运行得到加密结果为:o%CD%D1%D7%E6%9CJ%u9EF3%uFA73%uF1D4%u14F1%u7EE1Kd
相应的加密后解密的代码如下:
<SCRIPT LANGUAGE="JavaScript">
function uncompile(code)
{
code=unescape(code);
var c=String.fromCharCode(code.charCodeAt(0)-code.length);
for(var i=1;i<code.length;i++){
c+=String.fromCharCode(code.charCodeAt(i)-c.charCodeAt(i-1));
}
return c;
}
eval(uncompile("o%CD%D1%D7%E6%9CJ%u9EF3%uFA73%uF1D4%u14F1%u7EE1Kd"));
</SCRIPT>
七:错误的利用
利用try{}catch(e){}结构对代码进行测试解密,虽然这个想法很好(呵呵,夸夸自己),因为实用性不大,我仅给个例子
<SCRIPT LANGUAGE="JavaScript">
var a='alert("黑客防线");';
var c="";
for(var i=0;i<a.length;i++){
c+=String.fromCharCode(a.charCodeAt(i)^61);}
alert(c);
//上面的是加密代码,当然如果真正使用这个方法时,不会把加密写上的
//现在变量c就是加密后的代码
//下面的函数t()先假设初始密码为0,解密执行,
//遇到错误则把密码加1,然后接着解密执行,直到正确运行
var d=c; //保存加密后的代码
var b=0; //假定初始密码为0
t();
function t()catch(e){
c="";
for(var i=0;i<d.length;i++){
c+=String.fromCharCode(d.charCodeAt(i)^b);}
b+=1;
t();
//setTimeout("t()",0);
}
}
</SCRIPT>
总结,基本上JAVASCRIPT的加密也就这些啦,每种加密都有相应的解密方法,但我想如果你熟练运用上面介绍的方法,并把他们结合起来使用,相信可以解密你的JAVASCRIPT代码的人是几乎没有啦,即使有人可以解密,但因为他本身比较精通JAVASCRIPT脚本,自己完全可以写,也就没有必要盗用你的代码,所以你是安全的!呵呵^*^
文章录入:轻松E客 文章来源:网络收集
㈢ 秘钥、公钥匙、认证之间的关系 DES、RSA、AES 数据加密传输
对称加密是最快速、最简单的一种加密方式,加密(encryption)与解密(decryption)用的是同样的密钥(secret key)。对称加密有很多种算法,由于它效率很高,所以被广泛使用在很多加密协议的核心当中。
对称加密通常使用的是相对较小的密钥,一般小于256 bit。因为密钥越大,加密越强,但加密与解密的过程越慢。如果你只用1 bit来做这个密钥,那黑客们可以先试着用0来解密,不行的话就再用1解;但如果你的密钥有1 MB大,黑客们可能永远也无法破解,但加密和解密的过程要花费很长的时间。密钥的大小既要照顾到安全性,也要照顾到效率,是一个trade-off。
对称加密的一大缺点是密钥的管理与分配,换句话说,如何把密钥发送到需要解密你的消息的人的手里是一个问题。在发送密钥的过程中,密钥有很大的风险会被黑客们拦截。现实中通常的做法是将对称加密的密钥进行非对称加密,然后传送给需要它的人。
常用的有:DES、AES
非对称加密为数据的加密与解密提供了一个非常安全的方法,它使用了一对密钥,公钥(public key)和私钥(private key)。私钥只能由一方安全保管,不能外泄,而公钥则可以发给任何请求它的人。非对称加密使用这对密钥中的一个进行加密,而解密则需要另一个密钥。比如,你向银行请求公钥,银行将公钥发给你,你使用公钥对消息加密,那么只有私钥的持有人--银行才能对你的消息解密。与对称加密不同的是,银行不需要将私钥通过网络发送出去,因此安全性大大提高。
常用的有:RSA
(1) 对称加密加密与解密使用的是同样的密钥,所以速度快,但由于需要将密钥在网络传输,所以安全性不高。
(2) 非对称加密使用了一对密钥,公钥与私钥,所以安全性高,但加密与解密速度慢。
(3) 解决的办法是将对称加密的密钥使用非对称加密的公钥进行加密,然后发送出去,接收方使用私钥进行解密得到对称加密的密钥,然后双方可以使用对称加密来进行沟通。
在现代密码体制中加密和解密是采用不同的密钥(公开密钥),也就是非对称密钥密码系统,每个通信方均需要两个密钥,即公钥和私钥,这两把密钥可以互为加解密。公钥是公开的,不需要保密,而私钥是由个人自己持有,并且必须妥善保管和注意保密。
公钥私钥的原则:
非对称密钥密码的主要应用就是公钥加密和公钥认证,而公钥加密的过程和公钥认证的过程是不一样的,下面我就详细讲解一下两者的区别。
比如有两个用户Alice和Bob,Alice想把一段明文通过双钥加密的技术发送给Bob,Bob有一对公钥和私钥,那么加密解密的过程如下:
上面的过程可以用下图表示,Alice使用Bob的公钥进行加密,Bob用自己的私钥进行解密。
身份认证和加密就不同了,主要用户鉴别用户的真伪。这里我们只要能够鉴别一个用户的私钥是正确的,就可以鉴别这个用户的真伪。
还是Alice和Bob这两个用户,Alice想让Bob知道自己是真实的Alice,而不是假冒的,因此Alice只要使用公钥密码学对文件签名发送 给Bob,Bob使用Alice的公钥对文件进行解密,如果可以解密成功,则证明Alice的私钥是正确的,因而就完成了对Alice的身份鉴别。整个身 份认证的过程如下:
上面的过程可以用下图表示,Alice使用自己的私钥加密,Bob用Alice的公钥进行解密。
DES是Data Encryption Standard(数据加密标准)的缩写,DES算法为密码体制中的对称密码体制。它是由IBM公司研制的一种加密算法,美国国家标准局于1977年公布把它作为非机要部门使用的数据加密标准,二十年来,它一直活跃在国际保密通信的舞台上,扮演了十分重要的角色。
DES是一个分组加密算法,他以64位为分组对数据加密。同时DES也是一个对称算法:加密和解密用的是同一个算法。它的密匙长度是56位(因为每个第8位都用作奇偶校验),密匙可以是任意的56位的数,而且可以任意时候改变。其中有极少量的数被认为是弱密匙,但是很容易避开他们。所以保密性依赖于密钥。
特点:分组比较短、密钥太短、密码生命周期短、运算速度较慢。 DES算法具有极高安全性,到目前为止,除了用穷举搜索法对DES算法进行攻击外,还没有发现更有效的办法。而56位长的密钥的穷举空间为256,这意味着如果一台计算机的速度是每一秒种检测一百万个密钥,则它搜索完全部密钥就需要将近2285年的时间。
DES现在已经不视为一种安全的加密算法,因为它使用的56位秘钥过短,以现代计算能力,24小时内即可能被破解。也有一些分析报告提出了该算法的理论上的弱点,虽然实际情况未必出现。该标准在最近已经被 高级加密标准 (AES)所取代。
高级加密标准(Advanced Encryption Standard,AES),又称Rijndael加密法,是美国联邦政府采用的一种区块加密标准。这个标准用来替代原先的 DES ,已经被多方分析且广为全世界所使用。经过五年的甄选流程,高级加密标准由美国国家标准与技术研究院(NIST)于2001年11月26日发布于FIPS PUB 197,并在2002年5月26日成为有效的标准。2006年,高级加密标准已然成为对称密钥加密中最流行的算法之一。
AES的区块长度固定为128 位元 ,密钥长度则可以是128,192或256位元。
RSA加密算法是一种 非对称加密算法 。在 公钥加密标准 和 电子商业 中RSA被广泛使用。RSA是 1977年 由 罗纳德·李维斯特 (Ron Rivest)、 阿迪·萨莫尔 (Adi Shamir)和 伦纳德·阿德曼 (Leonard Adleman)一起提出的。当时他们三人都在 麻省理工学院 工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA算法利用两个很大的质数相乘所产生的乘积来加密。这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个 质数来求出另一个质数,则是十分困难的。因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道 的私用密钥才能解密。具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信 息的保密和安全。
开发中:
客户端发送的敏感数据时需要加密处理,客户端数据采用公钥加密,服务器用对应的秘钥解密,客户端保存公钥,服务器保存秘钥
服务器发送的数据也要加密时,服务器端数据采用秘钥加密,客户端数据用对应的公钥加密,客户端保存公钥,服务器保存秘钥
服务器要认证客户端时,客户端数据采用秘钥加密,服务器用对应的公钥解密,客户端保留秘钥,服务器保留公钥
常用加解密方案:
如果想要更加安全一点,可以在仿照微信的通信,每次都在传输数据上加上一个32为随机数和并将数据按照一定的规则生成一个校验sign
㈣ 文件传输加密都有哪些方法呢
DES与AES的比较
自DES算法公诸于世以来,学术界围绕它的安全性等方面进行了研究并展开了激烈的争论。在技术上,对DES的批评主要集中在以下几个方面:
1、作为分组密码,DES的加密单位仅有64位二进制,这对于数据传输来说太小,因为每个分组仅含8个字符,而且其中某些位还要用于奇偶校验或其他通讯开销。
2、DES的密钥的位数太短,只有56比特,而且各次迭代中使用的密钥是递推产生的,这种相关必然降低密码体制的安全性,在现有技术下用穷举法寻找密钥已趋于可行。
3、DES不能对抗差分和线性密码分析。
4、DES用户实际使用的密钥长度为56bit,理论上最大加密强度为256。DES算法要提高加密强度(例如增加密钥长度),则系统开销呈指数增长。除采用提高硬件功能和增加并行处理功能外,从算法本身和软件技术方面都无法提高DES算法的加密强度。
采用DES与RSA相结合的应用,使它们的优缺点正好互补,即DES加密速度快,适合加密较长的报文,可用其加密明文;RSA加密速度慢,安全性好,应用于DES 密钥的加密,可解决DES 密钥分配的问题。
目前这种RSA和DES结合的方法已成为EMAIL保密通信标准。
㈤ 哪种安全产品可以实现数据的加密传输
HPE-SecureData这款安全产品可以实现数据的加密传输。
什么是数据加密?数据加密是对数据进行编码的过程,以便任何试图未经授权访问的人都无法读取数据。与其他安全措施一起实施的加密可以大大降低安全威胁的风险。数据加密确保只有拥有正确加密密钥的人才能读取数据。加密就是保护客户端应用程序和服务器之间的通信。
数据被转换成另一种形式或代码,以便能够访问密钥或密码的人可以访问数据。加密数据也称为密文。数据加密如何工作?实施数据加密对于保护传输中的数据和静态数据至关重要。加密的第一步是将数字、字母或符号打乱成其他一些字符。
这意味着使用加密算法和密钥将人类可读的文本转换为难以理解的文本。加密使用加密密钥,它是一组数学值。没有密钥,计算机或人类都无法读取数据。只有正确的键才能授予阅读器将数据转回纯文本的权限。复杂的加密密钥转化为更安全的加密。
㈥ 如何实现https加密传输
https 协议是由 http加上 TLS/SSL 协议构建的可进行加密传输、身份认证的网络协议,主要通过内数字证书、加密算容法、非对称密钥等技术完成互联网数据传输加密,实现互联网传输安全保护。
因此,要想实现https加密传输,必须申请SSL证书,申请到手之后正确部署到服务器,方可使用。
㈦ https如何进行加密传输
HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手,在握手过程中将确立双方加密传输数据的密码信息。TLS/SSL协议不仅仅是一套加密传输的协议,更是一件经过艺术家精心设计的艺术品,TLS/SSL中使用了非对称加密,对称加密以及HASH算法。握手过程的具体描述如下:
1.浏览器将自己支持的一套加密规则发送给网站。
2.网站从中选出一组加密算法与HASH算法,并将自己的身份信息以证书的形式发回给浏览器。证书里面包含了网站地址,加密公钥,以及证书的颁发机构等信息。
3.浏览器获得网站证书之后浏览器要做以下工作:
a) 验证证书的合法性(颁发证书的机构是否合法,证书中包含的网站地址是否与正在访问的地址一致等),如果证书受信任,则浏览器栏里面会显示一个小锁头,否则会给出证书不受信的提示。
b) 如果证书受信任,或者是用户接受了不受信的证书,浏览器会生成一串随机数的密码,并用证书中提供的公钥加密。
c) 使用约定好的HASH算法计算握手消息,并使用生成的随机数对消息进行加密,最后将之前生成的所有信息发送给网站。
4.网站接收浏览器发来的数据之后要做以下的操作:
a) 使用自己的私钥将信息解密取出密码,使用密码解密浏览器发来的握手消息,并验证HASH是否与浏览器发来的一致。
b) 使用密码加密一段握手消息,发送给浏览器。
5.浏览器解密并计算握手消息的HASH,如果与服务端发来的HASH一致,此时握手过程结束,之后所有的通信数据将由之前浏览器生成的随机密码并利用对称加密算法进行加密。
这里浏览器与网站互相发送加密的握手消息并验证,目的是为了保证双方都获得了一致的密码,并且可以正常的加密解密数据,为后续真正数据的传输做一次测试。另外,HTTPS一般使用的加密与HASH算法如下:
非对称加密算法:RSA,DSA/DSS
对称加密算法:AES,RC4,3DES
HASH算法:MD5,SHA1,SHA256
㈧ socket传送数据加密的问题
我也是碰到这样一个情况,起初是使用RSA公钥加密之后,因为密文长度肯定是会相较于明文长度发生变化的,就没有在意直接分块传送密给到另一端,另一端接收到之后直接利用私钥解密得出正确的明文。但是改用对称加密算法(DES、AES)加密的时候确实读取到的read_buffer的长度会和我们的文件中密文(我是加密过程用数据流直接文件加密直接保存加密数据到新文件中)的大小不对应,但是实际上read_size = fread(..)得到的read_size是一致的。这种问题确实会影响传送给到另一边的数据,毕竟对称加密是明文密文长度一致,希望好心人帮忙解决一下这个问题。
㈨ 数据在网络上传输为什么要加密现在常用的数据加密算法主要有哪些
数据传输加密技术的目的是对传输中的数据流加密,通常有线路加密与端—端加密两种。线路加密侧重在线路上而不考虑信源与信宿,是对保密信息通过各线路采用不同的加密密钥提供安全保护。
端—端加密指信息由发送端自动加密,并且由TCP/IP进行数据包封装,然后作为不可阅读和不可识别的数据穿过互联网,当这些信息到达目的地,将被自动重组、解密,而成为可读的数据。
数据存储加密技术的目的是防止在存储环节上的数据失密,数据存储加密技术可分为密文存储和存取控制两种。前者一般是通过加密算法转换、附加密码、加密模块等方法实现;后者则是对用户资格、权限加以审查和限制,防止非法用户存取数据或合法用户越权存取数据。
常见加密算法
1、DES(Data Encryption Standard):对称算法,数据加密标准,速度较快,适用于加密大量数据的场合;
2、3DES(Triple DES):是基于DES的对称算法,对一块数据用三个不同的密钥进行三次加密,强度更高;
3、RC2和RC4:对称算法,用变长密钥对大量数据进行加密,比 DES 快;
4、IDEA(International Data Encryption Algorithm)国际数据加密算法,使用 128 位密钥提供非常强的安全性;
5、RSA:由 RSA 公司发明,是一个支持变长密钥的公共密钥算法,需要加密的文件块的长度也是可变的,非对称算法; 算法如下:
首先, 找出三个数,p,q,r,其中 p,q 是两个不相同的质数,r 是与 (p-1)(q-1) 互为质数的数。
p,q,r这三个数便是 private key。接着,找出 m,使得 rm == 1 mod (p-1)(q-1).....这个 m 一定存在,因为 r 与 (p-1)(q-1) 互质,用辗转相除法就可以得到了。再来,计算 n = pq.......m,n 这两个数便是 public key。
6、DSA(Digital Signature Algorithm):数字签名算法,是一种标准的 DSS(数字签名标准),严格来说不算加密算法;
7、AES(Advanced Encryption Standard):高级加密标准,对称算法,是下一代的加密算法标准,速度快,安全级别高,在21世纪AES 标准的一个实现是 Rijndael 算法。
8、BLOWFISH,它使用变长的密钥,长度可达448位,运行速度很快;
9、MD5:严格来说不算加密算法,只能说是摘要算法;
对MD5算法简要的叙述可以为:MD5以512位分组来处理输入的信息,且每一分组又被划分为16个32位子分组,经过了一系列的处理后,算法的输出由四个32位分组组成,将这四个32位分组级联后将生成一个128位散列值。
(9)加密数据如何传输扩展阅读
数据加密标准
传统加密方法有两种,替换和置换。上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密文中的一个字符。而置换仅将明文的字符按不同的顺序重新排列。单独使用这两种方法的任意一种都是不够安全的,但是将这两种方法结合起来就能提供相当高的安全程度。
数据加密标准(Data Encryption Standard,简称DES)就采用了这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准。
DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8位奇偶校验位组成,因此只有56个可能的密码而不是64个。
每块先用初始置换方法进行加密,再连续进行16次复杂的替换,最后再对其施用初始置换的逆。第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki。
DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外。
参考资料来源:网络-加密算法
参考资料来源:网络-数据加密
㈩ 互联网信息安全传输加密模式原理分解
网络安全主要是通过信息加密来实现的。今天,我们就一起来了解一下,这些信息加密的方法是如何运行的。它背后的原理都有哪些。希望通过对本文的阅读。能够提高大家对互联网信息安全的信任度。
有了“原信息”和它对应的“md5签名字符串”,我们就可以做基本的信息验证:通过md5签名字符串的一致性,来保障我们收到的信息没有受到更改。
P.S.:由于签名signature在后续文章中会另有所指,为区分md5签名字符串,我们将md5签名字符串的叫法,更改为md5指纹字符串。意思同签名是一样的,就是A之所以是A的证据、特征,可以用签名来表示,也可以用指纹来表示。这里,我们开始将md5字符串对应的这个特征,称作md5指纹。
但一个容易发现的漏洞是,如果“原信息”和“md5指纹字符串”同时被修改了该怎么办?原信息被代提成了伪信息,而md5指纹字符串也被替换成了伪信息所生成的md5码,这时候,原有的验证过程都可以走通,根本无法发现信息被修改了或者替换了。
为了解决这个问题,在工业实践中便会将验证和加密进行组合使用。除了单纯的组合,还会引入一些基本的小技巧。
例如,因为md5的验证算法是公开的,所以很容易生成一份信息的md5指纹字符串,从而对原信息进行伪造。那么,可以不可以让人无法或者说难于伪造这份信息的md5指纹字符串呢?
一个小技巧是:并不提供原信息的md5验证码,而是提供“原信息+akey”的md5指纹字符串:
这个key,就是一串如“”这样的随机字符串,它由“发信人”和“收信人”分别单独保存。
这时候,我们的验证流程就变成了:
发件人将“原信息”和“key”一起打包,生成一个md5指纹字符串。再将原信息和md5指纹字符串发送出去。
收件人收到信息后,将“接受信息”和“key”一起打包,生成一个md5字符串,再与接收到的md5字符串比较,看它们是否一致。
在这样的情况下,即便是原信息和md5字符串同时被修改了,但因为伪造者并不知道这个md5字符串是在原有信息的基础上,增加了什么样的一个key字符串来生成的,他就几乎不可能提供一个“原信息+key”的md5字符串。因为他无法逆向推导出那个key长成什么样。而这个“几乎不可能”,是由md5加密算法所保证的。
另一种保障“原信息”和“md5指纹字符串”的方式,是直接考虑把md5验证码做加密。昆明电脑培训http://www.kmbdqn.cn/认为这种方式并不同上面的小技巧相冲突,事实上它完全可以和上面的技巧结合,构造出更安全的方式。但为了降低理解的困难程度,让我们先暂时抛开上面的小技巧,只是单纯地考虑“原信息”“md5指纹字符串”和“md5字符串加密”这三样东西。