导航:首页 > 网络数据 > 基于大数据预测算法研究现状

基于大数据预测算法研究现状

发布时间:2024-08-03 00:40:22

大数据 发展趋势预测

大数据 发展趋势预测

趋势一:成为重要战略资源

在未来一段时间内,大数据将成为企业、社会和国家层面重要的战略资源。大数据将不断成为各类机构,尤其是企业的重要资产,成为提升机构和公司竞争力的有力武器。企业将更加钟情于用户数据,充分利用客户与其在线产品或服务交互产生的数据,并从中获取价值。此外,在市场影响方面,大数据也将扮演重要角色——影响着广告、产品推销和消费者行为。

趋势二:数据隐私标准将出台

大数据将面临隐私保护的重大挑战,现有的隐私保护法规和技术手段难以适应大数据环境,个人隐私越来越难以保护,有可能会出现有偿隐私服务,数据“面罩”将会流行。预计各国都将会有一系列关于数据隐私的标准和条例出台。

趋势三:与云计算深度融合

大数据处理离不开云计算技术,云计算为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,因此,从2013年开始,大数据技术与云计算技术必然进入更完美的结合期。总体而言,云计算、物联网、移动互联网等新兴计算形态,既是产生大数据的地方,也是需要大数据分析方法的领域。

趋势四:分析方法发生变革

大数据分析将出现一系列重大变革。就像计算机和互联网一样,大数据可能是新一波的技术革命。基于大数据的数据挖掘、机器学习和人工智能可能会改变小数据里的很多算法和基础理论,这方面很可能会产生理论级别的突破。

趋势五:网络安全问题凸显

大数据的安全令人担忧,大数据的保护越来越重要。大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制提出更高的要求。网络和数字化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。

趋势六:大数据学科诞生

数据科学将作为一个与大数据相关的新兴学科出现。同时,大量的数据科学类专著将出版。

趋势七:

催生数据分析师等职业

大数据将催生一批新的就业岗位,如数据分析师、数据科学家等。具有丰富经验的数据分析人才成为稀缺资源,数据驱动型工作机会将呈现出爆炸式的增长。

以上是小编为大家分享的关于大数据 发展趋势预测的相关内容,更多信息可以关注环球青藤分享更多干货

❷ 大数据应用现状 从发现价值到创造价值

大数据应用现状:从发现价值到创造价值

从发现价值到创造价值, 大数据将成为“互联网+” 产业升级的驱动力。 过去,数据的价值主要应用在决策领域,典型应用是商业智能(BI, Business Intelligence)在企业经营管理层面的应用, 即通过数据收集、管理和分析等方法,将数据转化为知识, 发现数据的价值,进而提供决策支持。随着数据体量的不断增加和处理数据能力的提升, 大数据已经成为一类新的资产, 其应用场景正在不断扩宽,除了决策支持、 提高效率等发现价值功能之外,大数据还能创造价值的功能: 一方面,大数据可以帮助提供传统模式下所无法提供的产品, 满足用户需求, 例如大数据完善个人征信体系,帮助金融机构提供消费金融产品;又如千方旗下的掌城科技通过浮动车模型提供实时交通信息服务;另一方面,大数据还可以创造需求, 例如,大数据可以助力实现人工智能, 这是新技术创造的新需求。

大数据延伸 BI 内涵, 提高企业效率

大数据分析结果为企业经营决策提供支持,帮助企业提高效率,这实际上是传统 BI 范畴的延伸。 在人口红利逐渐消失的背景下, 我国企业传统的粗放型模式受到了 越来越大的挑战, 互联网与产业结合背景下的大数据应用将有助于提升企业经营管理效率,助力企业经营从粗放型向集约型转型, 实现产业升级。

大数据促进商业智能的加速发展,这是因为:第一,大数据的分析过程和结果更具有灵活性、可靠性和价值性;第二,大数据的存在提高了企业的商业智能意识, 引导企业主动寻求商业智能的帮助。一些大型企业往往拥有几十个甚至数百个信息系统,其所包含的大量数据反映了企业的日常经营情况,若能加以分析和利用,将为企业创造巨大的价值。

目前,大数据应用可以帮助企业实现户关系管理、盈利能力分析、控制成本、衡量绩效等功能:

客户关系管理(CRM):通过客户信息统计,使企业有针对性的根据客户需求来定制产品和服务,提高客户忠诚度,还可以通过分析偏好挖掘潜在客户;

赢利能力分析:帮助企业分析利润来源、各类产品赢利能力、费用支出是否与销售成正比等;

控制成本:根据统计信息优化流程,如降低库存、减少损耗等,助于企业控制成本;

绩效管理:利于商业智能确立对员工的期望,帮助他们跟踪并管理其绩效。

麦肯锡调查显示, 数据挖掘的商业价值巨大, 大数据在美国医疗行业每年能提高 0.7%的生产力,创造约 3000 亿美元的价值;在欧洲公共管理部门 ,每年能提高 0.5%的生产力,创造 2500 亿欧元的价值;在美国零售业,每年能提高 0.5%-1.0%的生产力 和 60%的净利率。

大数据满足需求, 市场空间巨大

大数据可以帮助提供过去所无法提供的产品, 满足用户需求。 这种模式在传统产业中比较常见, 过去,一些行业的用户需求虽然存在, 但是由于缺乏有效的技术手段,导致市场参与者无法提供合适的产品迎合市场需求。大数据技术兴起后,将带动一系列创新产品推出市场, 这在各行各业都能找到案例,考虑到传统产业的广度,这将是是一个正在挖掘的巨大市场。

以交通领域的实时交通信息服务和车险定价为例,这两个细分领域的需求本来就存在,但在大数据兴起之前,传统模式无法提供最优的产品,而大数据技术下的产品优化可以更好的满足需求,提高用户体验。

千方科技旗下掌城科技通过大数据技术提供实时交通信息服务。 掌城科技通过向出租车公司和公交车公司购买数据、 向政府部门臵换数据、利用千方自有数据的形式汇集城际交通数据, 基于浮动车的算法模型,对数据进行二次开发,以建立实时交通信息服务平台。 目前, 掌城科技运营着北京、上海等全国 30 余个大中城市的实时路况信息,准确率极高。 目前,千方已将交通数据收集从城际交通扩大至整个陆路交通和航空等领域,目标通过大数据技术提供更加全面的公众智慧出行服务。

大数据技术将参与车险定价,使定价更加科学。随着车联网的兴起,OBD(On-BoardDiagnostic车载诊断系统)等联网的车载设备,成为车联网中的智能节点,连接运动中的人、车和道路环境,读取行车数据,从而分析出车辆能耗、故障等车况信息以及驾驶者的行车习惯:通过G-sensor监测车主的诸如急刹车、急加速和急转弯等危险行为,通过破解Can-bus协议监测车主的诸如转弯不打灯、驻车不拉手刹等不良驾驶习惯,通过GPS获取车辆的位臵信息和里程数据,这些数据将改善车险定价技术与核保政策,提升精准定价能力。

大数据创造需求,拓宽市场边界

大数据创新产品拓宽市场边界, 供给创造需求。 大数据创造价值功能, 除了提供产品满足市场已经存在的需求外, 基于大数据的新产品还将创造新供给,带动新需求, 打破原有的市场边界,想象空间巨大:

一方面大数据能够前所未有的精准洞悉现在,深入挖掘现有商业价值:

例如 Airbnb 拥有海量的独有数据,包括旅游地、用户评论、房源描述、社区信息等, Airbnb还有一支队伍去各地和当地人交流,搜集所有的相关历史数据。当用户在搜寻一个住宿的地方时, Airbnb 利用大数据分析通过 Airbnb 社区告诉未来的客人哪里是更好的住宿地,甚至能够帮助用户更深入地了解某个地点,包括地理信息无法描述的文化或宗教上的区分。 Uber 则是利用地理位臵和其用户的综合数据,大大缩短司机开着空车去接下一位乘客的时间和乘客等待的时间。

另一方面大数据能够空前准确的预测未来,从而能获得前瞻性的商业价值:

例如社交数据分析公司 Topsy 准确预测了 iPhone 4S 上市后的市场表现,同时还成功预测美国大选结果和奥斯卡颁奖结果。它在商业分析、市场销售、新闻等领域拥有很高价值,因而苹果以 2 亿多美元的价格收购 Topsy。

大数据产业链分析

大数据产业链的主要参与方

大数据产业链可以分为四个部分: 数据采集和整合、数据存储和运算、数据分析和挖掘、数据应和消费。数据采集和整合是指通过技术手段从互联网、 移动终端、 物联网、 应用软件等采集数据,然后把数据按照一定的规则进行存储和运算,再按照需求调用数据并进行智能分析和挖掘,将数据转化成价值信息或者产品,为决策支持、提升效率、 创新产品提供依据。

数据资产开始成为核心资源

拥有数据,大数据时代的王者。在大数据时代, 数据资产已经成为核心资源, 2012 年,奥巴马政府明确提出 将“大数据战略”上升为国家意志,并将数据定义为“未来的新石油”, 因此,拥有数据可谓是大数据时代的王者。 拥有数据的机构可以分为三类:

一是既有数据、 又有大数据思维的互联网公司,如阿里巴巴、腾讯、京东、 Google、 Amazon等,在互联网端积累了大量的数据资源,而且此类公司 IT 起家, 对大数据有天生敏锐的嗅觉, 大数据技术也相对成熟, 因此,互联网公司 可谓是最早使用大数据的机构,成为大数据应用的先行者;

二是传统软件公司转型互联网,通过 SaaS 模式为用户提供服务, 例如用友软件推出畅捷通,以云模式为小微企业提供财务管理应用, 也可以认为是既有数据、 又有大数据思维的模式;

三是拥有数据,缺乏大数据思维的机构,这类机构手里掌握着大量的数据,但是没有能力自己有效利用, 例如金融机构、 运营商、政府部门等。

使用数据,数据变现的推动者。对于手里掌握大量数据,但没有能力变现的机构而言,需要专业的第三方公司提供大数据服务,主要是各类 IT 咨询机构和行业应用软件厂商,尤其是行业应用软件厂商, 在各自的领域具有天然的卡位优势: 软件公司提供了行业应用软件和相关的运营维护, 行业应用软件本身就是重要的数据来源,软件公司 属于不拥有数据,但可以接触到数据的机构, 且天然拥有大数据思维和大数据技术,以及良好的行业客户关系,从信息系统建设延伸到大数据运营顺理成章。因此,各个细分行业的应用软件提供商有望成为传统拥有数据机构的重要合作伙伴, 助力其探索大数据价值变现。

大数据技术是重要生产力

大数据应用好坏的关键除了 数据本身,还在于大数据技术, 大数据技术包括数据采集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现等环节,涉及的技术环节极广, 随着数据体量增大和数据复杂性程度提高,大数据技术本身也处于快速迭代的发展过程中。值得一提的是,大数据技术落地的一大重要因素在于如何实现技术与业务的融合, 这背后需要深厚的业务理解, 对于既有数据、 又有大数据思维的互联网公司 来说,技术和业务本身是相互驱动、共同发展的, 对于拥有数据,缺乏大数据思维的机构而言, 在行业深耕多难的应用软件提供商则是最好的选择。

以上是小编为大家分享的关于 大数据应用现状 从发现价值到创造价值的相关内容,更多信息可以关注环球青藤分享更多干货

❸ 全球大数据产业现状及投资前景预测

全球大数据产业现状及投资前景预测
纵观国内外,大数据已经形成产业规模,并上升到国家战略层面,大数据技术和应用呈现纵深发展。面向大数据的云计算技术、大数据计算框架等不断推出,新型大数据挖掘方法和算法大量出现,大数据新模式、新业态层出不穷,传统产业开始利用大数据实现转型升级。人工智能、深度学习、工业物联网、虚拟现实、智慧城市等领域的发展推动大数据的应用普及。新兴行业、传统行业围绕数据服务体系,已经形成了传统行业数据平台、互联网数据平台及行业资讯类数据平台。以数据应用为基础的新一代数据服务企业,在促进主体行业发展的同时,同样促进了行业内中小企业的发展。
1
大数据发展的产业环境分析
美国政策层面发力推动大数据应用发展。政府推出了一系列的公开数据计划,在健康、能源、气候、教育、金融、公共安全等领域开放数据和信息,促进创新的突破,从而推动经济发展。美国致力于扩大联邦数据公开范围和受用对象的范围,尤其扩大高价值数据资产,探讨如何进一步扩展收集和分析工业竞争和创新相关的数据。
为了进一步挖掘联邦政府数据的应用潜力,促进创新与社会进步,2016年1月美商务部发起了一项旨在使政府数据更加容易使用的数据易用性计划(CDUP)。5月,白宫发布《联邦大数据研发战略计划》,为未来的大数据研发列出7条战略计划,旨在建立大数据创新生态系统,加强数据分析能力,从大量、多样、实时的数据库中提取有效信息,服务于科学研究、经济增长与国家安全。2016年,美国应用大数据预测选举也引起世界关注,大数据应用开始为广大公众所关注,数据的真实性及数据安全成为关注焦点。
英国以数据共享为根本积极推动大数据平台建设。新建哈璀(Hartree)大数据中心,投资1.13亿英镑。新建艾伦图灵研究所,投资4200万英镑,开展大数据科学与技术的研究。投资1.5亿英镑建立第一个国家级老年痴呆症研究所。建立应对重大疾病新的数学研究中心。英国成立大数据战略委员会,发布《开放数据战略白皮书》,统一政府数字平台,开通政府部门开放数据通道,设立数据开放共享奖励基金,2018年还将出台“数据保护通则”的专门法规,旨在开发利用数据资源产生更大的商业价值和经济增长。
瑞典启动国家重点科研计划(NFP)大数据专项(Big Data, NFP75)。2017年正式启动,计划投入资金2.5亿瑞士法郎,从2017年至2020年为期4年。该专项主要分为三个板快:大数据信息技术:大数据分析基础性研究、大数据基础设施构架、数据库和计算中心;大数据相关社会及法律问题:大数据涉及对社会经济发展的影响预测(如对贸易、商务模式、人员交通及物流的影响)、个人隐私及空间的保护及相关的社会伦理和法律问题及对策等;大数据应用:对大数据在交通、健康、灾害及社会风险控制、能源转型领域的应用展开基础性研究。瑞士国家重点科研计划由瑞士联邦政府推出,目的是对关系瑞士社会经济发展全局的重要领域展开基础性研究并提出对策建议。
我国各地政府积极为大数据发展营造环境。2014年、2015年“大数据”首次写入国家《政府工作报告》。在2015年3月5日举行的两会中,李总理在政府工作报告中提到,制定“互联网+”行动计划,推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场。
当前,《国家大数据战略及行动纲要(2015-2025)》征求意见稿完成。国家自然基金委、科技部支持了大量大数据研究项目;北京市、上海市、天津市、重庆市、广东省、贵州省等制定了大数据发展规划,多地开始建数据产业基地,天津拟打造国家数据聚集区,与北京、河北联合建“京津冀大数据走廊”;重庆计划将大数据培育成重要战略性新兴产业,加快建设两江云计算产业园,陕西西咸新区、湖北武汉光谷、贵州贵安新区等地提出要设国家级大数据基地。
上海成立数据交易中心。2016年4月1日,上海数据交易中心挂牌成立,上海数据交易中心是经上海市人民政府批准,上海市经济和信息化委、上海市商务委联合批复成立的国有控股混合所有制企业,承担着促进商业数据流通、跨区域的机构合作和数据互联、公共数据与商业数据融合应用等工作职能。交易中心以国内领先的“技术+规则”双重架构,创新结合IKVLTP 六要素技术,采用自主知识产权的虚拟标识技术和二次加密数据配送技术,结合面向应用场景的交易规则,将在全面保障个人隐私、数据安全前提下推动数据聚合流动。
上海将围绕“资源、技术、产业、应用、安全”融合联动这一条主线,聚焦“政府治理和公共服务能力提升、经济发展方式转变”两个方面,创新“交易机构+创新基地+产业基金+发展联盟+研究中心”五位一体大数据产业链生态发展布局,力争打造国家数据科学中心、亚太数据交换中心和全球“数据经济”中心,形成集数据贸易、应用服务、先进产业为一体的大数据战略高地。
2
大数据产业的行业需求预测
企业需求
传统企业的大数据转型。随着互联网化进程的不断推进,在改变了用户消费习惯的同时,众多传统企业面临了一系列必须面对的问题,其中一条核心主线就是基于已有数据的使用以及对于用户数据的采集。对于有效利用数据,很多传统企业开展了试探性的使用和分析,并逐步结合互联网平台,使数据形成闭环。地产、制造、金融企业已经在逐步建立互联网销售平台,其实平台的本身并不是去加大产品销售量,而是通过平台对传统营业网点、销售渠道的信息进行有效管理,从而建立可供判断或分析的数据之用。
更好的吸纳客户的潜在需求,更快的适应市场变化,从而带动新一轮研发的生成或变革。而此类企业的成长点,市场化性质,及企业性质将区别于传统企业,而走上新业态、新模式的道路。包括车联网、互联网金融、汽车电商、房产电商,都已经出现了苗头。对于大数据产业的发展,传统企业转型是区别于其他领域的却又独树一帜的重要组成部分。
平台企业的大数据战略。对于相对IT投入较少,IT基础较为薄弱的领域,比如零售、餐饮、服装、农业、出版等行业,企业不会去自建云计算及大数据平台,更多的则是会依靠专业化的数据服务企业或是数据服务平台来满足数据分析的需求。行业数据服务平台架构的初衷,主要是用云服务方式解决上述行业的信息化建设及运维需求。
目前上海类似的行业数据平台不少,建筑业的筑想网、医药业的安捷力等都是在行业垂直领域专业度很高的企业,而且较之通用、普适性的平台,此类平台的发展更具有和行业发展的共存性和相通性,是大数据产业发展过程中一个非常重要的组成部分。
互联网企业大数据规模化发展。互联网传媒是推动企业接触大数据服务中一个相对快速的行业,传媒由传统的单向被动模式转变成为双向互动模式,在吸引了用户群体的同时也通过定义用户肖像,来推动精准营销。精准营销使企业享受了新媒体带来的最实惠的成果,也为企业带来了一份较之传统传媒更加具体的数据分析报告。
同样在互联网领域,无论是社交平台、团购还是移动应用,在其互联网平台构建的过程中,收集、汇总、分析数据是非常重要的一个环节。通过甄别不同年龄段、性别、爱好的用户群,来精准定位推送不同的消息,而在这些精准定位的背后,则是每天几十甚至几百TB的数据增长量和分析量,可以说,有了互联网才推进了大数据产业的发展。
热点关联领域需求
金融大数据。中国金融信息服务产业存在产业链分布广、市场空间巨大的特点,但与此同时,又表现出产业集中度非常低的现状。因此,未来必将经历大量的并购整合,最终出现几家庞大的IT服务机构。传统金融服务领域的人才资源、市场能力、技术及研发方面在全国范围内都具有不可比拟的优势,产业环境、配套资源都非常成熟。
在金融信息服务产业链中,已经拥有了证券、期货、金融期货、科技技术等交易所以及钢铁、有色金属等各类生产物资交易所,拥有像安硕信息、万得资讯、金仕达、银联、普兰金融、春雨供应链等一大批具有行业代表性的龙头企业,还有一批以经尔纬为代表的掌握大数据技术及具有资源整合能力的公司。金融领域的数据库建设比较完善且都为结构化的数据,随着人工智能、深度学习等新兴技术的介入,大数据将显示出大有可为的趋势,对基于大数据分析的成果的需求也将越加旺盛。
交通大数据。一是智能交通,在交通和环境信息的基础上,实现交付跟踪,工作流程监督,和人力资源管理。在智能交通系统中,如果车辆使用了该应用,就可以监测到相关数据。智慧城市首席信息官可以使用从物联网信息库中获取运输和交通过程的信息。这将大大改善交通运输,建立服务型的支付方式,而不是简单的付款程序,如时间收费制度。
智慧城市的核心价值是根据交通数据来建立对公民有益的基础政策。智能交通也产生了很多新的商业创新。二是自动驾驶,目前GOOGLE借助大数据及车载技术和传感器,以及高级辅助驾驶系统、软件、地图数据、GPS和无线通信数据等,实现了无人驾驶,可以预见,不久的将来,大数据在自动驾驶领域的应用越来越被看好。
新媒体大数据。大数据引领的新媒体已经颠覆了国外数个传统媒体,比如停刊的美国《新闻周刊》以及德国出现战后最大的纸媒倒闭潮等。以眼球经济为基础的传统媒体展示型广告已快速向以数据为基础的网络媒体精准型广告进行转变。百视通和东方明珠的整合已经打造了全国最大的千亿级别的传媒上市公司。在电信、广电及互联网领域海量数据处理具有丰富的研发及应用经验,所用技术涵盖了分布式计算、海量数据处理、流计算、机器学习及神经网络等,重点关注于互联网广告投放技术、效果监测、目标受众行为分析及精准细分、广告智能匹配等。未来几年,新媒体大数据将越来越受到业界的追捧。
制造业大数据。利用大数据推动信息化和工业化深度融合,研究推动大数据在研发设计、生产制造、经营管理、市场营销、售后服务等产业链各环节的应用,研发面向不同行业、不同环节的大数据分析应用平台,选择典型企业、重点行业、重点地区开展工业企业大数据应用项目试点,积极推动制造业网络化和智能化。最近几年,从国家到地方政府,日益重视大数据在制造业特别是高端智能制造领域的应用,例如《中国制造2025》。从这个意义上来说,大数据在制造业应该发挥的潜力巨大,释放空间和余地很大。
3
大数据投资前景预判
人工智能等新兴领域价值潜力巨大
智能化领域及智慧城市建设。大数据与深度学习、人工智能交叉的领域成为资本追逐的焦点。例如日本提出建成超智能社会,实现ICT技术在全社会的深度融合应用。日本第五期科技计划提出建设SOCIETY 5.0(超智能社会),基于以人工智能、物联网、大数据为代表的ICT技术,研究开发先进机器人、超级计算机、传感器、高速通信等技术,实现网络空间与现实空间高度融合的信息物理系统,运用大数据促使社会生活各领域实现高度智能化,推进经济发展与社会进步。日本超智能社会的提出,受到诸多大数据公司和风投的关注。类似,我国各地正在大力推进的智慧城市建设中的与新兴技术交叉应用的环节,大数据将有着重要的一席之地。大数据与智慧交通、绿色环保、民生安全等领域的融合,在人工智能、深度学习的带动下,大数据应用商机无限。
支撑分享经济智能平台被看好
分享经济在短时间内崛起并成为全球现象,规模和影响力都呈现出指数增长。2014年12月,普华永道发布了预测报告指出全球分享经济的规模将从2015年的150亿美元增长到2025年的3350亿美元。在全球经济努力复苏的背景下,分享经济模式的新颖性和巨大发展潜力受到各国政府的高度支持,甚至提升到了国家战略的高度。大数据、云计算、人工智能将构建支撑分享经济的智能平台,而这些平台将日益彰显其经济价值,从而能够灵活、便利、及时、安全、经济地连接不同需求的陌生人,从而在分享经济的新模式中,大数据起到了核心作用,占领核心的地位,其价值不言而喻。

❹ 大数据未来的前景怎么样

行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等

本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等

产业概况

1、定义:大数据产业覆盖范围广

根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:

2、产业链剖析:大数据产业链庞大

大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;

大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;

大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。

大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。

中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。

在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。

产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升

我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。

产业政策背景:优化升级数字基础设施,鼓励大数据产业发展

2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。

当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。

产业发展现状

1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域

——大数据产业规模:2021年超过800亿元

近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。

——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主

从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,

CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。

从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。

CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。

2、细分市场一:金融大数据

——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升

从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。

近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。

——金融大数据应用场景

过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。

3、细分市场二:政府大数据

——政府大数据需求:互联网政务服务用户规模不断提升

从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。

——政府大数据应用场景

中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。

4、细分市场三:互联网大数据

——互联网大数据需求:互联网行业规模不断提升

在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。

2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。

注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。

——互联网大数据应用场景

在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。

产业竞争格局

1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区

根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。

2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐

根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。

大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。

政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。

注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。

产业发展前景:大数据将继续保持高速增长

大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。

更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。

❺ 大数据未来的发展前景怎么样

现在互联网的大时代,人们都离不开手机和网络,所以科技公司多了,小程序,app,网页等项目也多了,那么就会由大量的招聘需求。ui设计,前端,后端等的需求增加。软件多了,那么就需要更多的大数据分析师了。

数据科学与大数据技术专业就业方向

大数据应用开发工程师

此类人才负责搭建大数据应用平台以及开发分析应用程序,他们必须熟悉工具或算法、编程、优化以及部署不同的MapRece,他们研发各种基于大数据技术的应用程序及行业解决方案。其中,ETL开发者是很抢手的人才,他们所做的是从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要,将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,末后加载到数据仓库,成为联机分析处理、数据挖掘的基础,为提取各类型的需要数据创造条件。

大数据分析师

此类人才主要从事数据挖掘工作,运用算法来解决和分析问题,让数据显露出真相,同时,他们还推动数据解决方案的不断更新。随着数据集规模不断增大,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长,具备Hadoop框架经验的技术人员是很抢手的大数据人才,他们所从事的是热门的分析师工作。

阅读全文

与基于大数据预测算法研究现状相关的资料

热点内容
水准测量平差程序 浏览:78
cf如何解决网络误封 浏览:952
折叠式文件夹是什么意思 浏览:796
js弹窗登录注册 浏览:563
怎么把游戏数据备份到另一个手机 浏览:361
微信封杀抢红包神器破解教程 浏览:536
带货数据什么时候更新 浏览:500
微信通讯录复制到手机 浏览:498
编程猫怎么连接音响 浏览:589
有没有什么app在家点餐 浏览:501
win10视频文件看不到缩略图注册表 浏览:238
请上传文件和视频英语 浏览:413
win10拷贝文件失败拒绝访问 浏览:189
什么叫app推广报备 浏览:414
win10的文件查找在哪里设置密码 浏览:617
苹果6plusitunesstore 浏览:971
qqiphone6在线手机软件 浏览:407
文件怎么转发 浏览:94
数控机床编程与操作怎么启动 浏览:636
linux查找c文件是否存在 浏览:150

友情链接