导航:首页 > 网络数据 > 大数据保障要点

大数据保障要点

发布时间:2024-07-26 18:28:06

『壹』 保护大数据安全的10个要点

一项对2021年数据泄露的分析显示,总共有50亿份数据被泄露,这对所有参与大数据管道工作的人来说,从开发人员到DevOps工程师,安全性与基础业务需求同等重要。

大数据安全是指在存储、处理和分析过于庞大和复杂的数据集时,采用任何措施来保护数据免受恶意活动的侵害,传统数据库应用程序无法处理这些数据集。大数据可以混合结构化格式(组织成包含数字、日期等的行和列)或非结构化格式(社交媒体数据、PDF 文件、电子邮件、图像等)。不过,估计显示高达90%的大数据是非结构化的。

大数据的魅力在于,它通常包含一些隐藏的洞察力,可以改善业务流程,推动创新,或揭示未知的市场趋势。由于分析这些信息的工作负载通常会将敏感的客户数据或专有数据与第三方数据源结合起来,因此数据安全性至关重要。声誉受损和巨额经济损失是大数据泄露和数据被破坏的两大主要后果。

在确保大数据安全时,需要考虑三个关键阶段:

当数据从源位置移动到存储或实时摄取(通常在云中)时,确保数据的传输

保护大数据管道的存储层中的数据(例如Hadoop分布式文件系统)

确保输出数据的机密性,例如报告和仪表板,这些数据包含通过Apache Spark等分析引擎运行数据收集的情报

这些环境中的安全威胁类型包括不适当的访问控制、分布式拒绝服务(DDoS)攻击、产生虚假或恶意数据的端点,或在大数据工作期间使用的库、框架和应用程序的漏洞。

由于所涉及的架构和环境复杂性,大数据安全面临着许多挑战。在大数据环境中,不同的硬件和技术在分布式计算环境中相互作用。比如:

像Hadoop这样的开源框架在设计之初并没有考虑到安全性

依赖分布式计算来处理这些大型数据集意味着有更多的系统可能出错

确保从端点收集的日志或事件数据的有效性和真实性

控制内部人员对数据挖掘工具的访问,监控可疑行为

运行标准安全审计的困难

保护非关系NoSQL数据库

这些挑战是对保护任何类型数据的常见挑战的补充。

静态数据和传输中数据的可扩展加密对于跨大数据管道实施至关重要。可扩展性是这里的关键点,因为除了NoSQL等存储格式之外,需要跨分析工具集及其输出加密数据。加密的作用在于,即使威胁者设法拦截数据包或访问敏感文件,实施良好的加密过程也会使数据不可读。

获得访问控制权可针对一系列大数据安全问题提供强大的保护,例如内部威胁和特权过剩。基于角色的访问可以帮助控制对大数据管道多层的访问。例如,数据分析师可以访问分析工具,但他们可能不应该访问大数据开发人员使用的工具,如ETL软件。最小权限原则是访问控制的一个很好的参考点,它限制了对执行用户任务所必需的工具和数据的访问。

大数据工作负载所需要的固有的大存储容量和处理能力使得大多数企业可以为大数据使用云计算基础设施和服务。但是,尽管云计算很有吸引力,暴露的API密钥、令牌和错误配置都是云中值得认真对待的风险。如果有人让S3中的AWS数据湖完全开放,并且对互联网上的任何人都可以访问,那会怎么样?有了自动扫描工具,可以快速扫描公共云资产以寻找安全盲点,从而更容易降低这些风险。

在复杂的大数据生态系统中,加密的安全性需要一种集中的密钥管理方法,以确保对加密密钥进行有效的策略驱动处理。集中式密钥管理还可以控制从创建到密钥轮换的密钥治理。对于在云中运行大数据工作负载的企业,自带密钥 (BYOK) 可能是允许集中密钥管理而不将加密密钥创建和管理的控制权交给第三方云提供商的最佳选择。

在大数据管道中,由于数据来自许多不同的来源,包括来自社交媒体平台的流数据和来自用户终端的数据,因此会有持续的流量。网络流量分析提供了对网络流量和任何潜在异常的可见性,例如来自物联网设备的恶意数据或正在使用的未加密通信协议。

2021年的一份报告发现,98%的组织感到容易受到内部攻击。在大数据的背景下,内部威胁对敏感公司信息的机密性构成严重风险。有权访问分析报告和仪表板的恶意内部人员可能会向竞争对手透露见解,甚至提供他们的登录凭据进行销售。从内部威胁检测开始的一个好地方是检查常见业务应用程序的日志,例如 RDP、VPN、Active Directory 和端点。这些日志可以揭示值得调查的异常情况,例如意外的数据下载或异常的登录时间。

威胁搜寻主动搜索潜伏在您的网络中未被发现的威胁。这个过程需要经验丰富的网络安全分析师的技能组合,利用来自现实世界的攻击、威胁活动的情报或来自不同安全工具的相关发现来制定关于潜在威胁的假设。具有讽刺意味的是,大数据实际上可以通过发现大量安全数据中隐藏的洞察力来帮助改进威胁追踪工作。但作为提高大数据安全性的一种方式,威胁搜寻会监控数据集和基础设施,以寻找表明大数据环境受到威胁的工件。

出于安全目的监视大数据日志和工具会产生大量信息,这些信息通常最终形成安全信息和事件管理(SIEM)解决方案。

用户行为分析比内部威胁检测更进一步,它提供了专门的工具集来监控用户在与其交互的系统上的行为。通常情况下,行为分析使用一个评分系统来创建正常用户、应用程序和设备行为的基线,然后在这些基线出现偏差时进行提醒。通过用户行为分析,可以更好地检测威胁大数据环境中资产的保密性、完整性或可用性的内部威胁和受损的用户帐户。

未经授权的数据传输的前景让安全领导者彻夜难眠,特别是如果数据泄露发生在可以复制大量潜在敏感资产的大数据管道中。检测数据泄露需要对出站流量、IP地址和流量进行深入监控。防止数据泄露首先来自于在代码和错误配置中发现有害安全错误的工具,以及数据丢失预防和下一代防火墙。另一个重要方面是在企业内进行教育和提高认识。

框架、库、软件实用程序、数据摄取、分析工具和自定义应用程序——大数据安全始于代码级别。 无论是否实施了上述公认的安全实践,代码中的安全缺陷都可能导致数据泄漏。 通过在软件开发生命周期中检测自研代码及开源组件成分的安全性,加强软件安全性来防止数据丢失。

『贰』 大数据的信息社会,要如何保障自身的信息安全

对于这个问题,你不能太担心太多了。哪个步骤进行了法律会议。这是一个人的隐私。不是据说泄漏泄漏了?即使是你的隐私。普通人将不是一步一步。我曾经说过这辆车没有汽车仪式。现在不在吗?因此,在社会州发展的地方,将有相应的法律和法规。至于自己泄露隐私。尽量不要向陌生人透露相关信息。甚至是您自己的头像。该国和原子能机构呼叫。为自己,这被称为隐私。出生后,家庭中有几个人,名字是什么,固定资产?什么爱好?你有什么需要?你家住在哪里?这些都是隐私渠道。

『叁』 大数据技术要掌握的要点有哪些

Zookeeper:安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。需要把它安装正确 ,让它正常的跑起来。

Mysql:在Linux上把它安装好,运行起来,会配置简单的权限,修改root密码,创建数据库。

Sqoop:这个是用于把Mysal里面的数据导入Hadoop里面。

Hive:和Pig同理,想要变得厉害可以都学习。

Oozie:可以帮你管理你的Hive或者MapRece、Spark脚本还能检查你的程序执行的是否正确。

Hbase:这个是Hadoop生态体系中的NOSQL数据库,是按照key和value的形式存储的并且key是唯一的。所以可以帮你做数据排重,它与MYSQL相比存储的数据量大。

Kafka:这个是队列工具。可以利用它来做线上实时数据的入库或者是入HDFS,与Flume的工具配合使用,专门用来提供对数据进行简单处理。

Spark:这个工具是用来弥补MapRece处理数据速度上的缺点,特点就是把数据装载到内存里面去计算。适合做迭代运算,Java语言或者Scala都可以操作它,他们都是用JVM的。

关于大数据技术要掌握的要点有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

『肆』 当下大数据发展的 8 个要点

作者 | 章剑锋

笔者从 2008 年开始工作到现在也有 11 个年头了,一路走来都在和数据打交道,做过大数据底层框架内核的开发(Hadoop,Pig,Tez,Spark,Livy),也做过上层大数据应用开发(写 MapRece Job 做 ETL ,用 Hive 做 Ad hocquery,用 Tableau 做数据可视化,用 R 做数据分析)。今天我想借此机会和大家聊聊我所理解的大数据现状和未来。

首先让我们来聊聊什么是大数据。大数据这个概念已经出来很多年了(超过10年),但一直没有一个准确的定义(也许也并不需要)。数据工程师(DataEngineer)对大数据的理解会更多从技术和系统的角度去理解,而数据分析人员(Data Analyst)对大数据理解会从产品的角度去理解,所以数据工程师(Data Engineer) 和数据分析人员(Data Analyst)所理解的大数据肯定是有差异的。我所理解的大数据是这样的,大数据不是单一的一种技术或者产品,它是所有与数据相关的综合学科。看大数据我会从 2 个维度来看,一个是数据流的维度(下图的水平轴),另外一个是技术栈的维度(下图的纵轴)。

其实我一直不太喜欢张口闭口讲“大数据”,我更喜欢说“数据”。因为大数据的本质在于“数据”,而不是“大”。由于媒体一直重点宣扬大数据的“大”,所以有时候我们往往会忽然大数据的本质在“数据”,而不是“大”,“大”只是你看到的表相,本质还是数据自身。

在我们讲清楚大数据的含义之后,我们来聊聊大数据目前到底处在一个什么样的位置。从历史发展的角度来看,每一项新技术都会经历下面这样一个技术成熟度曲线。

当一项新技术刚出来的时候人们会非常乐观,常常以为这项技术会给人类带来巨大的变革,对此持有过高的期望,所以这项技术一开始会以非常快的速度受到大家追捧,然后到达一个顶峰,之后人们开始认识到这项新技术并没有当初预想的那么具有革命性,然后会过于悲观,之后就会经历泡沫阶段。等沉寂一定阶段之后,人们开始回归理性,正视这项技术的价值,然后开始正确的应用这项技术,从此这项技术开始走向稳步向前发展的道路。(题外话,笔者在看这幅图的时候也联想到了一个男人对婚姻看法的曲线图,大家自己脑补)。

1、从大数据的历史来看,大数据已经经历了 2 个重要阶段

两个重要阶段是指过高期望的峰值和泡沫化的底谷期 。现在正处于稳步向前发展的阶段。我们可以从 googletrend 上 big data 的曲线就能印证。大数据大约从 2009 年开始走向人们的视野,在 2015 年左右走向了顶峰,然后慢慢走向下降通道(当然这张曲线并不会和上面这张技术成熟度曲线完全拟合,比如技术曲线处在下降通道有可能会使讨论这项技术的搜索量增加)。

接下来我想讲一下我对大数据领域未来趋势的几个判断。

2、数据规模会继续扩大,大数据将继续发扬光

前面已经提到过,大数据已经度过了过高期望的峰值和泡沫化的底谷期,现在正在稳步向前发展。做这样判断主要有以下 2 个原因:

上游数据规模会继续增长,特别是由于 IOT 技术的发展和成熟,以及未来 5G 技术的铺开。在可预测的未来,数据规模仍将继续快速增长,这是能够带动大数据持续稳定向前发展的基本动力。 下游数据产业还有很多发展的空间,还有很多数据的价值我们没有挖掘出来。

虽然现在人工智能,区块链抢去了大数据的风口位置,也许大数据成不了未来的主角,但大数据也绝对不是跑龙套的,大数据仍将扮演一个重要而基础的角色。可以这么说,只要有数据在,大数据就永远不会过时。我想在大部分人的有生之年,我们都会见证大数据的持续向上发展。

3、数据的实时性需求将更加突出

之前大数据遇到的最大挑战在于数据规模大(所以大家会称之为“大数据”),经过工业界多年的努力和实践,规模大这个问题基本已经解决了。接下来几年,更大的挑战在于速度,也就是实时性。而大数据的实时性并不是指简单的传输数据或者处理数据的实时性,而是从端到端的实时,任何一个步骤速度慢了,就影响整个大数据系统的实时性。所以大数据的实时性,包括以下几个方面:

快速获取和传输数据 快速计算处理数据 实时可视化数据 在线机器学习,实时更新机器学习模型

目前以 Kafka,Flink 为代表的流处理计算引擎已经为实时计算提供了坚实的底层技术支持,相信未来在实时可视化数据以及在线机器学习方面会有更多优秀的产品涌现出来。当大数据的实时性增强之后,在数据消费端会产生更多有价值的数据,从而形成一个更高效的数据闭环,促进整个数据流的良性发展。

4、大数据基础设施往云上迁移势不可挡

目前IT基础设施往云上迁移不再是一个大家还需要争论的问题,这是大势所趋。当然我这边说的云并不单单指公有云,也包括私有云,混合云。因为由于每个企业的业务属性不同,对数据安全性的要求不同,不可能把所有的大数据设施都部署在公有云上,但向云上迁移这是一个未来注定的选择。目前各大云厂商都提供了各种各样的大数据产品以满足各种用户需求,包括平台型(PAAS) 的 EMR ,服务型 (SAAS) 的数据可视化产品等等。大数据基础设施的云化对大数据技术和产品产生也有相应的影响。大数据领域的框架和产品将更加 Cloud Native 。

计算和存储的分离。我们知道每个公有云都有自己对应的分布式存储,比如 AWS 的 S3 。 S3 在一些场合可以替换我们所熟知的 HDFS ,而且成本更低。而 S3 的物理存储并不是在 EC2 上面,对 EC2 来说, S3 是 remote storage 。所以如果你要是 AWS 上面做大数据开发和应用,而且你的数据是在 S3 上,那么你就自然而然用到了计算和存储的分离。 拥抱容器,与 Kubernate 的整合大势所趋,我们知道在云环境中 Kuberneate 基本上已经是容器资源调度的标准。 更具有弹性(Elastic)。 与云上其他产品和服务整合更加紧密。

5、大数据产品全链路化

全链路化是指提供端到端的全链路解决方案,而不是简单的堆积一些大数据产品组件。以 Hadoop 为代表的大数据产品一直被人诟病的主要问题就是用户使用门槛过高,二次开发成本太高。全链路化就是为了解决这一问题,用户需要的并不是 Hadoop,Spark,Flink 等这些技术,而是要以这些技术为基础的能解决业务问题的产品。 Cloudera 的从 Edge 到 AI 是我比较认同的方案。大数据的价值并不是数据本身,而是数据背后所隐藏的对业务有影响的信息和知识。下面是一张摘自 wikipedia 的经典数据金字塔的图。

大数据技术就是对最原始的数据进行不断处理加工提炼,金字塔每上去一层,对应的数据量会越小,同时对业务的影响价值会更大更快。而要从数据(Data) 最终提炼出智慧(Wisdom),数据要经过一条很长的数据流链路,没有一套完整的系统保证整条链路的高效运转是很难保证最终从数据中提炼出来有价值的东西的,所以大数据未来产品全链路化是另外一个大的趋势。

6、大数据技术往下游数据消费和应用端转移

上面讲到了大数据的全链路发展趋势,那么这条长长的数据链路目前的状况是如何,未来又会有什么样的趋势呢?

我的判断是未来大数据技术的创新和发力会更多的转移到下游数据消费和应用端。之前十多年大数据的发展主要集中在底层的框架,比如最开始引领大数据风潮的 Hadoop ,后来的计算引擎佼佼者 Spark,Flink 以及消息中间件 Kafka ,资源调度器 Kubernetes 等等,每个细分领域都涌现出了一系列优秀的产品。总的来说,在底层技术框架这块,大数据领域已经基本打好了基础,接下来要做的是如何利用这些技术为企业提供最佳用户体验的产品,以解决用户的实际业务问题,或者说未来大数据的侧重点将从底层走向上层。之前的大数据创新更偏向于 IAAS 和 PAAS ,未来你将看到更多 SAAS 类型的大数据产品和创新。从近期一些国外厂商的收购案例,我们可以略微看出一些端倪。1、2019 年 6 月 7 日,谷歌宣布以 26 亿美元收购了数据分析公司 Looker,并将该公司并入 Google Cloud。2、2019 年 6 月 10 日,Salesforce 宣布以 157 亿美元的全股票交易收购 Tableau ,旨在夯实在数据可视化以及帮助企业解读所使用和所积累的海量数据的其他工具方面的工作。3、2019 年 9 月初,Cloudera 宣布收购 Arcadia Data 。 Arcadia Data 是一家云原生 AI 驱动的商业智能实时分析厂商。面对最终用户的大数据产品将是未来大数据竞争的重点,我相信会未来大数据领域的创新也将来源于此,未来 5 年内大概率至少还会再出一个类似 Looker 这样的公司,但是很难再出一个类似 Spark 的计算引擎。

7、底层技术的集中化和上层应用的全面开花

学习过大数据的人都会感叹大数据领域的东西真是多,特别是底层技术,感觉学都学不来。经过多年的厮杀和竞争,很多优秀的产品已经脱颖而出,也有很多产品慢慢走向消亡。比如批处理领域的 Spark 引擎基本上已经成为批处理领域的佼佼者,传统的 MapRece 除了一些旧有的系统,基本不太可能会开发新的 MapRece 应用。 Flink 也基本上成为低延迟流处理领域的不二选择,原有的 Storm 系统也开始慢慢退出历史舞台。同样 Kafka 也在消息中间件领域基本上占据了垄断地位。未来的底层大数据生态圈中将不再有那么多的新的技术和框架,每个细分领域都将优胜劣汰,走向成熟,更加集中化。未来更大的创新将更多来来自上层应用或者全链路的整合方面。在大数据的上层应用方面未来将会迎来有更多的创新和发展,比如基于大数据上的BI产品, AI 产品等等,某个垂直领域的大数据应用等等,我相信未来我们会看到更多这方面的创新和发展。

8、开源闭源并驾齐驱

大数据领域并不是只有 Hadoop,Spark,Flink 等这类大家耳熟能详的开源产品,还有很多优秀的闭源产品,比如 AWS 上的 Redshift ,阿里的 MaxCompute 等等。这些产品虽然没有开源产品那么受开发者欢迎,但是他们对于很多非互联网企业来说是非常受欢迎的。因为对于一个企业来说,采用哪种大数据产品有很多因素需要考虑,否开源并不是唯一标准。产品是否稳定,是否有商业公司支持,是否足够安全,是否能和现有系统整合等等往往是某些企业更需要考虑的东西,而闭源产品往往在这类企业级产品特性上具有优势。

最近几年开源产品受公有云的影响非常大,公有云可以无偿享受开源的成果,抢走了开源产品背后的商业公司很多市场份额,所以最近很多开源产品背后的商业公司开始改变策略,有些甚至修改了 Licence 。不过我觉得公有云厂商不会杀死那些开源产品背后的商业公司,否则就是杀鸡取卵,杀死开源产品背后的商业公司,其实就是杀死开源产品的最大技术创新者,也就是杀死开源产品本身。我相信开源界和公有云厂商最终会取得一个平衡,开源仍然会是一个主流,仍然会是创新的主力,一些优秀的闭源产品同样也会占据一定的市场空间。

最后我想再次总结下本文的几个要点:

1、目前大数据已经度过了最火的峰值期和泡沫化的底谷期,现在正处于稳步向前发展的阶段。2、数据规模会继续扩大,大数据将继续发扬光大3、 数据的实时性需求将更加突出4、大数据基础设施往云上迁移势不可挡5、大数据产品全链路化6、大数据技术往下游数据消费和应用端转移7、底层技术的集中化和上层应用的全面开花8、开源闭源并驾齐驱

『伍』 实现大数据商业价值的5个要点

实现大数据商业价值的5个要点
通常来说,以往的业务模式是基于历史数据来决定未来一到两年内的行为,但是现在则应该是基于过去几分钟内的数据来决定未来12到24分钟(甚至是秒)内的行动。在营销模式上,以往是基于过去数周或数月内的推广活动来预测特定人群对产品或者服务的偏好程度,而现在则是基于对客户个体行为的分析和实验来为其提供实时的定制化服务(通过各种用户界面,比如呼叫中心、网站、移动应用等)。可以想见,每个客户所接收到的东西都是独一无二的–一旦某客户接收到了特定的服务或者产品,该服务或产品就不会重复提供给另一个客户。这才是“大”的真正含义–大数据中的大生意。
对于数据分析人员、IT经理以及整个企业来说,对于大数据,有以下重要的考量和步骤:
·在准备行动之前,和管理层及客户进行充分的沟通,了解业界最新进展以及企业的真实需求
·基于大数据相关的新业务模式和新技术,积极推动企业战略的升级
·基于业务战略和模型,制定相应的数据战略和监管流程
·以可管理的模式来推进创新,比如较小的、短期的和可迭代的实验和探索,以此获得易评测和有意义的结果
·在探索过程中允许错误的发生。不断从失败中积累经验才能提高未来工作的成功率
无论出于什么原因,如果你或者你的公司还未认识到大数据的无穷潜力,Rick Smolan和Jennifer Erwitt的近著《The Human Face of Big Data》可能会对你有所帮助 -- 其中有句话这么说到:“在孩子出生的第一天,人类产生的数据量就相当于国会图书馆的70倍。”想想吧,这得有多少奥利奥饼干。

『陆』 大数据安全分析的6个要点

大数据安全分析的6个要点
现在,很多行业都已经开始利用大数据来提高销售,降低成本,精准营销等等。然而,其实大数据在网络安全与信息安全方面也有很长足的应用。特别是利用大数据来甄别和发现风险和漏洞。
通过大数据,人们可以分析大量的潜在安全事件,找出它们之间的联系从而勾勒出一个完整的安全威胁。通过大数据,分散的数据可以被整合起来,使得安全人员能够采用更加主动的安全防御手段。
今天,网络环境极为复杂,APT攻击以及其他一些网络攻击可以通过对从不同数据源的数据的搜索和分析来对安全威胁加以甄别,要做到这一点,就需要对一系列数据源的进行监控,包括DNS数据,命令与控制(C2),黑白名单等。从而能够把这些数据进行关联来进行发囧。
企业针对安全的大数据分析下面是一些要点:
DNS数据
DNS数据能够提供一系列新注册域名,经常用来进行垃圾信息发送的域名,以及新创建的域名等等,所有这些信息都可以和黑白名单结合起来,所有这些数据都应该收集起来做进一步分析。
如果自有DNS服务器,就能过检查那些对外的域名查询,这样可能发现一些无法解析的域名。这种情况就可能意味着你检测到了一个“域名生成算法”。这样的信息就能够让安全团队对公司网络进行保护。而且如果对局域网流量数据日志进行分析的话,就有可能找到对应的受到攻击的机器。
命令与控制(C2)系统
把命令与控制数据结合进来可以得到一个IP地址和域名的黑名单。对于公司网络来说,网络流量绝对不应该流向那些已知的命令与控制系统。如果网络安全人员要仔细调查网络攻击的话,可以把来自C2系统的流量引导到公司设好的“蜜罐”机器上去。
安全威胁情报
有一些类似与网络信誉的数据源可以用来判定一个地址是否是安全的。有些数据源提供“是”与“否”的判定,有的还提供一些关于威胁等级的信息。网络安全人员能够根据他们能够接受的风险大小来决定某个地址是否应该访问。
网络流量日志
有很多厂商都提供记录网络流量日志的工具。在利用流量日志来分析安全威胁的时候,人们很容易被淹没在大量的“噪音”数据中。不过流量日志依然是安全分析的基本要求。有一些好的算法和软件能够帮助人们提供分析质量。
“蜜罐”数据
“蜜罐”可以有效地检测针对特定网络的恶意软件。此外,通过“蜜罐”获得的恶意软件可以通过分析获得其特征码,从而进一步监控网络中其他设备的感染情况。这样的信息是非常有价值的,尤其是很多APT攻击所采用的定制的恶意代码往往无法被常规防病毒软件所发现。参见本站文章企业设置“蜜罐”的五大理由
数据质量很重要
最后,企业要注意数据的质量。市场上有很多数据可用,在安全人员进行大数据安全分析时,这些数据的质量和准确性是一个最重要的考量。因此,企业需要有一个内部的数据评估团队针对数据来源提出相应的问题,如:最近的数据是什么时候添加的?有没有样本数据以供评估?每天能够添加多少数据?这些数据哪些是免费的?数据总共收集了多久?等等。
安全事件和数据泄露的新闻几乎每天都能够出现在报纸上,即使企业已经开始采取手段防御APT,传统的安全防御手段对于APT之类的攻击显得办法不多。而利用大数据,企业可以采取更为主动的防御措施,使得安全防御的深度和广度都大为加强。

『柒』 大数据的应用有几个步骤,分别是什么_大数据应用的关键是什么

一般来讲,典型的数据分析包含六个步骤,分别是明森腔世确思路、收集数据、处理数据、分析数据、展现数据以及撰写报告,下面尚硅谷具体讲一讲数据分析的六大步骤。

明确数据分析的目的以及思路是确保数据分析过程有效进行的首要条件。它作用的是可以为数据的收集、处理及分析提供清晰的指引方向。可以说思路是整个分析流程的起点。首先目的不明确则会导致方向性的错误。当明确目的后,就要建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标。只有明确了分析目的,分析框架才能跟着确定下来,最后还要确保分析框架的体系化,使分析更具有说服力。

这一步其实就是具化分析的内容,把一个需要进行数据分析的事件,拆解成为一个又一个的小指标,这样一来,就不会觉得数据分析无从下手。而且拆解一定要体系化,也就是逻辑化。简单来说就是先分析什么,后分析什么,使得各个分析点之间具有逻辑联系。避免不知从哪方面入手以及分析的内容和指标被质疑是否合理、完整。所以体系化就是为了让你的分析框架具有说服力。可以参照的方法论有,用户行为理论、PEST分析法、5W2H分析法等等。

2、收集数据

收集数据此肢是按照确定的数据分析框架收集相关数据的过程,它为数据分析提供了素材和依据。这里所说的数据包括第一手数据与第二手数据,第一手数据主要指可直接获取的数据,第二手数据主要指经过加工整理后得到的数据。一般数据来源主要有以下几种方式:

(1)数据库:

每个公司都有自己的业务数据库,存放从公司成立以来产生的相关业务数据。这个业务数据库就是一个庞大的数据资源,需要有效地利用起来。

(2)公开出版物:

可以用于收集数据的公开出版物包括《中国统计年鉴》《中国社会统计年鉴》《中国人口统计年鉴》《世界经济年鉴》《世界发展报告》等统计年鉴或报告。

(3)互联网:

随着互联网的发展,网络上发布的数据越来越多,特别是搜索引擎可以帮助我们快速找到所需要的数据,例如国家及地方统计局网站、行业组织网站、政府机构网站、传播媒体网站、大型综合门户网站等上面都可能有我们需要的数据。

(4)市场调查:

就是指运用科学的方法,有目的、有系统地收集、记录、整理有关市场营销的信息和资料,分析市场情况,了解市场现状及其发展趋势,为市场预测和营销决策提供客观、正确的数据资料。市场调查可以弥补其他数据收集方式的不足。

3、处理数据

处理数据是指对收集到的数据进行加工整理,形成适合数据分析的样式,它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、杂乱无章、难以理解的数据中,抽取并推导出对解决问题有价值、有意义的数据。数据处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法。一般拿到手的数据都需要进行一定的处理才能用于后续的数据分析工作,即使再“干净”’的原始数据也需要先进行一定的处理才能使用。

4、分析数据

分析数据是指用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。由于数据分析多是通过软件来完成的,这就要求数据分析师不仅要掌握各种数据分析方法,还要熟悉数据分析软件的操作。而数据挖掘其实是一种高级的数据分析方法,就是从大量的数据中挖掘出有用的信息,它是根据用户的特定要求,从浩如烟海的数据中找出所需的信息,以满足用户的特定需求。

5、展现数据

一般情况下,数据是通过表格和图形的方式来呈现的,我们常说用图表说话就是这个意思。常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、漏斗图等。大多数情况下,人们更愿意接受图形这种数据展现方式,因为它能更加有效直观。

6、撰写圆没报告

数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,供决策者参考。一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次明晰,能够让阅读者一目了然。另外,数据分析报告需要有明确的结论,没有明确结论的分析称不上分析,同时也失去了报告的意义,因为我们最初就是为寻找或者求证一个结论才进行分析的,所以千万不要舍本求末。最后,好的分析报告一定要有建议或解决方案。

阅读全文

与大数据保障要点相关的资料

热点内容
设置密码的pdf文件如何转换成word 浏览:876
多个文件合并到一起后叫什么 浏览:387
数据库位是什么意思 浏览:104
如何改变手机上的网络连接 浏览:908
某网站图片侵权如何举报 浏览:820
zemax宏编程有什么用 浏览:874
做保函为什么要获取招标文件 浏览:921
魔兽世界数据是哪个文件夹 浏览:439
oppor9s手机系统升级 浏览:728
文件上传ie8 浏览:619
cleanmymac恢复文件 浏览:241
win10装虚拟机没有网络 浏览:283
安排什么意思网络语言 浏览:837
顺丰常州寄份文件到广州多少钱 浏览:73
wow110挂机升级 浏览:967
请问有什么app可以压缩视频 浏览:195
凯美瑞蓝牙连接不了苹果手机啊 浏览:923
手机无法搜索到网络打印机驱动 浏览:411
pdf文件如何将背景灰色的变成透明 浏览:269
南漳如何网络推广 浏览:525

友情链接