导航:首页 > 网络数据 > 大数据时代运营商

大数据时代运营商

发布时间:2024-07-19 04:46:10

A. 大数据时代,运营商如何应对

2010年全球数据量达到1.2ZB,2011年全球数据量达到1.8ZB,到2020年全球数据量将达到35ZB。数据密度将达到前所未有的高度,大数据时代的画卷已经展开。 随着大数据时代的到来,产业格局正在重塑,传统电信运营商面临低值化、管道化,在新的产业链中需要谋求新突破。专家认为,运营商应该跳出互联网看互联网,将大数据作为重点业务发展领域,毕竟运营商拥有的“数据矿产”资源是任何其他企业所不具备的,运营商应该基于大数据的基础发展延伸业务。面对大数据时代的潮流以及互联网企业的竞争,运营商应当利用自有数据优势提升自身数据运营能力。 首先,运营商应整合现有数据建立数据集市,利用实时处理大数据的能力,打造基于数据的实时营销解决方案,提升企业销售服务能力。大数据处理分析平台的优势在于对海量数据处理的实时性,技术优势可以有效地保障实时营销解决方案的实施。实时营销解决方案较传统营销方案具有更好的营销效果:更具时效性,一旦有实时行为数据产生,立即选定目标用户进行营销推送,保证在较短时间内送达客户,传统营销则是定期执行营销;目标客户动态选取,通过客户行为变化结合客户特征动态筛选目标客户,传统营销往往是通过长期分析挖掘客户兴趣爱好形成客户标签,在营销前预先挑选出客户。 从现有实时营销触发机制考虑,主要集中在用户行为触发、位置信息触发和热点事件触发等。用户行为触发机制是分析用户的行为偏好,如音乐、阅读和视频等,运营商可以定向推销自有增值业务;位置信息触发机制是根据用户位置轨迹信息推送自有业务或者合作商家的产品信息,如对接近某大型商场的用户推送商店优惠信息,吸引客户消费;热点事件触发机制是锁定对热点事件感兴趣的客户进行针对性营销,如锁定关注NBA总决赛的微博用户,进行相关的篮球商品推荐。 其次,运营商应当成为信息的融合者,利用自有的品牌优势打造权威指数类产品,为客户的决策提供参考依据。相较于其他行业,电信运营商的用户群体相对稳定,所采集信息较完整,而且在整个产业链中运营商的影响力较强,拥有可信品牌,数据中蕴藏着巨大的客户信息、商业信息和业务信息。因此,与其他权威指数类产品相比,电信运营商基于数据源的优势可以提供更加全面、详尽、客观的产品,对于分析中欠缺的数据可以同其他行业进行合作共同挖掘数据中隐含的价值。 电信运营商指数产品可以辐射影视、电子商务等很多行业,并且已经在一些行业进行了应用。在大数据处理分析平台中汇聚移动互联网DPI数据、IPTV使用数据和宽带互联网DPI数据,可以综合以上数据分析用户访问视频网站的偏好,包含喜爱的导演、演员、故事类型等,形成指数类分析报告,为电影生产、影院上线电影选取等提供决策依据。通过这种方式打造的热播美剧《纸牌屋》,让全世界影视业感受到了大数据的魅力。 最后,电信运营商可为智慧医疗、智能交通、智慧物流、智能制造等领域提供解决方案,提升数据价值。在大数据解决方案应用方面,IBM发展战略很值得运营商借鉴,以客户需求为导向对数据进行深度分析,提升现有数据价值。当前,医院资产运营管理也正面临诸多挑战:医疗设备资产种类繁多,产品更新速度快;管理分散、职能弱化、管控失据;统计归口不统一,管理制度不健全等。电信运营商在大数据平台建设过程中针对这些问题的解决方案积累了较多的宝贵经验,电信运营商可以将成功的经验应用到医疗行业的大数据处理平台建设中,为医疗行业提供解决方案以及咨询服务。交通管理行业在大数据时代,需要解决基于大数据及时查询、及时分析等业务需求。电信运营商可以利用如全球眼等业务和云存储方面的技术积累,提供海量交通数据的存储、分析、应用,同时利用智能管道进行交通信息的及时推送,这样可以更加有效地保障交通管理行业的及时性要求。 分析认为,马云的“大物流”计划可能会给物流行业带来又一个高速发展的机遇。电信运营商通过用户的移动互联网、宽带互联网的访问情况,分析用户的购物偏好或者购物意愿,为物流公司智能分配各个节点的仓储量及仓储产品提供数据支撑及解决方案,物流公司也可以实现公司信息化管理。另外,中国制造企业面临着巨大压力,世界工厂的地位正受到挑战。面临如此压力,制造业需要更加准确地了解市场动态,这就需要强大的企业信息化能力,但是很多中小型企业对于企业信息化建设投入有限。

B. 大数据时代电信运营商应该采用的运营策略

大数据时代电信运营商应该采用的运营策略

最近几年,大数据在人们视野中出现的频率越来越高,继而也引起人们的关注。国际著名咨询公司IDC、麦肯锡相继发布了有关大数据的研究报告,将其比喻为“未来的金矿”,国内不少互联网公司也开始着手部署各自的大数据战略,作为通信行业的主要参与者和推动者,电信运营商在大数据的时代下开始试点了大数据系统的建设与应用,以充分挖掘企业的数据资产价值,创造新的利润点。

大数据是什么?

关于大数据的定义业界并没有给出一个准确的定位,研究机构Gartner把大数据定义为是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;维基百将大数据定义为无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合;《著云台》的分析师团队认为,“大数据”通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据时代电信运营商应该采用的运营策略是什么?

1、优化网络:利用大数据分析,可突破传统的智能网优以CDT和MR数据为基础,通过3G基站的流量大数据,可以分析出哪些区域是用户数据流量高消耗区,在这些区域建设4G基站,就能做到既精准又有效;通过对MR大数据的分析,可以知道哪些区域移动网络小区信号覆盖不好,通过关联CRM中的客户信扰册友息和套餐信息,便可排出网络优化的优先顺序;通过LBS系统平台,对移动通信使用者的位置和运动轨迹进行分析,有效统计热点地区的人群出现概率,并进行基站资源配置的优化,提高了资源使用效率。

2、精准营销:中国电信利用大数据处理平台分析呼叫中心海量语音数据,建立呼叫中心测评体系和产品关联分析,为保险公司等提供基于自动语音识别的大数据分析服务;根据使用不同移动终端的用户的月均流量消耗,分析出在哪些移动终端上用户的上网体验最佳、DOU最大,根据该数据就可制定更为科学的终端补贴策略;通过对用户手机的通话、短信和空间位置等信息进行处理,提取用户通信行为的时空规则性和重复性,实现定向精确的终端营销和个性化内容业务推荐。

3、深度拥抱大数据:大数据的时代已经来临,因此电信运营商可以强化规划引导、实现大数据建设全面统筹。电信运营商应针对不同的应用场景选取合适的技术进行大数据建设,在集团和省公司层面分别指定部门统一组织开展整个集团和省公司层面的大数据规划,在规划的指引下,实现大数据建设与应用的全面统筹,包括:清理分散在各部门中的数据资产,开展应用规划,明确应用建设与运营分工,建设运营商集团和省公司层面统一的大数据基础平台等。

4、精细运营:天津网站建设-文率科技建议电信可以使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务。如:针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而有抢占市场的先机。

5、客户维系:分析用户的终端所支撑的系统,然后向客户推荐比客户目前使用系统更好的系统,如:客户目前使用的终端是支撑的是3G,那么我们可以向客户推荐比3G更好的4G,继而提升客户体验,降低用户流失率;通过分析客户通话对象结构转移、使用量变化、上网行为漂移、套餐饱和度下降,分析出客户离网倾向及缴费异常倾向,及时进行客户维系与挽留。

在大数据的时代止步不前的话只能走向灭亡,天津西青网站建设发现在大数据的时代下中国联通建立了用户上网大数据分析系统,利用收集的用户上网记录解决用户透明消费问题,并使用其中的数据做客户的精细化营销;中国移动建立网络资源的大数据系统,改进对缓槐用户专线提供的速度,建立微营销大数据分析系统,实现定向精确姿猛营销、差异化的合作伙伴后向能力保障和智慧城市管理。

C. 大数据时代下 运营商市场战略分析

大数据时代下 运营商市场战略分析

大数据一直是近几年的热门关键词,伴随着移动互联网、智能终端、云计算、物联网技术的发展,呈现爆炸式额增长,数据密度空前提高,大数据时代的波澜壮阔正在逐步的开展,大数据的未来上升空间空前巨大。

相较于零售业、金融证券、政府管理、制造业、医疗服务也等行业造大数据应用的尝试,电信业作为数据金矿的拥有者,具有明显的数据优势和研发基础,在面临“管道化”的当前形势下,大数据无疑成为了运营商转型的一把利刃,面对残酷的互联网化竞争提供差异化的手段。下面我们将从大数据对运营商市场工作的影响入手,来提出国内运营商大数据时代战略市场工作转型建议,以供运营商实践参考。

【大数据对运营商市场工作的影响】

调查结果显示,全球120家运营商中约有48%的运营商正在实施大数据业务,大数据业务成本平均占到运营商总IT预算的10%,并且在未来五年内将升至23%左右,成为运营商的一项战略性优势。大数据应用的主要需求包括商机挖掘、竞争情报、客户维系、收入提升、减少开支、改善运营管理等,其中有50%以上是和市场前端工作在开展息息相关。下面主要从电信运营商职能划分角度来的分析大数据对运营商市场工作的影响。

一、影响产品研发的模式

电信产品的研发更多的是以技术驱动和竞争驱动为主,电信运营商基于客户需求的研发驱动一直弱于互联网企业。

设计:分成两各模块,中间加一条竖线隔开

在大数据的时代下,一方面终端的使用偏好,如品牌、应用等可以得以分析识别,有助于电信定制机的品牌选择和功能优化;

另一方面新业务的使用反馈,包括投诉等,可以帮助新业务功能的优化或者新产品的开发。

综上我们可以看出,大数据时代为产品研发改革提供基础,以客户需求为导向的迭代开发时代即将到来。

二、影响市场营销的模式

用户画像:指基于用户终端信息、位置信息、通话行为、手机上网行为轨迹等丰富的数据,为每个用户打上人口统计学特征、消费行为、上网行为和兴趣爱好标签,并且借助数据挖掘技术进行用户的分群,完善用户的360度画像,帮助运营商深入的去了解用户的行为偏好的需求特征等;

关系链研究:指通过分析用户的通讯录、通话行为、网络社交行为以及用户资料等数据,开展交往圈子的分析与研究,并且识别圈子中的主要影响人物以及影像链等。

基于用户画像和关系链的研究可以建立用户与业务、资费套餐、终端类型、在运用网络的精准匹配上,在推送渠道、推送时机、推送方式上满足用户的需求,事先精准化营销。

三、影响渠道运营的模式

相比较而言,电子渠道比传统的实体渠道更容易记录潜在用户的消费行为、特征、路径,可以提供互联网的大量行为数据,因此大数据时代下,运营商的电子渠道的发展将会进一步的扩大。电子渠道除了销售、服务职能之外,后续将逐步的承担“大数据资源池”的重要角色。

另外,线上线下渠道协同是电信渠道体系转型的蛀牙方向,而线上线下渠道有效协同的关键诀窍就是从用户的需求出发,制定合理的线上线下渠道触点界面,为客户提供无缝全面的渠道服务,而要实现这一目标也需要大数据技术的支撑,通过现有数据挖掘不同类型用户的渠道使用路径。

四、影响客户服务的模式

目前,电信行业一直都在强调用户体验,但是却并不了解用户的真正需求,使得体验二字束之高阁。大数据时代要想提供有效路径,必须利用大数据挖掘技术,来书别用户的特征,以及用户的消费习惯,及时的消费提醒、偏好产品的发送、维系精准跟踪等个性化服务。

由此可见,大数据将为移动互联网带来全新的改革,给用户服务带来极大的想象空间和无限的发展前景,开展针对用户消费数据的分析评估,可以帮助改善运营商自身的服务质量。

五、丰富产品提供的内容

大数据可以作为对外销售的产品也已经成为了全球的共识。为了确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造全新的价值体系。目前,大数据对外商业化的产品形态主要包括市场洞察报告、精准营销广告、数据监测、决策支撑等多种方式。目前,国外运营商纷纷尝试现有的数据,进行整合处理,来提供给第三方以求得全新的收益。

例如:西班牙电信,推出了“智慧足迹”,基于完全匿名和聚合的移动网络数据,帮助零售商分析顾客来源和各大商铺、展位的人流情况以及消费者特征和消费能力,并将洞察结果面向政企客户提供客流量的分析和零售店面选址的服务,目前该模式已经在国内WiFi运营领域广泛应用。

【对国内运营商战略市场工作转型建议】

一、战略上重视,组织上保证

虽然电信运营商在数据资源方面具有天然的优势,但必须承认在大数据运营方面,不管是平台研发能力还是运营能力,电信运营商的优势并不明显,和互联网企业以及一些专门做大数据平台的专业公司相比,存在较为明显的劣势。

因此,如果要做成大数据,研究院认为:

1、要公司层面足够重视,作为领导的一把手来抓;

2、大数据运营团队必须独立运作,独立核算,并辅以灵活的机制,否则新事物很难在传统的电信体制下快速孵化;

3、光靠自己的力量还不够,怎么样能够找到优势互补的合作单位协同研发运营才是大数据在电信内容发芽并壮大的关键。

二、内外兼修,市场化经营

大数据应用分为对内和对外两种形态。不鼓励过分重内,也不建议过分重外。连内部都做不好,对外营销没有说服力;只对内不对外,在不存在竞争的情况下,很难将一个产品做好做优,胎死腹中的可能性不是没有。

因此,研究院建议电信运营商在推进大数据工作时,能够内外兼修,从外部了解需求,从内部积累能力,通过完全市场化结算的方式在尽量短的时间能够形成显性效益,进而促进更多的资源投入和更快的成长。

三、循序渐进,以点带面

从目前阶段看,虽然说大数据的发展空间很大,但毕竟电信的能力和资源有限,建议从小案例做起,可选择电信数据资源优势明显,客户关系扎实、付费意愿和数据意愿共享的行业做起,通过成功标杆案例的构建,寻求规模化的复制。

从上面提及的五种产品形态看,精准营销相对容易实现,运营商可从精准营销切入,并逐步扩大形态范围。

总评:大数据对运营商而言,是蓝海,是解药,但是否能真正发挥作用,还需运营商的实践。研究院建议运营商们还是循序渐进,结合自身优势,选择合适的商业模式切入,早日打开大数据的“金矿”之门。

以上是小编为大家分享的关于大数据时代下 运营商市场战略分析的相关内容,更多信息可以关注环球青藤分享更多干货

D. 运营商迎来大数据时代 管理和分析是大挑战

运营商迎来大数据时代:管理和分析是大挑战
大数据不是新的概念,在移动互联网发展起来后,数据增长速度加快,整个产业压力突出,传统数据库技术已无法满足运营商对大数据充分利用的需求的背景下,大数据成为近年来的热点。对运营商来说,数据爆发性增长后,带来的收入并未改观,因此,运营商面临着数据流的附加值被互联网公司赚走的挑战,同时面临沦为管道化的尴尬,如何利用好运营商手中的大数据,成为需要面对的问题。

运营商面临数据管理和分析挑战
易观国际分析师黄萌表示,大数据发展时间不长,随着云概念和3G的深入发展,运营商数据压力增大,同时IDC扩容,偏向以存储为主的云服务业务。
运营商新业务的涌现,导致数据暴增。信令数据、互联网数据其规模已经达到数百TB,甚至PB规模。此外,据EMC数据计算事业部大中国区总经理刘伟光介绍,数据的价值除了与数据规模相关,还与数据处理周期成正比关系。也就是,数据处理的速度越快、越及时,其价值越大,发挥的效能越大。而除了分析传统结构化数据外,随着新增值业务拓展,运营商对实现跨结构化、半结构化、非结构化数据进行高效分析有着愈发强烈的诉求。
而运营商面对海量数据和数据结构的变化,不仅是成本,还有管理和分析的挑战。黄萌认为,运营商相对互联网企业有优势,具有雄厚的资源和庞大的IDC集群,拥有电信级的运营网络,具有保证大数据实时、畅通传送的能力,同时具有网络资源和运营能力。而相对互联网企业劣势的地方在于上层应用,尤其是在Saas层面。
大数据有待深挖掘
南京邮电大学卢扞华教授认为,大数据时代主要是对技术的综合运用和对数据的深度挖掘。对运营商来说,大数据带来的机会大于挑战。运营商有自己的网络,积累了大量非常有价值的数据,可以进行客户分析。利用网络收集数据,对运营商运营方式的改变是个机会。
真正实现精准化营销和精细化运营的秘诀就在于如何利用好运营商手中的大数据。海量话单、信令、互联网数据本身就是一笔宝贵的财富。利用好这些数据,充分、及时地对这些数据进行深度分析挖掘,不仅可以进一步提升服务质量、提高客户忠诚度、挖掘新商机、增加收入,还可以通过优化资源配置、减少浪费来提升运营效率,有效降低运营成本。
此外,电信运营商信息化实施比较早,本身大数据积累的也多,例如以前的日志信息,包含用户信息和设备信息,可以进行挖掘使用。运营商越来越重视对数据的挖掘,可以获得未来开发业务和开拓市场的机会。另一方面,分析结果不会涉及隐私,管理好了可以更少产生法律纠纷。此外,电信运营商通过数据分析还可以提供面向社会的信息应用。[page]
卢扞华教授认为,大数据是对技术的综合应用,要有开放、融合、服务和创新的心态,大数据可以为运营商创造另一片天地。例如一个大数据的应用通过收集数据,对大量图片进行分析,最终形成一个场景图。这就是对数据分析、统计技术、图片处理技术和人工智能合成技术的综合运用。据悉,南邮正在开发这方面的应用。
据了解,目前中国三个电信运营商在业务支撑领域、网管IT支撑领域包括增值业务领域,已经随着市场的需求诞生了很多新的大数据实时分析的项目。目前,大数据主要应用在运营商的"信令"系统分析上,此外,运营商还可以通过"用户行为分析"系统,进行精准营销。运营商还提供IDC服务,通过"云"中心的方式为互联网企业提供服务。
对公市场前景巨大
黄萌表示,单批、单次数据爆发性增长,对其进行的可知的时间处理能力是关键点。对运营商来说,IDC服务在对政府和高校、企业等非个人业务市场上前景巨大;对于个人业务,运营商刚开始做,由于回收投资较慢、离散性强,现在主要是针对个人精准运营的业务。智能管道方面,运营商正在基于大数据平台进行流量分析,但是落地的项目少。
据介绍,运营商大数据战略还不太明晰,但是有了一些建树。去年十月份中国移动开始做的"大云"、数据管理系统和平台,覆盖很多园区、学校,2.0技术比1.0技术大幅提升;中国联通2010年开始对企业提供IDC服务,截至目前,营收超20亿元(人民币);中国电信2011年成立云公司,尚无实体业务,IDC托管规模相对联通小很多。
据电信专家韩少敏介绍,数据类型分为非结构化数据和媒体流,运营商开展大数据分析面对的问题主要是硬件能力。数据一方面是纵向关系,比如"信令",采用水平分隔数据的方式就可以,按照时间段分别存储分析。此外还有横向关系,需要垂直分隔,由于查询复杂,需要引入真正的算法去做。韩少敏认为,目前掌握这方面能力的人才奇缺。并且,运营商在分布式数据库方面少有进展。而从应用角度,大数据一方面用作于统计分析,建数据仓库,其次还有非文本查询,现在大多数数据库公司可以做以上两个方面,而对于关系型数据共享层面,目前还做不了。
中国联通在IDC服务方面走在三家运营商前面,其面向企业提供服务,目前通过按关系水平分隔的方式,将数据集中起来,但是一旦到关系型数据的共享层面,因为没有数据模型,找不到底层的数据库血缘,目前的方案无法解决问题。但是运营商目前做这些数据积累,可以为将来发展提供机会。
刘伟光认为,对于运营商来说,大数据等于大价值。对于IT企业,大数据等于大机遇。通信行业需求从来都是IT技术发展的重要推动力,谁能得到通信行业客户的认可,必然会在大数据领域大有作为,进而成为大数据解决方案的领先者、领导者。

E. 电信运营商转型发展如何应用大数据

因此,运营商拥有的是更加名副其实的大数据,如果将这些数据加以应用,必将为运营商带来巨大的商业价值。 大数据为电信行业带来巨大变化 Gartner预测到2020年大约75%的企业都将大数据分析融入其日常经营决策中,未来大数据分析将成为企业经营的一项基本能力。 根据Sysbase的统计分析,电信行业通过在运营中应用大数据,人均产值提升了17%,而在行业价值贡献方面更是排在了所有行业的首位。在电信行业收入增幅日趋放缓的今天,这样的产值增幅无疑是鼓舞人心的。 通过构建行业大数据分析系统让运营商具备了大数据分析处理的技能,但这只是在大数据时代获得成功的基础;运营商还需要从企业战略和经营思维层面改变,发现新的机遇和模式并付诸实施,才能真正将自己所掌握的大数据资产和大数据技能转变为企业价值。 大数据运用的四个类型 运营商运用大数据主要有四个类型。首先,在市场层面,运营商可以利用大数据对自身的产品进行服务,通过大数据分析用户行为,改进产品设计,并通过用户偏好分析,及时、准确进行业务推荐,强化客户关怀,这样就可以不断改善用户体验,增加用户的信息消费以及对运营商的粘稠度;其次,在网络层面,可以通过大数据分析网络的流量、流向变化趋势,及时调整资源配置,同时还可以分析网络日志,进行全网络优化,不断提升网络质量和网络利用率;第三,在企业经营层面,可以通过业务、资源、财务等各类数据的综合分析,快速准确地确定公司经营管理和市场竞争策略;第四,在业务创新层面,可以在确保用户隐私不被侵犯的前提下,对数据进行深度加工,对外提供信息服务,为企业创造新的价值。这样,大数据将助力运营商实现从网络服务提供商,向信息服务提供商的转变。 由于大数据产业具有强烈互联网特征,现有的运营模式很难帮助运营商实现大数据产业的迅速发展,这是因为,对于大数据产业,运营商传统的金字塔式的组织结构已经过时,传统架构的信息系统及组织架构已无法应对海量数据和创新型应用,那种由上而下的运营模式无法更接近用户的需求,显然已经阻碍运营商自身大数据产业的纵深发展。根据市场需求,运营商必须全面转向以客户和消费者为中心的运营体系,重新梳理企业的经营模式和组织架构,这就是模式的创新,大数据产业发展要求运营商实现管理经营和市场信息系统完美对接,新型大数据应用必将助力运营商向信息服务模式转型。 面向大数据时代,运营商的及时转型成为必然,否则将有被互联网企业超越的可能性。理论上讲,运营商拥有颇具优势的大数据资源并不是完全不可替代,例如,用户的位置信息就可以通过多种APP应用获得,用户的网络使用信息也可以通过多家互联网企业合作获取,互联网企业通过泛互联网化收集更多的大数据信息。另一方面,多行业的垂直整合将成为趋势,在数据应用层面,行业企业通过多种手段搜集大量的用户数据,将更贴近用户,更理解用户,为其提供更适当的服务,大数据将成为资产更具有战略意义,各个行业及单位都在关注大数据。 根据大数据数量大、时效性要求高、数据种类及来源多样化等特征,运营商首先获取更多有用的大数据资源,例如,很多的网络运行信息,包含大量有价值的用户行为和位置信息,这样的信息可以加以利用。有了资源应该加以利用,避免大数据资源的浪费。事实上,一些运营商拥有大数据这样的金山,却似乎无奈坐看并逐渐沦为管道,在不断强化传统市场的效益考核,却好像在忽视大数据价值的流失。 直面数据分析挑战 当然,海量数据的出现、数据结构的改变,也给运营商的大数据管理及分析带来了挑战,一是由于多种业务的发展、市场需求的变化和网络规模的扩大使得运营商大数据迅速的增加,这增加了运营商大数据存储和处理的难度,使得现有数据仓库无法线性扩容,这表明传统的数据仓库无法有效存储日益增长的业务数据;二是由于新型大数据服务不同于传统通信业务分析特点,需要对内容等非结构化、大容量信息进行多用户、多应用、实时有效的分析,传统的架构和数据仓库处理已不能满足新的信息服务需求。因此,运营商需要建立新型大数据中心,来存储、分析和处理海量数据,必要的投入是必不可少的。 大数据产业出现和发展是现代信息技术与互联网时代海量信息的发展到一定阶段的必然结果,大数据应用将是海量数据、现代信息技术与各种社会应用的一次化学反应,必将对当今社会的信息技术、商业模式和相关的法律法规产生深刻的变革。

F. 大数据时代,电信运营商如何“点石成金”

大数据风起云涌。对于大数据中蕴含的商业价值,有人形象地将其称为“数据钻出石油”。充分利用大数据技术,从海量堆积的交互数据中发现带有趋势性、前瞻性的信息,能够孕育出惊人的社会价值和商业价值。 然而,即便放眼全球,我们看到的大数据应用案例还鲜有电信运营商的身影,与互联网领域的诸多探索相比,他们略显平淡,大规模钻出“石油”就更谈不上了。面对这种情况,相信很多业内人士都在思考这些问题:大数据究竟会给电信运营商带来哪些新机遇?大数据时代下的电信运营商面临什么样的挑战?电信运营商今后将如何运筹帷幄、构建面向智慧运营的大数据体系? 从4W到4V: 运营商拥有先天优势 根据信息爆炸时代的特征,业界将大数据总结为“4V”体量(Volume)、多样(Variety)、速度(Velocity)和价值(Value)。体量意味着海量的数据,多样是指数据类型繁多,速度主要指数据被创建和移动的速度快,而价值是处理数据的目标、从各种形式呈现的复杂数据中挖掘有用的东西。 电信运营商作为信息服务的基础服务商,其提供的服务用一个简单的词来概括就是“4W”Who、When、Where、What,在使用服务时,哪些用户、需要联系谁、什么时间、处于什么位置、做些什么,这些信息无疑都需要经过运营商的管道。 对比“4V”和“4W”,我们可以发现两者之间的契合之处,通信用户数以亿计的基数保证了数据的海量和多样性,通信网络的实时承载保证了数据的速度,更重要的是,运营商还可以搜集到用户位置、大体收入等有价值的数据,进而为精准营销提供参考。因此,运营商在掌握用户行为数据方面具有先天优势,这是一般互联网厂商所望尘莫及的。随着智能手机和高速网络的普及,运营商能够获得的用户行为数据还将更为丰富。 数据科学家、《大数据时代》的作者维克托·迈尔·舍恩伯格表示,在大数据时代,拥有数据的公司无疑将取得巨大的成功。因为他们具有洞察力,大数据会提供他们全新的洞察力。从这个角度看,运营商无疑坐拥一座天然的宝藏,但是能否挖掘、提炼出这些矿藏中的价值将决定运营商能否把握住大数据带来的机遇。 由大入微: 构建智慧的大数据体系 由微入大易,由大入微难。对电信运营商来说,将无数具体而微的信息汇集起来其实并不难,真正的难点在于如何点石成金,如何“驾驭”这纷繁复杂的数据,如何存储、整合、分析、汲取出真正有价值的内容,并创造性地使用它。 大流量并不一定带来大数据,电信运营商获得的数据中大部分都是“桀骜不驯”的它们被称为非结构数据,这种数据本身并没有太多价值。目前,电信运营商在大数据方面的探索还仅仅处于起步阶段:一方面,用户的行为、轨迹、状态等数据散在网络各个环节中,形成信息资产的成本非常高;另一方面,运营商大数据挖掘手段还很不充足,如何从庞大的数据中分析出有价值的信息并找到合理的商业模式,提高“驾驭”数据的能力,成为电信运营商面临的挑战。 那么电信运营商该如何去构建面向智慧运营的大数据体系? 对电信运营商来说,可以利用大数据实现自身的精确化营销和精细化运营,在这方面,国内已经有运营商作出了尝试。使用Hadoop等大数据处理工具,通过分析用户的兴趣图谱、关系图谱、行为定向,再结合自身的业务推出量身定制的服务,如针对出差较多的商务人士,向他们推荐漫游套餐;对爱好移动上网的用户,向他们提供流量包……这本身就属于大数据应用的范畴,而且,运营商通过对业务资源和财务等数据的综合分析,可以让决策层进行快速的市场决策,从而抢占市场制高点。 未来,运营商还可以拓展第三方模式,加大开放合作力度,与产业链各个环节开展合作,加快对大数据经营商业模式的探索,不断释放其管道中庞大数据的潜在力量,将数据转化成“真金白银”。在这方面,国外电信运营商的探索给我们提供了思路。西班牙电信去年成立了名为“动态洞察”的大数据业务部门,它可以为客户提供数据分析打包服务,帮助客户把握重大变化趋势。法国电信的移动业务部门也开始尝试挖掘大数据的潜在价值,比如,它承建了一个法国高速公路数据监测项目,对每天产生的几百万条记录进行分析,从而提高了道路通畅率。更具颠覆性的是Verizon,其数据业务的盈利收入在其整个业务中占比非常高,其中就有联合第三方机构对其用户群进行大数据分析,再将有价值的信息提供给政府或企业获取的额外价值。 分析人士指出,数据化程度越高的行业,其大数据的应用场景越多,能够带来的价值也就越高。数据重构商业,虽然国内在这方面的探索还未形成规模,但对运营商来说却代表着前进的方向凭借自身优势,将数据分析包装为服务,提供给政府、商场、银行等第三方机构进行决策,从而实现商业模式的创新,并在与互联网企业的竞争中占得先机。不过,需要明确的是,这里的数据包装并不是非法采集用户个人信息,更不是贩卖用户个性化隐私,真正的大数据应该是用加工实现增值,用分析来指导决策,而非原始数据信息本身的低层次滥用。

G. 运营商发展大数据的核心价值在于商业化

运营商发展大数据的核心价值在于商业化
近年来,电信运营商利润率增幅放缓甚至下降,传统话音业务收入增长乏力,日趋边缘化、管道化;数据业务占比迅速增长,但量收的剪刀差持续扩大,投入多回报少。
在运营商转型路上,大数据技术的深入应用与商业模式的开发大有可为,可以说是运营商规避同质化竞争,打造智能数据管道,寻找差异化经营“蓝海”的必由之路。大数据的技术架构寻求高性能与低成本的统一,可以降低电信运营商庞大的IT资本开支压力。大数据的商业应用促使电信运营商从单纯提供网络资源、前向收费方式转变为基于网络资源和依据海量数据资源提供服务的灵活多样的混合模式,是一种新的商业模式。
国内运营商大数据应用受限
国内电信运营商在大数据应用方面主要受到了以下方面的限制。
第一,数据采集散乱、深度不足:电信运营商拥有海量数据的来源,但采集渠道散乱,通常分级、分地区、分系统建设,整体规划不足,数据标准化程度低,汇聚困难,无法形成有效的数据资产。
第二,数据分析能力不足:电信运营商建有以数据仓库为核心的经营分析系统,通常采用小型机加高性能存储架构建设,针对传统话单日志等结构化数据设计,还不具备非结构化数据与流数据的分析处理能力。
第三,数据商业应用不足:电信运营商大量数据尚没有充分发掘数据应有的价值,智能管道的建设正处在初期阶段。现有分析系统仅对内部提供服务,缺乏对外数据开放平台,大量数据未能有效进行商业利用。
电信运营商大数据发展探析
(1)大数据的政策支撑
电信运营商应积极寻求政府的支持,推动政府为大数据产业发展提供积极的政策支撑与引导、对关键技术的研发提供专项财政资金支持、对重点工程项目的实施提供支持与保障。电信运营商应高度重视大数据信息安全,推动政府部门牵头启动大数据立法,解决大数据信息权属与隐私保护问题;制定大数据技术标准与运营标准,规范大数据安全体系。通过政策支撑保障大数据产业的可持续发展。
2012年10月,中国计算机学会和中国通信学会均成立了大数据专家委员会,从行业学会的层面来组织和推动大数据的相关产学研用活动。运营商可以依托该平台推动企业内部大数据的发展。
(2)大数据技术架构与算法的研发
根据2012年美国市场调查咨询公司(Gartner)发布的新兴技术曲线,大数据技术正处于“期望膨胀期”,距离真正成熟尚需2~5年。电信运营商应抓住机遇加强技术研发,在开源技术的基础上,发展适合运营商的大数据技术;同时应积极对技术标准做出贡献,掌握技术主动权。在技术的拓展可主要集中在三个方面:(a)大数据的采集与传输技术。采集技术是指基于智能管道和物联网的大数据获取技术和算法;大数据传输技术研究应注重海量数据传输的安全可靠性,解决调度与控制问题。(b)大数据的存储与分析技术。存储技术主要指面向海量数据文件的有效存储与读取能力、大数据的新型表示方法和去冗降噪算法;分析技术的拓展方向应包括数据可用性和可计算性,计算复杂性问题,研究求解算法,进行高效处理等。(c)大数据的隐私安全技术。在大数据时代,如何保护用户隐私安全不仅是法规层面需要解决的问题,也是电信运营商在技术层面亟待解决的问题。
(3)大数据支撑运营中心
运营商要充分发挥大数据的价值,首要条件是具备采集、融合、存储、分析海量数据的能力。电信运营商可以在现有经分系统或数据仓库的基础上,针对目前数据采集散乱、采集深度不足、分析能力不足的问题,构建数据集中、平台统一的省级或全国级大数据支撑运营中心,为大数据的应用与商业化提供精确支撑。大数据支撑运营中心可以设置如下逻辑架构。
数据采集层:通过建设数据采集聚合网关,汇聚跨地区、跨系统的采集的丰富数据源。
数据融合层:建设海量结构化数据、非结构化数据以及流数据处理能力,建立数据标准化体系,进行统一处理和存储。
数据应用层:通过构建不同的数据挖掘与分析模型,融合结构化数据,形成数据仓库,对外提供统一服务能力。
资源管理层:提供统一监控、资源管理与运营等功能。
(4)大数据应用与商业化
大数据应用与商业化是大数据发展的核心价值与落脚点。电信运营商拥有极其丰富的数据资源,相比互联网公司更具天然优势。对大数据进行全面、深入、实时的分析和应用,以客户体验为核心发展流量经营,是电信运营商应对新形势下挑战避免沦为哑管道的关键。
通过大数据助力业务创新,提供市场营销与客户服务的精准支撑能力。在互联网社会中,拥有数据,就拥有了了解用户行为的基础,从足够多数据的叠加中可以探知一个人的过往行为,同时可以精准的预测出其未来的需求。通过对海量的行为和内容数据处理,可以获得用户的时间、位置、业务、终端等基础信息,分析出用户的身份、兴趣、社交圈等,这样可以开发出很多新的增值业务。
通过大数据提升企业管理水平,提供透明管控与科学运营的精准支撑能力。运营商可以融合市场、财务、网络等多个系统产生的海量数据,将相关联的数据进行处理分析,有利于运营商更全面、更准确、更快速地获得企业运营数据,为投资决策和网络优化方案提供更多视角。
通过大数据发展开放合作平台,开辟新的商业模式,助力电信运营商转型。电信运营商可以通过大数据支撑运营中心发展开放合作平台,为广大开发者提供海量数据资源,发挥大数据的价值,将数据作为资源,进而提升的运营商利润增长点。
大数据技术的发展及规模商用,使得电信运营商能够充分挖掘管道内容,创造新的业务增长模式,应对“去电信化”的趋势,转型为综合信息服务提供商,成为未来大数据时代中最大的赢家。但在推动商业化应用的过程中还应全面认识大数据的内涵,避免陷入单纯的计算能力和存储能力建设,要清醒认识大数据发展的成熟度,客观分析用户的应用需求,避免过度建设

阅读全文

与大数据时代运营商相关的资料

热点内容
存储路径无权限或文件名不合规 浏览:496
iphone4s怎么删除文件 浏览:545
中公教师文件名叫什么 浏览:844
word2010怎么从任意页设置页码 浏览:622
cass怎么校正数据 浏览:612
linux查看所有管理员 浏览:2
u盘文件解压缩失败如何修复 浏览:566
黑苹果怎么显卡才4m 浏览:270
方程式0day图形化工具 浏览:961
电脑装文件很慢 浏览:958
网络标号怎么用 浏览:352
会议上文件读好后要说什么 浏览:783
安装压缩文件office 浏览:417
2014年网络营销大事件 浏览:186
首页全屏安装代码 浏览:39
党规党纪指的哪些文件 浏览:995
windows编程图形界面用什么设置 浏览:266
deb文件安装路径 浏览:540
飞鸽传送提示文件名太长 浏览:486
日服文件名 浏览:648

友情链接