导航:首页 > 网络数据 > 如何提高大数据查询

如何提高大数据查询

发布时间:2024-07-10 00:47:15

A. 数据库的多表大数据查询应如何优化

数据库的多表大数据查询应如何优化?

1.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。优化器简悉将无法通过索引来确定将要命中的行数,因此需要搜索该表的所有行。
3.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
4.in 和 not in 也要慎用,因为IN会使系统无法使用索引,而只能直接搜索表中的数据。如:
select id from t where num in(1,2,3)
对于连续的数值,能用 beeen 就不要用 in 了:
select id from t where num beeen 1 and 3
5.尽量避免在索引过的字符数据中,使用非打头字母搜索。这也使得引擎无法利用索引。
见如下例子:
SELECT * FROM T1 WHERE NAME LIKE ‘%L%’
SELECT * FROM T1 WHERE SUBSTING(NAME,2,1)=’L’
SELECT * FROM T1 WHERE NAME LIKE ‘L%’
即使NAME字段建有索引,前两个查询依然无法利用索引完成加快操作,引擎不得不对全表所有数据逐条操作来完成任务。而第三个查询能够使用索引来加快操作。
6.必要时强制查询优化器使用某个索引,如在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未散罩知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num
7.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
SELECT * FROM T1 WHERE F1/2=100
应改为:
SELECT * FROM T1 WHERE F1=100*2
SELECT * FROM RECORD WHERE SUBSTRING(CARD_NO,1,4)=’5378’
应改为:
SELECT * FROM RECORD WHERE CARD_NO LIKE ‘5378%’
SELECT member_number, first_name, last_name FROM members
WHERE DATEDIFF(yy,datofbirth,GETDATE()) > 21
应改为:
SELECT member_number, first_name, last_name FROM members
WHERE dateofbirth < DATEADD(yy,-21,GETDATE())
即:任何对列的操作都将导致表扫描,它包括数据库函数、计算表达式等等,查询时要尽可能将操作移至等号右边。
8.应尽量避免在where子句中对字段进行冲咐闹函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,񟭅-11-30')=0--‘2005-11-30’生成的id
应改为:
select id from t where name like 'abc%'
select id from t where createdate>=񟭅-11-30' and createdate<񟭅-12-1'
9.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。
10.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。
11.很多时候用 exists是一个好的选择:
elect num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)
SELECT SUM(T1.C1)FROM T1 WHERE(
(SELECT COUNT(*)FROM T2 WHERE T2.C2=T1.C2>0)
SELECT SUM(T1.C1) FROM T1WHERE EXISTS(
SELECT * FROM T2 WHERE T2.C2=T1.C2)
两者产生相同的结果,但是后者的效率显然要高于前者。因为后者不会产生大量锁定的表扫描或是索引扫描。

Java怎么把数据库的数据查询

Statement stmt = null;
ResultSet rs = null;
String query = "select 列名 from 表名 where id=11 and fname='xx' order by 列名 desc limit 1";
stmt = conn.createStatement();
rs = stmt.executeQuery(query);
if (rs.next()) {
result = rs.getInt("列名");
}

数据库表内数据查询

楼上的 拼写错误,我来修正 ^^
select count(*) from 表名

如何查询大数据库数据存在

传统数据库处理大数据很困难吧,不建议使用传统数据库来处理大数据。
建议研究下,Hadoop,Hive等,可处理大数据。
如果有预算,可以使用一些商业大数据产品,国内的譬如永洪科技的大数据BI产品,不仅能高性能处理大数据,还可做数据分析。
当然如果是简单的查询,传统数据库如果做好索引,可能可以提高性能。

如何实现不同数据库的数据查询分页

有两种方法
方法1:
select 100 * from tbllendlist where fldserialNo not in ( select 300100 fldserialNo from tbllendlist order by fldserialNo ) order by fldserialNo
方法2:
SELECT TOP 100 * FROM tbllendlist WHERE (fldserialNo > (SELECT MAX(fldserialNo) FROM (SELECT TOP 300100 fldserialNo FROM tbllendlist ORDER BY fldserialNo) AS T)) ORDER BY fldserialNo

如何提高Oracle数据库数据查询的命中率

影响命中率的因素有四种:字典表活动、临时段活动、回滚段活动、表扫描, 应用DBA可以对这四种因素进行分析,找出数据库命中率低的症结所在。 1)字典表活动 当一个SQL语句第一次到达Oracle内核时数据库对SQL语句进行分析,包含在查询中的数据字典对象被分解,产生SQL执行路径。如果SQL语句指向一个不在SGA中的对象?表或视图,Oracle执行SQL语句到数据典中查询有关对象的信息。数据块从数据字典表被读取到SGA的数据缓存中。由于每个数据字典都很小,因此,我们可缓存这些表以提高对这些表的命中率。但是由于数据字典表的数据块在SGA中占据空间,当增加全部的命中率时,它们会降低表数据块的可用空间, 所以若查询所需的时间字典信息已经在SGA缓存中,那么就没有必要递归调用。 2)临时段的活动 当用户执行一个需要排序的查询时,Oracle设法对内存中排序区内的所有行进行排序,排序区的大小由数据库的init.ora文件的数确定。如果排序区域不够大,数据库就会在排序操作期间开辟临时段。临时段会人为地降低OLTP(online transaction processing)应用命中率,也会降低查询进行排序的性能。如果能在内存中完成全部排序操作,就可以消除向临时段写数据的开销。所以应将SORT_AREA_SIZE设置得足够大,以避免对临时段的需要。这个参数的具体调整方法是:查询相关数据,以确定这个参数的调整。 select * from v$sysstat where name='sorts(disk)'or name='sorts(memory); 大部分排序是在内存中进行的,但还有小部分发生在临时段, 需要调整 值,查看init.ora文件的 SORT_AREA_SIZE值,参数为:SORT_AREA_SIZE=65536;将其调整到SORT_AREA_SIZE=131072、这个值调整后,重启ORACLE数据库即可生效。 3)回滚段的活动 回滚段活动分为回滚活动和回滚段头活动。对回滚段头块的访问会降低应用的命中率, 对OLTP系统命中率的影响最大。为确认是否因为回滚段影响了命中率,可以查看监控输出报表中的“数据块相容性读一重写记录应用” 的统计值,这些统计值是用来确定用户从回滚段中访问数据的发生次数。 4)表扫描 通过大扫描读得的块在数据块缓存中不会保持很长时间, 因此表扫描会降低命中率。为了避免不必要的全表扫描,首先是根据需要建立索引,合理的索引设计要建立人对各种查询的分析和预测上,笔者会在SQL优化中详细谈及;其次是将经常用到的表放在内存中,以降低磁盘读写次数。

如何优化数据库提高数据库的效率

1. SQL优化的原则是:将一次操作需要读取的BLOCK数减到最低,即在最短的时间达到最大的数据吞吐量。
调整不良SQL通常可以从以下几点切入:
? 检查不良的SQL,考虑其写法是否还有可优化内容
? 检查子查询 考虑SQL子查询是否可以用简单连接的方式进行重新书写
? 检查优化索引的使用
? 考虑数据库的优化器
2. 避免出现SELECT * FROM table 语句,要明确查出的字段。
3. 在一个SQL语句中,如果一个where条件过滤的数据库记录越多,定位越准确,则该where条件越应该前移。
4. 查询时尽可能使用索引覆盖。即对SELECT的字段建立复合索引,这样查询时只进行索引扫描,不读取数据块。
5. 在判断有无符合条件的记录时建议不要用SELECT COUNT (*)和select 1 语句。
6. 使用内层限定原则,在拼写SQL语句时,将查询条件分解、分类,并尽量在SQL语句的最里层进行限定,以减少数据的处理量。
7. 应绝对避免在order by子句中使用表达式。
8. 如果需要从关联表读数据,关联的表一般不要超过7个。
9. 小心使用 IN 和 OR,需要注意In集合中的数据量。建议集合中的数据不超过200个。
10. <> 用 < 、 > 代替,>用>=代替,<用<=代替,这样可以有效的利用索引。
11. 在查询时尽量减少对多余数据的读取包括多余的列与多余的行。
12. 对于复合索引要注意,例如在建立复合索引时列的顺序是F1,F2,F3,则在where或order by子句中这些字段出现的顺序要与建立索引时的字段顺序一致,且必须包含第一列。只能是F1或F1,F2或F1,F2,F3。否则不会用到该索引。
13. 多表关联查询时,写法必须遵循以下原则,这样做有利于建立索引,提高查询效率。格式如下select sum(table1.je) from table1 table1, table2 table2, table3 table3 where (table1的等值条件(=)) and (table1的非等值条件) and (table2与table1的关联条件) and (table2的等值条件) and (table2的非等值条件) and (table3与table2的关联条件) and (table3的等值条件) and (table3的非等值条件)。
注:关于多表查询时from 后面表的出现顺序对效率的影响还有待研究。
14. 子查询问题。对于能用连接方式或者视图方式实现的功能,不要用子查询。例如:select name from customer where customer_id in ( select customer_id from order where money>1000)。应该用如下语句代替:select name from customer inner join order on customer.customer_id=order.customer_id where order.money>100。
15. 在WHERE 子句中,避免对列的四则运算,特别是where 条件的左边,严禁使用运算与函数对列进行处理。比如有些地方 substring 可以用like代替。
16. 如果在语句中有not in(in)操作,应考虑用not exists(exists)来重写,最好的办法是使用外连接实现。
17. 对一个业务过程的处理,应该使事物的开始与结束之间的时间间隔越短越好,原则上做到数据库的读操作在前面完成,数据库写操作在后面完成,避免交叉。
18. 请小心不要对过多的列使用列函数和order by,group by等,谨慎使用disti软件开发t。
19. 用union all 代替 union,数据库执行union操作,首先先分别执行union两端的查询,将其放在临时表中,然后在对其进行排序,过滤重复的记录。
当已知的业务逻辑决定query A和query B中不会有重复记录时,应该用union all代替union,以提高查询效率。
数据更新的效率
1. 在一个事物中,对同一个表的多个insert语句应该集中在一起执行。
2. 在一个业务过程中,尽量的使insert,update,delete语句在业务结束前执行,以减少死锁的可能性。
数据库物理规划的效率
为了避免I/O的冲突,我们在设计数据库物理规划时应该遵循几条基本的原则(以ORACLE举例):
?? table和index分离:table和index应该分别放在不同的tablespace中。
?? Rollback Segment的分离:Rollback Segment应该放在独立的Tablespace中。
?? System Tablespace的分离:System Tablespace中不允许放置任何用户的object。(mssql中primary filegroup中不允许放置任何用户的object)
?? Temp Tablesace的分离:建立单独的Temp Tablespace,并为每个user指定default Temp Tablespace
??避免碎片:但segment中出现大量的碎片时,会导致读数据时需要访问的block数量的增加。对经常发生DML操作的segemeng来说,碎片是不能完全避免的。所以,我们应该将经常做DML操作的表和很少发生变化的表分离在不同的Tablespace中。
当我们遵循了以上原则后,仍然发现有I/O冲突存在,我们可以用数据分离的方法来解决。
?? 连接Table的分离:在实际应用中经常做连接查询的Table,可以将其分离在不同的Taclespace中,以减少I/O冲突。
?? 使用分区:对数据量很大的Table和Index使用分区,放在不同的Tablespace中。
在实际的物理存储中,建议使用RAID。日志文件应放在单独的磁盘中。

数据库的查询优化算法

给出你的查询,然后才可以对其进行优化

如何优化SQL Server数据库查询

如果你的查询比较固定,并且查询的条件区别度较高,可以建立相应的索引。
其他的一些规则,比如使用exists代替 in都可以试试

查询速度慢的原因很多,常见如下几种:
1、没有索引或者没有用到索引(这是查询慢最常见的问题,是程序设计的缺陷)
2、I/O吞吐量小,形成了瓶颈效应。
3、没有创建计算列导致查询不优化。
4、内存不足
5、网络速度慢
6、查询出的数据量过大(可以采用多次查询,其他的方法降低数据量)
7、锁或者死锁(这也是查询慢最常见的问题,是程序设计的缺陷)
8、sp_lock,sp_who,活动的用户查看,原因是读写竞争资源。
9、返回了不必要的行和列
10、查询语句不好,没有优化
可以通过如下方法来优化查询 :
1、把数据、日志、索引放到不同的I/O设备上,增加读取速度,以前可以将Tempdb应放在RAID0上,SQL2000不在支持。数据量(尺寸)越大,提高I/O越重要.
2、纵向、横向分割表,减少表的尺寸(sp_spaceuse)
3、升级硬件
4、根据查询条件,建立索引,优化索引、优化访问方式,限制结果集的数据量。注意填充因子要适当(最好是使用默认值0)。索引应该尽量小,使用字节数小的列建索引好(参照索引的创建),不要对有限的几个值的字段建单一索引如性别字段
5、提高网速;
6、扩大服务器的内存,Windows 2000和SQL server 2000能支持4-8G的内存。配置虚拟内存:虚拟内存大小应基于计算机上并发运行的服务进行配置。运行 Microsoft SQL Server? 2000 时,可考虑将虚拟内存大小设置为计算机中安装的物理内存的 1.5 倍。如果另外安装了全文检索功能,并打算运行 Microsoft 搜索服务以便执行全文索引和查询,可考虑:将虚拟内存大小配置为至少是计算机中安装的物理内存的 3 倍。将 SQL Server max server memory 服务器配置选项配置为物理内存的 1.5 倍(虚拟内存大小设置的一半)。
7、增加服务器 CPU个数; 但是必须明白并行处理串行处理更需要资源例如内存。使用并行还是串行程是MsSQL自动评估选择的。单个任务分解成多个任务,就可以在处理器上运行。例如耽搁查询的排序、连接、扫描和GROUP BY字句同时执行,SQL SERVER根据系统的负载情况决定最优的并行等级,复杂的需要消耗大量的CPU的查询最适合并行处理。但是更新操作Update,Insert, Delete还不能并行处理。
8、如果是使用like进行查询的话,简单的使用index是不行的,但是全文索引,耗空间。 like 'a%' 使用索引 like '%a' 不使用索引用 like '%a%' 查询时,查询耗时和字段值总长度成正比,所以不能用CHAR类型,而是VARCHAR。对于字段的值很长的建全文索引。
9、DB Server 和APPLication Server 分离;OLTP和OLAP分离
10、分布式分区视图可用于实现数据库服务器联合体。联合体是一组分开管理的服务器,但它们相互协作分担系统的处理负荷。这种通过分区数据形成数据库服务器联合体的机制能够扩大一组服务器,以支持大型的多层 Web 站点的处理需要。有关更多信息,参见设计联合数据库服务器。(参照SQL帮助文件'分区视图')
a、在实现分区视图之前,必须先水平分区表
b、在创建成员表后,在每个成员服务器上定义一个分布式分区视图,并且每个视图具有相同的名称。这样,引用分布式分区视图名的查询可以在任何一个成员服务器上运行。系统操作如同每个成员服务器上都有一个原始表的复本一样,但其实每个服务器上只有一个成员表和一个分布式分区视图。数据的位置对应用程序是透明的。
11、重建索引 DBCC REINDEX ,DBCC INDEXDEFRAG,收缩数据和日志 DBCC SHRINKDB,DBCC SHRINKFILE. 设置自动收缩日志.对于大的数据库不要设置数据库自动增长,它会降低服务器的性能。在T-sql的写法上有很大的讲究,下面列出常见的要点:首先,DBMS处理查询计划的过程是这样的:
1、 查询语句的词法、语法检查
2、 将语句提交给DBMS的查询优化器
3、 优化器做代数优化和存取路径的优化
4、 由预编译模块生成查询规划
5、 然后在合适的时间提交给系统处理执行
6、 最后将执行结果返回给用户其次,看一下SQL SERVER的数据存放的结构:一个页面的大小为8K(8060)字节,8个页面为一个盘区,按照B树存放。
12、Commit和rollback的区别 Rollback:回滚所有的事物。 Commit:提交当前的事物. 没有必要在动态SQL里写事物,如果要写请写在外面如: begin tran exec(@s) mit trans 或者将动态SQL 写成函数或者存储过程。
13、在查询Select语句中用Where字句限制返回的行数,避免表扫描,如果返回不必要的数据,浪费了服务器的I/O资源,加重了网络的负担降低性能。如果表很大,在表扫描的期间将表锁住,禁止其他的联接访问表,后果严重。
14、SQL的注释申明对执行没有任何影响
15、尽可能不使用光标,它占用大量的资源。如果需要row-by-row地执行,尽量采用非光标技术,如:在客户端循环,用临时表,Table变量,用子查询,用Case语句等等。游标可以按照它所支持的提取选项进行分类: 只进 必须按照从第一行到最后一行的顺序提取行。FETCH NEXT 是唯一允许的提取操作,也是默认方式。可滚动性可以在游标中任何地方随机提取任意行。游标的技术在SQL2000下变得功能很强大,他的目的是支持循环。有四个并发选项 READ_ONLY:不允许通过游标定位更新(Update),且在组成结果集的行中没有锁。 OPTIMISTIC WITH valueS:乐观并发控制是事务控制理论的一个标准部分。乐观并发控制用于这样的情形,即在打开游标及更新行的间隔中,只有很小的机会让第二个用户更新某一行。当某个游标以此选项打开时,没有锁控制其中的行,这将有助于最大化其处理能力。如果用户试图修改某一行,则此行的当前值会与最后一次提取此行时获取的值进行比较。如果任何值发生改变,则服务器就会知道其他人已更新了此行,并会返回一个错误。如果值是一样的,服务器就执行修改。选择这个并发选项OPTIMISTIC WITH ROW VERSIONING:此乐观并发控制选项基于行版本控制。使用行版本控制,其中的表必须具有某种版本标识符,服务器可用它来确定该行在读入游标后是否有所更改。在 SQL Server 中,这个性能由 timestamp 数据类型提供,它是一个二进制数字,表示数据库中更改的相对顺序。每个数据库都有一个全局当前时间戳值:@@DBTS。每次以任何方式更改带有 timestamp 列的行时,SQL Server 先在时间戳列中存储当前的 @@DBTS 值,然后增加 @@DBTS 的值。如果某 个表具有 timestamp 列,则时间戳会被记到行级。服务器就可以比较某行的当前时间戳值和上次提取时所存储的时间戳值,从而确定该行是否已更新。服务器不必比较所有列的值,只需比较 timestamp 列即可。如果应用程序对没有 timestamp 列的表要求基于行版本控制的乐观并发,则游标默认为基于数值的乐观并发控制。 SCROLL LOCKS 这个选项实现悲观并发控制。在悲观并发控制中,在把数据库的行读入游标结果集时,应用程序将试图锁定数据库行。在使用服务器游标时,将行读入游标时会在其上放置一个更新锁。如果在事务内打开游标,则该事务更新锁将一直保持到事务被提交或回滚;当提取下一行时,将除去游标锁。如果在事务外打开游标,则提取下一行时,锁就被丢弃。因此,每当用户需要完全的悲观并发控制时,游标都应在事务内打开。更新锁将阻止任何其它任务获取更新锁或排它锁,从而阻止其它任务更新该行。然而,更新锁并不阻止共享锁,所以它不会阻止其它任务读取行,除非第二个任务也在要求带更新锁的读取。滚动锁根据在游标定义的 Select 语句中指定的锁提示,这些游标并发选项可以生成滚动锁。滚动锁在提取时在每行上获取,并保持到下次提取或者游标关闭,以先发生者为准。下次提取时,服务器为新提取中的行获取滚动锁,并释放上次提取中行的滚动锁。滚动锁独立于事务锁,并可以保持到一个提交或回滚操作之后。如果提交时关闭游标的选项为关,则 COMMIT 语句并不关闭任何打开的游标,而且滚动锁被保留到提交之后,以维护对所提取数据的隔离。所获取滚动锁的类型取决于游标并发选项和游标 Select 语句中的锁提示。锁提示 只读 乐观数值 乐观行版本控制 锁定无提示 未锁定 未锁定 未锁定 更新 NOLOCK 未锁定 未锁定未锁定 未锁定 HOLDLOCK 共享 共享 共享 更新 UPDLOCK 错误 更新 更新 更新 TABLOCKX 错误 未锁定 未锁定更新其它 未锁定 未锁定 未锁定 更新 *指定 NOLOCK 提示将使指定了该提示的表在游标内是只读的。
16、用Profiler来跟踪查询,得到查询所需的时间,找出SQL的问题所在; 用索引优化器优化索引
17、注意UNion和UNion all 的区别。UNION all好
18、注意使用DISTINCT,在没有必要时不要用,它同UNION一样会使查询变慢。重复的记录在查询里是没有问题的
19、查询时不要返回不需要的行、列
20、用sp_configure 'query governor cost limit'或者SET QUERY_GOVERNOR_COST_LIMIT来限制查询消耗的资源。当评估查询消耗的资源超出限制时,服务器自动取消查询,在查询之前就扼杀掉。 SET LOCKTIME设置锁的时间
21、用select 100 / 10 Percent 来限制用户返回的行数或者SET ROWCOUNT来限制操作的行
22、在SQL2000以前,一般不要用如下的字句: "IS NULL", "<>", "!=", "!>", "!<", "NOT", "NOT EXISTS", "NOT IN", "NOT LIKE", and "LIKE '%500'",因为他们不走索引全是表扫描。也不要在Where字句中的列名加函数,如Convert,substring等,如果必须用函数的时候,创建计算列再创建索引来替代.还可以变通写法:Where SUBSTRING(firstname,1,1) = 'm'改为Where firstname like 'm%'(索引扫描),一定要将函数和列名分开。并且索引不能建得太多和太大。NOT IN会多次扫描表,使用EXISTS、NOT EXISTS ,IN , LEFT OUTER JOIN 来替代,特别是左连接,而Exists比IN更快,最慢的是NOT操作.如果列的值含有空,以前它的索引不起作用,现在2000的优化器能够处理了。相同的是IS NULL,"NOT", "NOT EXISTS", "NOT IN"能优化她,而"<>"等还是不能优化,用不到索引。
23、使用Query Analyzer,查看SQL语句的查询计划和评估分析是否是优化的SQL。一般的20%的代码占据了80%的资源,我们优化的重点是这些慢的地方。
24、如果使用了IN或者OR等时发现查询没有走索引,使用显示申明指定索引: Select * FROM PersonMember (INDEX = IX_Title) Where processid IN ('男','女')
25、将需要查询的结果预先计算好放在表中,查询的时候再Select。这在SQL7.0以前是最重要的手段。例如医院的住院费计算。
26、MIN() 和 MAX()能使用到合适的索引。
27、数据库有一个原则是代码离数据越近越好,所以优先选择Default,依次为Rules,Triggers, Constraint(约束如外健主健CheckUNIQUE……,数据类型的最大长度等等都是约束),Procere.这样不仅维护工作小,编写程序质量高,并且执行的速度快。
28、如果要插入大的二进制值到Image列,使用存储过程,千万不要用内嵌Insert来插入(不知JAVA是否)。因为这样应用程序首先将二进制值转换成字符串(尺寸是它的两倍),服务器受到字符后又将他转换成二进制值.存储过程就没有这些动作: 方法:Create procere p_insert as insert into table(Fimage) values (@image), 在前台调用这个存储过程传入二进制参数,这样处理速度明显改善

B. 如何优化操作大数据量数据库

下面以关系数据库系统Informix为例,介绍改善用户查询计划的方法。

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

还可以使用并集来避免顺序存取。尽管在所有的检查列上都有索引,但某些形式的where子句强迫优化器使用顺序存取。下面的查询将强迫对orders表执行顺序操作:

SELECT * FROM orders WHERE (customer_num=104 AND order_num>1001) OR order_num=1008

虽然在customer_num和order_num上建有索引,但是在上面的语句中优化器还是使用顺序存取路径扫描整个表。因为这个语句要检索的是分离的行的集合,所以应该改为如下语句:

SELECT * FROM orders WHERE customer_num=104 AND order_num>1001

UNION

SELECT * FROM orders WHERE order_num=1008

这样就能利用索引路径处理查询。

4.避免相关子查询

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。例如:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

AND cust.postcode>“98000”

ORDER BY cust.name

如果这个查询要被执行多次而不止一次,可以把所有未付款的客户找出来放在一个临时文件中,并按客户的名字进行排序:

SELECT cust.name,rcvbles.balance,……other columns

FROM cust,rcvbles

WHERE cust.customer_id = rcvlbes.customer_id

AND rcvblls.balance>0

ORDER BY cust.name

INTO TEMP cust_with_balance

然后以下面的方式在临时表中查询:

SELECT * FROM cust_with_balance

WHERE postcode>“98000”

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。

实例分析

下面我们举一个制造公司的例子来说明如何进行查询优化。制造公司数据库中包括3个表,模式如下所示:

1.part表

零件号?????零件描述????????其他列

(part_num)?(part_desc)??????(other column)

102,032???Seageat 30G disk?????……

500,049???Novel 10M network card??……

……

2.vendor表

厂商号??????厂商名??????其他列

(vendor _num)?(vendor_name) (other column)

910,257?????Seageat Corp???……

523,045?????IBM Corp?????……

……

3.parven表

零件号?????厂商号?????零件数量

(part_num)?(vendor_num)?(part_amount)

102,032????910,257????3,450,000

234,423????321,001????4,000,000

……

下面的查询将在这些表上定期运行,并产生关于所有零件数量的报表:

SELECT part_desc,vendor_name,part_amount

FROM part,vendor,parven

WHERE part.part_num=parven.part_num

AND parven.vendor_num = vendor.vendor_num

ORDER BY part.part_num

如果不建立索引,上述查询代码的开销将十分巨大。为此,我们在零件号和厂商号上建立索引。索引的建立避免了在嵌套中反复扫描。关于表与索引的统计信息如下:

表?????行尺寸???行数量?????每页行数量???数据页数量

(table)?(row size)?(Row count)?(Rows/Pages)?(Data Pages)

part????150?????10,000????25???????400

Vendor???150?????1,000???? 25???????40

Parven???13????? 15,000????300?????? 50

索引?????键尺寸???每页键数量???页面数量

(Indexes)?(Key Size)?(Keys/Page)???(Leaf Pages)

part?????4??????500???????20

Vendor????4??????500???????2

Parven????8??????250???????60

看起来是个相对简单的3表连接,但是其查询开销是很大的。通过查看系统表可以看到,在part_num上和vendor_num上有簇索引,因此索引是按照物理顺序存放的。parven表没有特定的存放次序。这些表的大小说明从缓冲页中非顺序存取的成功率很小。此语句的优化查询规划是:首先从part中顺序读取400页,然后再对parven表非顺序存取1万次,每次2页(一个索引页、一个数据页),总计2万个磁盘页,最后对vendor表非顺序存取1.5万次,合3万个磁盘页。可以看出在这个索引好的连接上花费的磁盘存取为5.04万次。

C. 如何提高SQL Server大数据条件下的查询速度

1.关于索引优化
建索引的选择必须结合SQL查询、修改、删除语句的需要,一般的说法是在WHERE里经常出现的字段建索引。如果在WHERE经常是几个字段一起出现而且是用AND连接的,那就应该建这几个字段一起的联合索引,而且次序也需要考虑,一般是最常出现的放前面,重复率低的放前面。
SQL
Server提供了一种简化并自动维护数据库的工具。这个称之为数据库维护计划向导(Database
Maintenance
Plan
Wizard
,DMPW)的工具也包括了对索引的优化。如果你运行这个向导,你会看到关于数据库中关于索引的统计量,这些统计量作为日志工作并定时更新,这样就减轻了手工重建索引或者DBCC
INDEXDEFRAG所带来的工作量。如果你不想自动定期刷新索引统计量,你还可以在DMPW中选择重新组织数据和数据页,这将停止旧有索引并按特定的填充因子重建索引。
2.
改善硬件(双CPU,Raid
5,增加内存)
tempdb这个临时数据库,它对性能的影响较大。tempdb和其他数据库一样可以增大,可以缩小。当数据文件需要增长的时候,通常不能保持剩余部分的连续性。这时文件就会产生碎片,这种碎片会造成性能下降。这种碎片属于外来性碎片。要阻止在tempdb中产生外来性碎片,必须保证有足够的硬盘空间。一般将tempdb的容量放到平均使用容量。而你也应该允许tempdb自动增长,比如你有个一个超大的join操作,它建立了一个超过tempdb容量的时候,该查询将失败。你还要设置一个合理的单位增长量。因为如果你设得太小,将会产生许多外来性碎片,反而会占用更多资源。sqlserver调优最有效的做法之一,就是把争夺资源的操作独立出去。tempdb就是一个需要独立出去的部分而tempdb和其他系统库一样是公用的,是存取最可能频繁的库,所有处理临时表、子查询、GROUP
BY、排序、DISTINCT、连接等等。它最适合放到一个具有快速读写能力的设备上。比如RAID0卷或RAID0+1卷上。
查询语句一定要使用存储过程;
3、查询尽量使用TOP子句
4.将表按一定的约束分成子表,(如按分类)创建约束,在用Like
时,先用分类
and
like
,
应该可能解决问题.
而且效果立秆见影!(你要确定SQL会认识你建的分区视图).我一个表有上百万的记录(700兆),用分区视图后,查询速度基本跟10万行一样.
如果还是太慢,还可以考滤分布式分区视图!这总可以解决问题了吧!
关键在于你能否把大表按某种约束分解成子表.

D. 大数据量实时统计排序分页查询(并发数较小时)的几点建议

大数据量实时统计排序分页查询的瓶颈不是函数(count,sum等)执行,

不是having, 也不是order by,甚至不是表join, 导致慢的原因就在于“数据量太大本身”

就是将表划分为M份相互独立的部分,可以是分表,也可以是不分表但冗余一个取模结果字段

实际结果是不分表比分表更加灵活,只需稍加配置,就可以动态切分大表,随意更改M的大小。

将1条慢sql(大于30秒)拆分成为N条查询速度巨快的sql(单条sql执行时间控制在20毫秒以内)

然后再web应用中以适当的线程数去并发查询这些执行时间快的N条小sql再汇总结果

第一步查询中去并发执行这N条小sql, 只取排序字段和标识字段,其他字段一律丢弃

汇总结果后定位出当前页面要显示的pageNum条数据,再进行第二步查询,取出页面上需要展示的所有字段

PS:这一点是至关重要的,其他几点都可以不看,这点是最关键的。慢慢解释一下:

有三种方式统计所有的记录,

a) 第一种方式是把数据库中所有记录(只取排序字段和标识字段并且不做任何sum,count having order by等操作)

全部拉到web应用中,在web应用中完成所有的计算

b) 第二种方式是把数据库中所有记录做sum count having等操作之后的所有行数拉到web应用中,在web应用中完成剩余计算

c) 第三种方式是把数据库中所有记录做sum count having order by等操作之后把limit后的数据拉到web应用中,

在web应用中对limit后的数据再计算

显然,第一种方式 数据库什么活都不做只取数据 是不可行的。以lg_order_count_seller为例,1500万行,

如果只算id, seller_id和order_count 这三个bigint类型,至少需要拉8*3*1500 0000 = 360000000=340M,

拉到内存中之后存储需要8*4*15000000= 460M,这还不算List是的2的n次方这个特点和计算排序等的内存开销,

不仅数据库与web应用机器IO扛不住,就是应用自身恐怕也要OOM了。

第二种方式,所有记录做sum count having等操作之后,由于是group by seller_id的,总得数据量变为100万(就是卖家总数),

这样子一来,共需要拉8*3*100 0000 = 23M,拉到内存之后,需要8*4*100 0000 = 30M, 再算上List是的2的n次方这个特点和

计算排序等的内存开销也不会超过100M, IO的时间和内存开销勉强可以考虑接受。

第三种方式,所有记录做sum count having order by等操作之后把limit后的数据拉到web应用中,因为做了limit,所以,

数据量很小了,无论是IO还是内存开销都已经很小了。可以忽略。

综合以上三种,第三种方式适用于页面的前n页和后n页,因为这个limit的数据量随着页数的增大而增大,

当大到每个切分后的小表的数据量时就转为第二种方式了。

第二种方式适用于页面的第[n+1, totaoPageNum-n]页。

① 问题描述:

优化之前,还是是一条大慢sql查询时,由于数据库排序是稳定排序,

所以当两条记录排序字段值相同时他们在页面上的页码位置是固定的。

优化之后,当并行执行这N条小sql时,由于无法控制这些小sql的先后执行顺序,

导致在web应用中当两条记录的排序字段值相同时在页面上的页码位置是随机的。

② 解决办法:

除了拉标识字段(seller_id)和排序字段(order_count_sum)之外,再取一个unique(id)的字段,当两条记录的排序字段值相同时,

再用这个unique的字段(在卖家监控中这个字段是id)进行第二次排序.这样就解决了排序不稳定的问题。

③ 也许,看到这里会有疑问,为什么不用seller_id?seller_id也是唯一, 这样子不是少取id这个字段,减少IO了?

seller_id虽然也是唯一,可以辅助排序,但是不要忘记数据库的排序规则是:

如果两列的值相等,那么序号在前的排在前面,这里的序号就是主键(自动生成,autoincrement),

如果用seller_id的话还是不能保证排序的稳定性,只能用主键id.

把数据库的连接,扫表,计算等资源优先让给用户关注的主要元素,次要元素可等主要元素加载完成之后再加载。

反应在卖家监控页面中,查数据和查页页码的sql语句基本相同,是在竞争同一资源,

所以,需要做一个策略,优先把资源让给查数,数据查完之后再去查页码。

由于多线程取数据并没有从本质上提高数据库性能,所以必须针对大数据量实时统计排序分页查询做限流

我这里打个比方:食堂有6个窗口,物流团队吃饭要买6个菜,平均每买1个菜需要1分钟的时间,

如果派我一个人去一个窗口买的话需要6分钟的时间

假如派6个人分别去6个窗口买这6个菜,只需要1分钟的时间

但是,如果除了物流团队,再来其他5个团队呢,也就是说6个团队每个团队买6个菜共买36个菜,

这样子有的团队先买完,有的团队后买完,但平均时间还是6分钟。本质上没有变化。

所以,对于特定的查询条件,必须进行限流。让每分钟至多有6个团队买菜,这样子能使得情况变得不至于太糟糕。

这一点从目前来看只能是展望了,比如mysql数据库换更为强大的oracle数据库,

或更换InnoDb引擎为其他,或更换SATA硬盘为SSD 。。。。。。

相同的查询条件,原来一个页面查询时间由于超过60秒超时了,根据1-6点建议优化之后,查询时间变为2秒至3.5秒之间。

E. 如何提高上百万级记录MySQL数据库查询速度

关于mysql处理百万级以上的数据时如何提高其查询速度的方法

最近一段时间由于工作需要,开始关注针对Mysql数据库的select查询语句的相关优化方法。

由于在参与的实际项目中发现当mysql表的数据量达到百万级时,普通SQL查询效率呈直线下降,而且如果where中的查询条件较多时,其查询速度简直无法容忍。曾经测试对一个包含400多万条记录(有索引)的表执行一条条件查询,其查询时间竟然高达40几秒,相信这么高的查询延时,任何用户都会抓狂。因此如何提高sql语句查询效率,显得十分重要。以下是网上流传比较广泛的30种SQL查询语句优化方法:
1、应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。

2、对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。

3、应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0

4、尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20

5、下面的查询也将导致全表扫描:(不能前置百分号)
select id from t where name like ‘%c%’
若要提高效率,可以考虑全文检索。

6、in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3

7、如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t where num=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) where num=@num

8、应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2

9、应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)=’abc’–name以abc开头的id
select id from t where datediff(day,createdate,’2005-11-30′)=0–’2005-11-30′生成的id
应改为:
select id from t where name like ‘abc%’
select id from t where createdate>=’2005-11-30′ and createdate<’2005-12-1′

10、不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

11、在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使 用,并且应尽可能的让字段顺序与索引顺序相一致。

12、不要写一些没有意义的查询,如需要生成一个空表结构:
select col1,col2 into #t from t where 1=0
这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
create table #t(…)

13、很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b)
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num)

14、并不是所有索引对查询都有效,SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段 sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。

15、索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有 必要。

16.应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

17、尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会 逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

18、尽可能的使用 varchar/nvarchar 代替 char/nchar ,因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。

19、任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

20、尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

21、避免频繁创建和删除临时表,以减少系统表资源的消耗。

22、临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件,最好使 用导出表。

23、在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

24、如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

25、尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。

26、使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。

27、与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。

28、在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。

29、尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

30、尽量避免大事务操作,提高系统并发能力。

F. 澶勭悊涓婄櫨涓囨潯鐨勬暟鎹搴撳備綍鎻愰珮澶勭悊鏌ヨ㈤熷害_MySQL


1銆佸规煡璇㈣繘琛屼紭鍖栵紝搴斿敖閲忛伩鍏嶅叏琛ㄦ壂鎻忥紝棣栧厛搴旇冭檻鍦 where 鍙 order by 娑夊強鐨勫垪涓婂缓绔嬬储寮曘

2銆佸簲灏介噺閬垮厤鍦 where 瀛愬彞涓瀵瑰瓧娈佃繘琛 null 鍊煎垽鏂锛屽惁鍒欏皢瀵艰嚧寮曟搸鏀惧純浣跨敤绱㈠紩鑰岃繘琛屽叏琛ㄦ壂鎻忥紝濡傦細

select id from t where num is null

鍙浠ュ湪num涓婅剧疆榛樿ゅ0锛岀‘淇濊〃涓璶um鍒楁病鏈塶ull鍊硷紝鐒跺悗杩欐牱鏌ヨ锛

select id from t where num=0

3銆佸簲灏介噺閬垮厤鍦 where 瀛愬彞涓浣跨敤!=鎴栨搷浣滅︼紝鍚﹀垯灏嗗紩鎿庢斁寮冧娇鐢ㄧ储寮曡岃繘琛屽叏琛ㄦ壂鎻忋

4銆佸簲灏介噺閬垮厤鍦 where 瀛愬彞涓浣跨敤 or 鏉ヨ繛鎺ユ潯浠讹紝鍚﹀垯灏嗗艰嚧寮曟搸鏀惧純浣跨敤绱㈠紩鑰岃繘琛屽叏琛ㄦ壂鎻忥紝濡傦細

select id from t where num=10 or num=20

鍙浠ヨ繖鏍锋煡璇锛

select id from t where num=10

union all

select id from t where num=20

5銆乮n 鍜 not in 涔熻佹厧鐢锛屽惁鍒欎細瀵艰嚧鍏ㄨ〃鎵鎻忥紝濡傦細

select id from t where num in(1,2,3)

瀵逛簬杩炵画鐨勬暟鍊硷紝鑳界敤 between 灏变笉瑕佺敤 in 浜嗭細

select id from t where num between 1 and 3

6銆佷笅闈㈢殑鏌ヨ涔熷皢瀵艰嚧鍏ㄨ〃鎵鎻忥細

select id from t where name like '%abc%'

鑻ヨ佹彁楂樻晥鐜囷紝鍙浠ヨ冭檻鍏ㄦ枃妫绱銆

7銆佸傛灉鍦 where 瀛愬彞涓浣跨敤鍙傛暟锛屼篃浼氬艰嚧鍏ㄨ〃鎵鎻忋傚洜涓篠QL鍙鏈夊湪杩愯屾椂鎵嶄細瑙f瀽灞閮ㄥ彉閲忥紝浣嗕紭鍖栫▼搴忎笉鑳藉皢璁块棶璁″垝鐨勯夋嫨鎺ㄨ繜鍒拌繍琛屾椂锛涘畠蹇呴』鍦ㄧ紪璇戞椂杩涜岄夋嫨銆傜劧鑰岋紝濡傛灉鍦ㄧ紪璇戞椂寤虹珛璁块棶璁″垝锛屽彉閲忕殑鍊艰繕鏄鏈鐭ョ殑锛屽洜鑰屾棤娉曚綔涓虹储寮曢夋嫨鐨勮緭鍏ラ」銆傚備笅闈㈣鍙ュ皢杩涜屽叏琛ㄦ壂鎻忥細

select id from t where num=@num

鍙浠ユ敼涓哄己鍒舵煡璇浣跨敤绱㈠紩锛

select id from t with(index(绱㈠紩鍚)) where num=@num

8銆佸簲灏介噺閬垮厤鍦 where 瀛愬彞涓瀵瑰瓧娈佃繘琛岃〃杈惧紡鎿嶄綔锛岃繖灏嗗艰嚧寮曟搸鏀惧純浣跨敤绱㈠紩鑰岃繘琛屽叏琛ㄦ壂鎻忋傚傦細

select id from t where num/2=100

搴旀敼涓:

select id from t where num=100*2

9銆佸簲灏介噺閬垮厤鍦╳here瀛愬彞涓瀵瑰瓧娈佃繘琛屽嚱鏁版搷浣滐紝杩欏皢瀵艰嚧寮曟搸鏀惧純浣跨敤绱㈠紩鑰岃繘琛屽叏琛ㄦ壂鎻忋傚傦細

select id from t where substring(name,1,3)='abc'--name浠abc寮澶寸殑id

select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’鐢熸垚鐨刬d

搴旀敼涓:

select id from t where name like 'abc%'

select id from t where createdate>='2005-11-30' and createdate

10銆佷笉瑕佸湪 where 瀛愬彞涓鐨“=”宸﹁竟杩涜屽嚱鏁般佺畻鏈杩愮畻鎴栧叾浠栬〃杈惧紡杩愮畻锛屽惁鍒欑郴缁熷皢鍙鑳芥棤娉曟g‘浣跨敤绱㈠紩銆

11銆佸湪浣跨敤绱㈠紩瀛楁典綔涓烘潯浠舵椂锛屽傛灉璇ョ储寮曟槸澶嶅悎绱㈠紩锛岄偅涔堝繀椤讳娇鐢ㄥ埌璇ョ储寮曚腑鐨勭涓涓瀛楁典綔涓烘潯浠舵椂鎵嶈兘淇濊瘉绯荤粺浣跨敤璇ョ储寮曪紝鍚﹀垯璇ョ储寮曞皢涓嶄細琚浣跨敤锛屽苟涓斿簲灏藉彲鑳界殑璁╁瓧娈甸『搴忎笌绱㈠紩椤哄簭鐩镐竴鑷淬

12銆佷笉瑕佸啓涓浜涙病鏈夋剰涔夌殑鏌ヨ锛屽傞渶瑕佺敓鎴愪竴涓绌鸿〃缁撴瀯锛

select col1,col2 into #t from t where 1=0

杩欑被浠g爜涓嶄細杩斿洖浠讳綍缁撴灉闆嗭紝浣嗘槸浼氭秷鑰楃郴缁熻祫婧愮殑锛屽簲鏀规垚杩欐牱锛

create table #t(...)

13銆佸緢澶氭椂鍊欑敤 exists 浠f浛 in 鏄涓涓濂界殑閫夋嫨锛

select num from a where num in(select num from b)

鐢ㄤ笅闈㈢殑璇鍙ユ浛鎹锛

select num from a where exists(select 1 from b where num=a.num)锛

14銆佸苟涓嶆槸鎵鏈夌储寮曞规煡璇㈤兘鏈夋晥锛孲QL鏄鏍规嵁琛ㄤ腑鏁版嵁鏉ヨ繘琛屾煡璇浼樺寲鐨勶紝褰撶储寮曞垪鏈夊ぇ閲忔暟鎹閲嶅嶆椂锛孲QL鏌ヨ㈠彲鑳戒笉浼氬幓鍒╃敤绱㈠紩锛屽備竴琛ㄤ腑鏈夊瓧娈祍ex锛宮ale銆乫emale鍑犱箮鍚勪竴鍗婏紝閭d箞鍗充娇鍦╯ex涓婂缓浜嗙储寮曚篃瀵规煡璇㈡晥鐜囪捣涓嶄簡浣滅敤銆

15銆佺储寮曞苟涓嶆槸瓒婂氳秺濂斤紝绱㈠紩鍥虹劧鍙浠ユ彁楂樼浉搴旂殑 select 鐨勬晥鐜囷紝浣嗗悓鏃朵篃闄嶄綆浜 insert 鍙 update 鐨勬晥鐜囷紝鍥犱负 insert 鎴 update 鏃舵湁鍙鑳戒細閲嶅缓绱㈠紩锛屾墍浠ユ庢牱寤虹储寮曢渶瑕佹厧閲嶈冭檻锛岃嗗叿浣撴儏鍐佃屽畾銆備竴涓琛ㄧ殑绱㈠紩鏁版渶濂戒笉瑕佽秴杩6涓锛岃嫢澶澶氬垯搴旇冭檻涓浜涗笉甯镐娇鐢ㄥ埌鐨勫垪涓婂缓鐨勭储寮曟槸鍚︽湁蹇呰併

16銆佸簲灏藉彲鑳界殑閬垮厤鏇存柊 clustered 绱㈠紩鏁版嵁鍒楋紝鍥犱负 clustered 绱㈠紩鏁版嵁鍒楃殑椤哄簭灏辨槸琛ㄨ板綍鐨勭墿鐞嗗瓨鍌ㄩ『搴忥紝涓鏃﹁ュ垪鍊兼敼鍙樺皢瀵艰嚧鏁翠釜琛ㄨ板綍鐨勯『搴忕殑璋冩暣锛屼細鑰楄垂鐩稿綋澶х殑璧勬簮銆傝嫢搴旂敤绯荤粺闇瑕侀戠箒鏇存柊 clustered 绱㈠紩鏁版嵁鍒楋紝閭d箞闇瑕佽冭檻鏄鍚﹀簲灏嗚ョ储寮曞缓涓 clustered 绱㈠紩銆

17銆佸敖閲忎娇鐢ㄦ暟瀛楀瀷瀛楁碉紝鑻ュ彧鍚鏁板间俊鎭鐨勫瓧娈靛敖閲忎笉瑕佽捐′负瀛楃﹀瀷锛岃繖浼氶檷浣庢煡璇㈠拰杩炴帴鐨勬ц兘锛屽苟浼氬炲姞瀛樺偍寮閿銆傝繖鏄鍥犱负寮曟搸鍦ㄥ勭悊鏌ヨ㈠拰杩炴帴鏃朵細閫愪釜姣旇緝瀛楃︿覆涓姣忎竴涓瀛楃︼紝鑰屽逛簬鏁板瓧鍨嬭岃█鍙闇瑕佹瘮杈冧竴娆″氨澶熶簡銆

18銆佸敖鍙鑳界殑浣跨敤 varchar/nvarchar 浠f浛 char/nchar 锛屽洜涓洪栧厛鍙橀暱瀛楁靛瓨鍌ㄧ┖闂村皬锛屽彲浠ヨ妭鐪佸瓨鍌ㄧ┖闂达紝鍏舵″逛簬鏌ヨ㈡潵璇达紝鍦ㄤ竴涓鐩稿硅緝灏忕殑瀛楁靛唴鎼滅储鏁堢巼鏄剧劧瑕侀珮浜涖

19銆佷换浣曞湴鏂归兘涓嶈佷娇鐢 select * from t 锛岀敤鍏蜂綋鐨勫瓧娈靛垪琛ㄤ唬鏇“*”锛屼笉瑕佽繑鍥炵敤涓嶅埌鐨勪换浣曞瓧娈点

20銆佸敖閲忎娇鐢ㄨ〃鍙橀噺鏉ヤ唬鏇夸复鏃惰〃銆傚傛灉琛ㄥ彉閲忓寘鍚澶ч噺鏁版嵁锛岃锋敞鎰忕储寮曢潪甯告湁闄愶紙鍙鏈変富閿绱㈠紩锛夈

21銆侀伩鍏嶉戠箒鍒涘缓鍜屽垹闄や复鏃惰〃锛屼互鍑忓皯绯荤粺琛ㄨ祫婧愮殑娑堣椼

22銆佷复鏃惰〃骞朵笉鏄涓嶅彲浣跨敤锛岄傚綋鍦颁娇鐢ㄥ畠浠鍙浠ヤ娇鏌愪簺渚嬬▼鏇存湁鏁堬紝渚嬪傦紝褰撻渶瑕侀噸澶嶅紩鐢ㄥぇ鍨嬭〃鎴栧父鐢ㄨ〃涓鐨勬煇涓鏁版嵁闆嗘椂銆備絾鏄锛屽逛簬涓娆℃т簨浠讹紝鏈濂戒娇鐢ㄥ煎嚭琛ㄣ

23銆佸湪鏂板缓涓存椂琛ㄦ椂锛屽傛灉涓娆℃ф彃鍏ユ暟鎹閲忓緢澶э紝閭d箞鍙浠ヤ娇鐢 select into 浠f浛 create table锛岄伩鍏嶉犳垚澶ч噺 log 锛屼互鎻愰珮閫熷害锛涘傛灉鏁版嵁閲忎笉澶э紝涓轰簡缂撳拰绯荤粺琛ㄧ殑璧勬簮锛屽簲鍏坈reate table锛岀劧鍚巌nsert銆

24銆佸傛灉浣跨敤鍒颁簡涓存椂琛锛屽湪瀛樺偍杩囩▼鐨勬渶鍚庡姟蹇呭皢鎵鏈夌殑涓存椂琛ㄦ樉寮忓垹闄わ紝鍏 truncate table 锛岀劧鍚 drop table 锛岃繖鏍峰彲浠ラ伩鍏嶇郴缁熻〃鐨勮緝闀挎椂闂撮攣瀹氥

25銆佸敖閲忛伩鍏嶄娇鐢ㄦ父鏍囷紝鍥犱负娓告爣鐨勬晥鐜囪緝宸锛屽傛灉娓告爣鎿嶄綔鐨勬暟鎹瓒呰繃1涓囪岋紝閭d箞灏卞簲璇ヨ冭檻鏀瑰啓銆

26銆佷娇鐢ㄥ熀浜庢父鏍囩殑鏂规硶鎴栦复鏃惰〃鏂规硶涔嬪墠锛屽簲鍏堝绘壘鍩轰簬闆嗙殑瑙e喅鏂规堟潵瑙e喅闂棰橈紝鍩轰簬闆嗙殑鏂规硶閫氬父鏇存湁鏁堛

27銆佷笌涓存椂琛ㄤ竴鏍凤紝娓告爣骞朵笉鏄涓嶅彲浣跨敤銆傚瑰皬鍨嬫暟鎹闆嗕娇鐢 FAST_FORWARD 娓告爣閫氬父瑕佷紭浜庡叾浠栭愯屽勭悊鏂规硶锛屽挨鍏舵槸鍦ㄥ繀椤诲紩鐢ㄥ嚑涓琛ㄦ墠鑳借幏寰楁墍闇鐨勬暟鎹鏃躲傚湪缁撴灉闆嗕腑鍖呮嫭“鍚堣”鐨勪緥绋嬮氬父瑕佹瘮浣跨敤娓告爣鎵ц岀殑閫熷害蹇銆傚傛灉寮鍙戞椂闂村厑璁革紝鍩轰簬娓告爣鐨勬柟娉曞拰鍩轰簬闆嗙殑鏂规硶閮藉彲浠ュ皾璇曚竴涓嬶紝鐪嬪摢涓绉嶆柟娉曠殑鏁堟灉鏇村ソ銆

28銆佸湪鎵鏈夌殑瀛樺偍杩囩▼鍜岃Е鍙戝櫒鐨勫紑濮嬪勮剧疆 SET NOCOUNT ON 锛屽湪缁撴潫鏃惰剧疆 SET NOCOUNT OFF 銆傛棤闇鍦ㄦ墽琛屽瓨鍌ㄨ繃绋嬪拰瑙﹀彂鍣ㄧ殑姣忎釜璇鍙ュ悗鍚戝㈡埛绔鍙戦 DONE_IN_PROC 娑堟伅銆

29銆佸敖閲忛伩鍏嶅ぇ浜嬪姟鎿嶄綔锛屾彁楂樼郴缁熷苟鍙戣兘鍔涖

30銆佸敖閲忛伩鍏嶅悜瀹㈡埛绔杩斿洖澶ф暟鎹閲忥紝鑻ユ暟鎹閲忚繃澶э紝搴旇ヨ冭檻鐩稿簲闇姹傛槸鍚﹀悎鐞嗐

G. asp.net 查询大数据量(百万条以上)如何快

1、索引2、你用存储过程,存储过程里还不是要写语句的?有区别?如果每次查询条件不一样,可以用动态sql,用sp_executesql执行,效率还不错,比exec执行动态sql快

H. 网贷大数据如何进行改善

如果不是因为逾期而造成的黑户,那么就要找找其他的原因了,比如说是不是申请网贷频率过高,如果不知道可以在微信中瑞数据上检测一下。只有知道是什么原因导致自己成为黑户,才能根据原因来改善网贷大数据。
因为网贷申请频率过高,那么建议半年内不要再去申请贷款了,名下已经贷款成功的网贷也要按时还款,这样经过一段时间,大数据就会慢慢恢复。

阅读全文

与如何提高大数据查询相关的资料

热点内容
支付宝密码算法 浏览:315
手机管家私密空间密码 浏览:691
投影仪什么编程做出来的 浏览:405
programd文件夹在哪里 浏览:282
数据科学考研的专业科目是什么 浏览:850
编程怎么做到场景移动 浏览:166
配音秀草稿箱文件夹 浏览:642
丢失隐私文件怎么恢复 浏览:187
怎么收集数据表格 浏览:199
java登录校验码 浏览:967
ug星空自动编程字体怎么改 浏览:544
桌面文件大文件删除后可否恢复 浏览:153
苹果如何安装dmg文件 浏览:427
java组件技术 浏览:909
java定义一个空数组 浏览:200
win10安全等级降低 浏览:305
编程哪个国家比较好 浏览:518
linux文件偏移量 浏览:205
工行app怎么看这个月要还款 浏览:582
ps1模拟器能读取bin文件吗 浏览:857

友情链接