❶ mysql 大数据量该怎么存储和维护
照你的需求来看,可以有两种方式,一种是分表,另一种是分区 首先是分表回,就像你自己所说答的,可以按月分表,可以按用户ID分表等等,至于采用哪种方式分表,要看你的业务逻辑了,分表不好的地方就是查询有时候需要跨多个表。 然后是分区,分区可以将表分离在若干不同的表空间上,用分而治之的方法来支撑无限膨胀的大表,给大表在物理一级的可管理性。将大表分割成较小的分区可以改善表的维护、备份、恢复、事务及查询性能。分区的好处是分区的优点: 1 增强可用性:如果表的一个分区由于系统故障而不能使用,表的其余好的分区仍然可以使用; 2 减少关闭时间:如果系统故障只影响表的一部分分区,那么只有这部分分区需要修复,故能比整个大表修复花的时间更少; 3 维护轻松:如果需要重建表,独立管理每个分区比管理单个大表要轻松得多; 4 均衡I/O:可以把表的不同分区分配到不同的磁盘来平衡I/O改善性能; 5 改善性能:对大表的查询、增加、修改等操作可以分解到表的不同分区来并行执行,可使运行速度更快; 6 分区对用户透明,最终用户感觉不到分区的存在。
❷ mysql大数据插入删除同时进行,删除出错
java.sql.SQLException: Lock wait timeout exceeded; try restarting transaction
数据库的格式。是行锁还是表锁,在版个数据量权太大时。java session超时。
❸ 怎么删除mysql大数据
大讲台大数据培训为你解答:1、删除表内数据及表结构:drop table 表名;2、删除表内版数据可用两权种语句,分别是delete语句和truncate语句:delete from 表名;truncate table 表名;在效率上truncate的效率远远大于delete的效率。
❹ MySQL数据库千万级数据处理
数据库主要抄就是两个功能,袭一个是查询,一个是储存,而大数据必定会拖慢查询,我们对于大数据,更多的是从业务逻辑进行拆分,比如:
当存储一个人的历史信息的时候,可以按照时间存储,一定是最近的记录最经常访问,这就是我们常说的二八定律,最长访问的数据仅仅占有不到两成的数据量。
上面说的就是分库分表,这是一种解决数据量大的办法。
内存数据库,redis也是一种处理大数据的办法,将常访问的数据放到redis里面,可以缓解数据库的压力,还是像上面说的,我们只要可以找到用户经常访问的数据,然后放到内存数据库中,就可以大大减少mysql的压力。
最后,技术一定是为解决问题而产生的,我们一定需要对业务进行分析,才能考虑使用什么技术,抛开业务单存讲技术,这是不正确的。
❺ mysql如何加快海量数据的删除速度
下面一些方法可以加快
mysql数据库导入数据的速度:
1、最快的当然是直接 数据库表的数据文件(版本和平台最好要相同或相似);
2、 设置 innodb_flush_log_at_trx_commit = 0 ,相对于 innodb_flush_log_at_trx_commit = 1 可以十分明显的提升导入速度;
3、 使用 load data local infile 提速明显;
4、 修改参数 bulk_insert_buffer_size, 调大批量插入的缓存;
5、 合并多条 insert 为一条: insert into t values(a,b,c), (d,e,f) ,,,
6、手动使用事物;
❻ 一文总结高并发大数据量下MySQL开发规范「军规」
在互联网公司中,MySQL是使用最多的数据库,那么在并发量大、数据量大的互联网业务中,如果高效的使用MySQL才能保证服务的稳定呢?根据本人多年运维管理经验的总结,梳理了一些核心的开发规范,希望能给大家带来一些帮助。
一、基础规范
二、库表设计
问题:使用VARCHAR(5) 和VARCHAR(200) 存储’hello’的磁盘空间开销是一样的,使用更短的列表有什么优势吗?
更大的定义列会消耗更多的内存,因为MySQL通常会分配固定大小的内存块来保存内部值,尤其是使用内存临时表进行排序或操作时会特别糟糕
三、索引设计
基本规则:索引不是越多越好,能不添加的索引尽量不要添加,过多的索引会严重降低数据插入和更新的效率,并带来更多的读写冲突和死锁!
示例:假设在表tab中id建立了索引
四、SQL优化
示例:
字段: code varchar(50) NOT NULL COMENT ‘编码’ #code上建立了索引
SELECT id,name,addr from tab_name where code=10001; 不会使用索引
SELECT id,name,addr from tab_name where code=' 会使用索引
Select * from table limit 10000,10;
LIMIT原理:
Limit 10000,10 偏移量越大则越慢
Select * from table WHERE id>=23423 limit 11; #10+1 (每页10条)
Select * from table WHERE id>=23434 limit 11;
Select * from table WHERE id >= ( select id from table limit 10000,1 ) limit 10;
Select * from table INNER JOIN (SELECT id from table limit 10000,10) USING(id)
最后说明:
上述规范是多年MySQL数据库使用的经验总结,希望能给大家带来一些启发和帮助!