A. 创建大数据项目的五大步骤
创建大数据项目的五大步骤
企业需要积极的提升他们的数据管理能力。这并非意味着他们应该制定繁琐的流程和监督机制。明智的企业会配合他们的数据活动的生命周期制定灵活的流程和功能:根据业务需求启动更轻更严格、更强大的功能,并根据需求的增加来提升质量或精度。
一些企业正在利用新兴技术来应对新的数据源,但大多数企业仍然面临着需要努力管理好他们已经掌握或者应当掌握的数据信息的困境,而当他们试图部署大数据功能时,发现自己还需要面对和处理新的以及当下实时的数据。
为了能够实现持久成功的大数据项目,企业需要把重点放在如下五个主要领域。
1、确立明确的角色分工和职责范围。
对于您企业环境中的所有的数据信息,您需要对于这些数据信息所涉及的关键利益相关者、决策者有一个清晰的了解和把控。当数据信息在企业的系统传输过程中及其整个生命周期中,角色分工将发生变化,而企业需要对这些变化有一个很好的理解。当企业开始部署大数据项目之后,务必要明确识别相关数据的关键利益相关者,并做好这些数据信息的完善和迭代工作。
2、加强企业的数据治理和数据管理功能。
确保您企业的进程足够强大,能够满足和支持大数据用户和大数据技术的需求。进程可以是灵活的,并应充分考虑到业务部门和事务部门的需求,这些部门均伴有不同程度的严谨性和监督要求。
确保您企业的参考信息架构已经更新到包括大数据。这样做会给未来的项目打好最好的使用大数据技术和适当的信息管理能力的基础。
确保您企业的元数据管理功能足够强大,能够包括并关联所有的基本元数据组件。随着时间的推移,进行有序的分类,满足业务规范。
一旦您开始在您企业的生产部门推广您的解决方案时,您会希望他们长期持续的使用该解决方案,所以对架构功能的定义并监督其发挥的作用是至关重要的。确保您企业的治理流程包括IT控制的角色,以帮助企业的利益相关者们进行引导项目,以最佳地利用这些数据信息。其还应该包括您企业的安全和法务团队。根据我们的经验,使用现有的监督机制能够达到最佳的工作状态,只要企业实施了大数据应用,并专注于快速在进程中处理应用程序,而不是阻碍进程的通过。
3、了解环境中的数据的目的和要求的精度水平,并相应地调整您企业的期望值和流程。
无论其是一个POC,或一个已经进入主流业务流程的项目,请务必确保您对于期望利用这些数据来执行什么任务,及其质量和精度处于何种级别有一个非常清晰的了解。这种方法将使得企业的项目能够寻找到正确的数据来源和利益相关者,以更好地评估这些数据信息的价值和影响,进而让您决定如何最好地管理这些数据信息。更高的质量和精度则要求更强大的数据管理和监督能力。
随着您企业大数据项目的日趋成熟,考虑建立一套按照数据质量或精确度分类的办法,这将使得数据用户得以更好的了解他们所使用的是什么,并相应地调整自己的期望值。例如,您可以使用白色、蓝色或金色来分别代表原始数据、清理过的数据,经过验证可以有针对性的支持分析和使用的数据。有些企业甚至进一步完善了这一分类方法:将数据从1到5进行分类,其中1是原始数据,而5是便于理解,经过整理的、有组织的数据。
4、将对非结构化的内容的管理纳入到您企业的数据管理能力。
非结构化数据一直是企业业务运营的一部分,但既然现在我们已经有了更好的技术来探索,分析和这些非结构化的内容,进而帮助改善业务流程和工业务洞察,所以我们最终将其正式纳入我们的数据管理是非常重要的。大多数企业目前都被困在了这一步骤。
数据库中基本的、非结构化的数据是以评论的形式或者自由的形式存在的,其至少是数据库的一部分,应该被纳入到数据管理。但挖掘这些数据信息则是非常难的。
数字数据存储在传统的结构化数据库和业务流程外,很少有许多的治理范围分组和数据管理的实现,除了当其被看作是一个技术问题时。一般来说,除了严格遵守相关的安全政策,今天的企业尚未对其进行真正有效的管理。当您的企业开始大跨步实现了大数据项目之后,您会发现这一类型的数据信息迅速进入了您需要管理的范畴,其输出会影响您企业的商业智能解决方案或者甚至是您企业的业务活动。积极的考虑将这些数据纳入到您企业的数据管理功能的范围,并明确企业的所有权,并记录好这些数据信息的诸如如何使用、信息来源等等资料。
不要采取“容易的轻松路线”,单纯依靠大数据技术是您企业唯一正式的非结构化数据管理的过程。随着时间的推移,企业将收集越来越多的非结构化数据,请务必搞清楚哪些数据是好的,哪些是坏的,他们分别来自何处,以及其使用是否一致,将变得越来越重要,甚至在其生命周期使用这个数据都是至关重要的。
要保持这种清晰,您可以使用大数据和其他工具,以了解您企业所收集的数据信息,确定其有怎样的价值,需要怎样的管理,这是至关重要的。大多数进入您企业的大数据系统的非结构化数据都已经经过一些监控了,但通常是作为一个BLOB(binarylargeobject)二进制大对象和非结构化的形式进行的。随着您的企业不断的在您的业务流程中“发掘”出这一类型的数据,其变得更加精确和有价值。其可能还具有额外的特点,符合安全,隐私或法律和法规的元素要求。最终,这些数据块可以成为新的数据元素或添加到现有的数据,但您必须有元数据对其进行描述和管理,以便尽可能最有效地利用这些数据。
5、正式在生产环境运行之前进行测试。
如果您的企业做的是一次性的分析或完整的一次性的试点,这可能并不适用于您的企业,但对大多数企业来说,他们最初的大数据工作将迅速发展,他们找到一个可持续利用他们已经挖掘出的极具价值的信息的需求。这意味着需要在您的沙箱环境中进行测试,然后才正式的在您的生产环境运。
B. fm2021大数据库怎么开
在高级设置里。
开档的时候点高级设置,下一页右上角就能看到设置数据库大小。“巨大数据库”是需要补丁的,目前21的没有。大数据库包含大多数知名球员,基本你能想出来的球员,他都会有,弱点的国家,也会有很多知名的球星,也许郑大志都能开出来。
C. 教你设计大型Oracle数据库
本文教你如何设计大型Oracle数据库 希望对大家有所帮助
一 概论
超大型系统的特点为
处理的用户数一般都超过百万 有的还超过千万 数据库的数据量一般超过 TB;
系统必须提供实时响应功能 系统需不停机运行 要求系统有很高的可用性及可扩展性
为了能达到以上要求 除了需要性能优越的计算机和海量存储设备外 还需要先进的数据库结构设计和优化的应用系统
一般的超大型系统采用双机或多机集群系统 下面以数据库采用Oracle 并行服务器为例来谈谈超大型数据库设计方法
确定系统的ORACLE并行服务器应用划分策略迅盯
数据库物理结构的设计
系统硬盘的划分及分配
备份及恢复策略的考虑
二 Oracle并行服务器应用划分策略
Oracle并行服务器允许不同节点上的多个INSTANCE实例同时访问一个数据库 以提高系统的可用性 可扩展性及性能 Oracle并行服务器中的每个INSTANCE实例都可将共享数据库中的表或索引的数据块读入本地的缓冲区中 这就意味着一个数据块可存在于多个INSTANCE实例的SGA区中 那么保持这些缓冲区的数据的一致性就很哗亮重要 Oracle使用 PCM( Parallel Cache Management)锁维护缓冲区的一致性 Oracle同时通过I DLM(集成的分布式锁管理器)实现PCM 锁 并通过专门的LCK进程实现INSTANCE实例间的数据一致
考虑这种情况 INSTANCE 对BLOCK X块修改 这时INSTANCE 对BLOCK X块也需要修改 Oracle并行服务器利用PCM锁机制 使BLOCK X从INSTANCE 的SGA区写入数据库数据文件中 又从数据文件中把BLOCK X块读入INSTANCE 的SGA区中 发生这种情况即为一个PING PING使原来 个MEMORY IO可以完成的工作变成 个DISK IO和 个 MEMORY IO才能够完成 如果系统中有过多的PING 将大大降低系统的性能
Oracle并行服务器中的每个PCM锁可管理多个数据块 PCM锁管理的数据块的个数与分配给一个数据文件的PCM锁的个数及该数据文件的大小有关 当INSTANCE 和INSTANCE 要操作不同的BLOCK 如果这些BLOCK 是由同一个PCM锁管理的 仍然会发生PING 这些PING称为FALSE PING 当多个INSTANCE访问相同的BLOCK而产生的PING是TRUE PING
合理的应用划分使不同的应用访问不同的数据 可避免或减少TRUE PING;通过给FALSE PING较多的数据文件分配更多的PCM锁可减少 FALSE PING的次数 增加PCM锁不能减少TRUE PING
所以 Oracle并行服务器设计的目的是使系统交易处理合理的分布在INSTANCE实例间 以最小化PING 同时合理的分配PCM锁 减少FALSE PING 设计的关键是找出可能产生的冲突 从而决定应用划分的策略 应用划分有如下四种方法
根据功能模块划分 不同的节点运行不同的应用
根据用户划分 不同类型的用户运行在不同的节点上
根据数据划分 不同的节点访问不同的数据或索引
根据时间划分 不同的应用在不同的时间段运行
应用划分的两个重要原则是使PING最小化及使各节点的负载大致均衡
三 数据库物理结构的设计
数据库物理结构设计包括确定表及索引的物理存储参数 确定及分配数据亩芦和库表空间 确定初始的回滚段 临时表空间 redo log files等 并确定主要的初始化参数 物理设计的目的是提高系统的性能 整个物理设计的参数可以根据实际运行情况作调整
表及索引数据量估算及物理存储参数的设置
lishixin/Article/program/Oracle/201311/18944
D. 大型数据库设计原则
一个好的数据库产品不等于就有一个好的应用系统 如果不能设计一个合理的数据库模型 不仅会增加客户端和服务器段程序的编程和维护的难度 而且将会影响系统实际运行的性能 一般来讲 在一个MIS系统分析 设计 测试和试运行阶段 因为数据量较小 设计人员和测试人员往往只注意到功能的实现 而很难注意到性能的薄弱之处 等到系统投入实际运行一段时间后 才发现系统的性能在降低 这时再来考虑提高系统性能则要花费更多的人力物力 而整个系统也不可避免的形成了一个打补丁工程 笔者依据多年来设计和使用数据库的经验 提出以下一些设计准则 供同仁们参考
命名的规范
不同的数据库产品对对象的命名有不同的要求 因此 数据库中的各种对象的命名 后台程序的代码编写应采用大小写敏感的形式 各种对象命名长度不要超过 个字符 这样便于应用系统适应不同的数据库
游标(Cursor)的慎用
游标提供了对特定集合中逐行扫描的手段 一般使用游标逐行遍历数据 根据取出的数据不同条件进行不同的操作 尤其对多表和大表定义的游标(大的数据集合)循环很容易使程序进入一个漫长的等特甚至死机 笔者在某市《住房公积金管理系统》进行日终帐户滚积数计息处理时 对一个 万个帐户的游标处理导致程序进入了一个无限期的等特(后经测算需 个小时才能完成)(硬件环境 Alpha/ Mram Sco Unix Sybase ) 后根据不同的条件改成用不同的UPDATE语句得以在二十分钟之内完成 示例如下
Declare Mycursor cursor for select count_no from COUNT
Open Mycursor
Fetch Mycursor into @vcount_no
While (@@sqlstatus= )
Begin
If @vcount_no= 条件
操作
If @vcount_no= 条件
操作
Fetch Mycursor into @vcount_no
End
改为
Update COUNT set 操作 for 条件
Update COUNT set 操作 for 条件
在有些场合 有时也非得使用游标 此时也可考虑将符合条件的数据行转入临时表中 再对临时表定义游标进行操作 可时性能得到明显提高 笔者在某地市〈电信收费系统〉数据库后台程序设计中 对一个表( 万行中符合条件的 多行数据)进行游标操作(硬件环境 PC服务器 PII Mram NT Ms Sqlserver ) 示例如下
Create #tmp /* 定义临时表 */
(字段
字段
)
Insert into #tmp select * from TOTAL where
条件 /* TOTAL中 万行 符合条件只有几十行 */
Declare Mycursor cursor for select * from #tmp
/*对临时表定义游标*/
索引(Index)的使用原则
创建索引一般有以下两个目的 维护被索引列的唯一性和提供快速访问表中数据的策略 大型数据库有两种索引即簇索引和非簇索引 一个没有簇索引的表是按堆结构存储数据 所有的数据均添加在表的尾部 而建立了簇索引的表 其数据在物理上会按照簇索引键的顺序存储 一个表只允许有一个簇索引 因此 根据B树结构 可以理解添加任何一种索引均能提高按索引列查询的速度 但会降低插入 更新 删除操作的性能 尤其是当填充因子(Fill Factor)较大时 所以对索引较多的表进行频繁的插入 更新 删除操作 建表和索引时因设置较小的填充因子 以便在各数据页中留下较多的自由空间 减少页分割及重新组织的工作
数据的一致性和完整性
为了保证数据库的一致性和完整性 设计人员往往会设计过多的表间关联(Relation) 尽可能的降低数据的冗余 表间关联是一种强制性措施 建立后 对父表(Parent Table)和子表(Child Table)的插入 更新 删除操作均要占用系统的开销 另外 最好不要用Identify 属性字段作为主键与子表关联 如果数据冗余低 数据的完整性容易得到保证 但增加了表间连接查询的操作 为了提高系统的响应时间 合理的数据冗余也是必要的 使用规则(Rule)和约束(Check)来防止系统操作人员误输入造成数据的错误是设计人员的另一种常用手段 但是 不必要的规则和约束也会占用系统的不必要开销 需要注意的是 约束对数据的有效性验证要比规则快 所有这些 设计人员在设计阶段应根据系统操作的类型 频度加以均衡考虑
事务的陷阱
事务是在一次性完成的一组操作 虽然这些操作是单个的操作 SQL Server能够保证这组操作要么全部都完成 要么一点都不做 正是大型数据库的这一特性 使得数据的完整性得到了极大的保证
众所周知 SQL Server为每个独立的SQL语句都提供了隐含的事务控制 使得每个DML的数据操作得以完整提交或回滚 但是SQL Server还提供了显式事务控制语句
BEGIN TRANSACTION 开始一个事务
MIT TRANSACTION 提交一个事务
ROLLBACK TRANSACTION 回滚一个事务
事务可以嵌套 可以通过全局变量@@trancount检索到连接的事务处理嵌套层次 需要加以特别注意并且极容易使编程人员犯错误的是 每个显示或隐含的事物开始都使得该变量加 每个事务的提交使该变量减 每个事务的回滚都会使得该变量置 而只有当该变量为 时的事务提交(最后一个提交语句时) 这时才把物理数据写入磁盘
数据库性能调整
在计算机硬件配置和网络设计确定的情况下 影响到应用系统性能的因素不外乎为数据库性能和客户端程序设计 而大多数数据库设计员采用两步法进行数据库设计 首先进行逻辑设计 而后进行物理设计 数据库逻辑设计去除了所有冗余数据 提高了数据吞吐速度 保证了数据的完整性 清楚地表达数据元素之间的关系 而对于多表之间的关联查询(尤其是大数据表)时 其性能将会降低 同时也提高了客 户端程序的编程难度 因此 物理设计需折衷考虑 根据业务规则 确定对关联表的数据量大小 数据项的访问频度 对此类数据表频繁的关联查询应适当提高数据冗余设计
数据类型的选择
数据类型的合理选择对于数据库的性能和操作具有很大的影响 有关这方面的书籍也有不少的阐述 这里主要介绍几点经验
Identify字段不要作为表的主键与其它表关联 这将会影响到该表的数据迁移
Text 和Image字段属指针型数据 主要用来存放二进制大型对象(BLOB) 这类数据的操作相比其它数据类型较慢 因此要避开使用
日期型字段的优点是有众多的日期函数支持 因此 在日期的大小比较 加减操作上非常简单 但是 在按照日期作为条件的查询操作也要用函数 相比其它数据类型速度上就慢许多 因为用函数作为查询的条件时 服务器无法用先进的性能策略来优化查询而只能进行表扫描遍历每行
例如 要从DATA_TAB 中(其中有一个名为DATE的日期字段)查询 年的所有记录
lishixin/Article/program/Oracle/201311/17929
E. 通过SQL语句使用什么命令创建数据库
CREATE DATABASE 为SQl语句,用于创建数据库。
语法
CREATE DATABASEdatabase_name
[ ON
[ < filespec > [,...n] ]
[,< filegroup > [,...n] ]
]
[ LOG ON { < filespec > [,...n] } ]
[ COLLATEcollation_name]
[ FOR LOAD | FOR ATTACH ]
< filespec > ::=
[ PRIMARY ]
([ NAME=logical_file_name,]
FILENAME='os_file_name'
[,SIZE=size]
[,MAXSIZE={max_size| UNLIMITED } ]
[,FILEGROWTH=growth_increment])[,...n]
< filegroup > ::=
FILEGROUPfilegroup_name< filespec > [,...n]
参数
database_name
新数据库的名称。数据库名称在服务器中必须唯一,并且符合标识符的规则。database_name最多可以包含 128 个字符,除非没有为日志指定逻辑名。如果没有指定日志文件的逻辑名,则 Microsoft® SQL Server™ 会通过向database_name追加后缀来生成逻辑名。该操作要求database_name在 123 个字符之内,以便生成的日志文件逻辑名少于 128 个字符。
ON
指定显式定义用来存储数据库数据部分的磁盘文件(数据文件)。该关键字后跟以逗号分隔的 <filespec> 项列表,<filespec> 项用以定义主文件组的数据文件。主文件组的文件列表后可跟以逗号分隔的 <filegroup> 项列表(可选),<filegroup> 项用以定义用户文件组及其文件。
n
占位符,表示可以为新数据库指定多个文件。
LOG ON
指定显式定义用来存储数据库日志的磁盘文件(日志文件)。该关键字后跟以逗号分隔的 <filespec> 项列表,<filespec> 项用以定义日志文件。如果没有指定 LOG ON,将自动创建一个日志文件,该文件使用系统生成的名称,大小为数据库中所有数据文件总大小的 25%。
FOR LOAD
支持该子句是为了与早期版本的 Microsoft SQL Server 兼容。数据库在打开dbo use only数据库选项的情况下创建,并且将其状态设置为正在装载。SQL Server 7.0 版中不需要该子句,因为 RESTORE 语句可以作为还原操作的一部分重新创建数据库。
FOR ATTACH
指定从现有的一组操作系统文件中附加数据库。必须有指定第一个主文件的 <filespec> 条目。至于其它 <filespec> 条目,只需要与第一次创建数据库或上一次附加数据库时路径不同的文件的那些条目。必须为这些文件指定 <filespec> 条目。
附加的数据库必须使用与 SQL Server 相同的代码页和排序次序创建。应使用sp_attach_db系统存储过程,而不要直接使用 CREATE DATABASE FOR ATTACH。只有必须指定 16 个以上的 <filespec> 项目时,才需要使用 CREATE DATABASE FOR ATTACH。
如果将数据库附加到的服务器不是该数据库从中分离的服务器,并且启用了分离的数据库以进行复制,则应该运行sp_removedbreplication从数据库删除复制。
collation_name
指定数据库的默认排序规则。排序规则名称既可以是 Windows 排序规则名称,也可以是 SQL 排序规则名称。如果没有指定排序规则,则将 SQL Server 实例的默认排序规则指派为数据库的排序规则。
有关 Windows 和 SQL 排序规则名称的更多信息,请参见COLLATE。
PRIMARY
指定关联的 <filespec> 列表定义主文件。主文件组包含所有数据库系统表。还包含所有未指派给用户文件组的对象。主文件组的第一个 <filespec> 条目成为主文件,该文件包含数据库的逻辑起点及其系统表。一个数据库只能有一个主文件。如果没有指定 PRIMARY,那么 CREATE DATABASE 语句中列出的第一个文件将成为主文件。
NAME
为由 <filespec> 定义的文件指定逻辑名称。如果指定了 FOR ATTACH,则不需要指定 NAME 参数。
logical_file_name
用来在创建数据库后执行的 Transact-SQL 语句中引用文件的名称。logical_file_name在数据库中必须唯一,并且符合标识符的规则。该名称可以是字符或 Unicode 常量,也可以是常规标识符或定界标识符。
FILENAME
为 <filespec> 定义的文件指定操作系统文件名。
'os_file_name'
操作系统创建 <filespec> 定义的物理文件时使用的路径名和文件名。os_file_name中的路径必须指定 SQL Server 实例上的目录。os_file_name不能指定压缩文件系统中的目录。
如果文件在原始分区上创建,则os_file_name必须只指定现有原始分区的驱动器字母。每个原始分区上只能创建一个文件。原始分区上的文件不会自动增长;因此,os_file_name指定原始分区时,不需要指定 MAXSIZE 和 FILEGROWTH 参数。
SIZE
指定 <filespec> 中定义的文件的大小。如果主文件的 <filespec> 中没有提供 SIZE 参数,那么 SQL Server 将使用model数据库中的主文件大小。如果次要文件或日志文件的 <filespec> 中没有指定 SIZE 参数,则 SQL Server 将使文件大小为 1 MB。
size
<filespec> 中定义的文件的初始大小。可以使用千字节(KB)、兆字节(MB)、千兆字节 (GB) 或兆兆字节 (TB) 后缀。默认值为 MB。指定一个整数,不要包含小数位。size的最小值为 512 KB。如果没有指定size,则默认值为 1 MB。为主文件指定的大小至少应与model数据库的主文件大小相同。
MAXSIZE
指定 <filespec> 中定义的文件可以增长到的最大大小。
max_size
<filespec> 中定义的文件可以增长到的最大大小。可以使用千字节(KB)、兆字节(MB)、千兆字节 (GB) 或兆兆字节 (TB) 后缀。默认值为 MB。指定一个整数,不要包含小数位。如果没有指定max_size,那么文件将增长到磁盘变满为止
说明在磁盘即将变满时,Microsoft Windows NT® S/B 系统日志会警告 SQL Server系统管理员。
UNLIMITED
指定 <filespec> 中定义的文件将增长到磁盘变满为止。
FILEGROWTH
指定 <filespec> 中定义的文件的增长增量。文件的 FILEGROWTH 设置不能超过 MAXSIZE 设置。
growth_increment
每次需要新的空间时为文件添加的空间大小。指定一个整数,不要包含小数位。0 值表示不增长。该值可以 MB、KB、GB、TB 或百分比 (%) 为单位指定。如果未在数量后面指定 MB、KB 或 %,则默认值为 MB。如果指定 %,则增量大小为发生增长时文件大小的指定百分比。
如果没有指定 FILEGROWTH,则默认值为 10%,最小值为 64 KB。指定的大小舍入为最接近的 64 KB 的倍数。
(5)怎么创建大数据库扩展阅读
组成
在正式学习SQL语言之前,首先让我们对SQL语言有一个基本认识,介绍一下SQL语言的组成:
1、一个SQL数据库是表(Table)的集合,它由一个或多个SQL模式定义。
2、一个SQL表由行集构成,一行是列的序列(集合),每列与行对应一个数据项。
3、一个表或者是一个基本表或者是一个视图。基本表是实际存储在数据库的表,而视图是由若干基本表或其他视图构成的表的定义。
4、一个基本表可以跨一个或多个存储文件,一个存储文件也可存放一个或多个基本表。每个存储文件与外部存储上一个物理文件对应。
5、用户可以用SQL语句对视图和基本表进行查询等操作。在用户角度来看,视图和基本表是一样的,没有区别,都是关系(表格)。
6、SQL用户可以是应用程序,也可以是终端用户。SQL语句可嵌入在宿主语言的程序中使用,宿主语言有FORTRAN,COBOL,PASCAL,PL/I,C和Ada语言等。SQL用户也能作为独立的用户接口,供交互环境下的终端用户使用。
参考资料来源:网络-SQL数据库
参考资料来源:网络-Create Database