导航:首页 > 网络数据 > 大数据可视化常见图形系列之一

大数据可视化常见图形系列之一

发布时间:2024-06-20 23:25:31

『壹』 常见的数据可视化方法有哪些

时态


时态可视化是数据以线性的方式展示。最为关键的是时态数据可视化有一个起点和一个终点。时态可视化的一个例子可以是连接的散点图,显示诸如某些区域的温度信息。


多维


可以通过使用常用的多维方法来展示目前二维或高维度的数据。多维的展示使得效果更加多元化,满足企业的需求。


分层


分层方法用于呈现多组数据。这些数据可视化通常展示的是大群体里面的小群体。分层数据可视化的例子包括一个树形图,可以显示语言组。


网络


在网络中展示数据间的关系,它是一种常见的展示大数据量的方法。结构较为复杂。


关于常见的数据可视化方法有哪些,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

『贰』 大数据可视化设计到底是啥,该怎么用

大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。

文章目录

        一、什么是网络安全可视化

1.1 故事+数据+设计 =可视化

1.2 可视化设计流程

二、案例一:大规模漏洞感知可视化设计

2.1整体项目分析

2.2分析数据

2.3匹配图形

2.4确定风格

2.5优化图形

2.6检查测试

三、案例二:白环境虫图可视化设计

3.1整体项目分析

3.2分析数据

3.3 匹配图形

3.4优化图形

3.5检查测试

一、什么是网络安全可视化

攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?

1.1 故事+数据+设计 =可视化

做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。

有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:

我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。

将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。

将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。

最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。

总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。

1.2 可视化设计流程

一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。

具体我们通过两个案例来进行分析。

二、案例一:大规模漏洞感知可视化设计

图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。

2.1整体项目分析

我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。

对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。

2.2分析数据

想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。

2.3匹配图形

2.4确定风格

匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。

最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。

2.5优化图形

有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。

在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。

完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。

2.6检查测试

最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。

三、案例二:白环境虫图可视化设计

如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。

3.1整体项目分析

当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。

3.2分析数据

接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。

3.3 匹配图形

根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。

3.4优化图形

优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。

3.5检查测试

通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。

四、总结

总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。

可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。

『叁』 如何实现大数据可视化

1.考虑用户
管理咨询公司Aspirent视觉分析实践主管Dan Gastineau表示,企业应使用颜色、形状、大小和布局来显示可视化的设计和使用。
Aspirent使用颜色来突出希望用户关注的分析方面。而大小可有效说明数量,但过多使用不同大小来传递信息可能会导致混乱。这里应该有选择地使用大小,即在咨询团队成员想要强调的地方。
2.讲述连贯的故事
与你的受众沟通,保持设计的简单和专注性。颜色到图表数量等细节可帮助确保仪表板讲述连贯的故事。MicroStrategy产品管理高级副总裁Saurabh
Abhyankar说:“仪表板就像一本书,它需要考虑读者的设计元素,而不仅仅是强制列出所有可访问的数据。”仪表板的设计将成为推动部署的因素。
3.迭代设计
应不断从视觉分析用户获得反馈意见。随着时间的推移,数据探索会引发新的想法和问题,而随时间和部署推移提高数据相关性会使用户更智能。
从你的受众征求并获取反馈意见可改善体验。谷歌云端数据工作室首席产品经理Nick
Mihailovski表示,快速构建概念、快速获取反馈意见并进行迭代可更快获得更好的结果。另外,还可将调查和表格整合到精美的报告中,也可以帮助确保大数据的可视化结果确实有助于目标受众。
4.个性化一切
应确保仪表板向最终用户显示个性化信息,并确保其相关性。并且,还应确保可视化在设计上反映其所在的设备,并为最终用户提供离线访问,这将让可视化走得更长远。Mihailovski说,通过精心设计的交互式可视化来吸引观众以及传播数据文化,这会使分析具有吸引力和富有乐趣。
5.从分析目标开始
应确保数据类型和分析目标可反映所选的可视化类型。Mihailovski称:“人们通常会采用相反的方法,他们先看到整洁或模糊的可视化类型,然后试图使其数据相匹配。”对于大数据项目的可视化,简单的表格或条形图有时可能是最有效的。

『肆』 大数据可视化大屏图表设计经验,教给你!

自从跟大家分享第一篇 《大数据可视化大屏设计经验,教给你!》 ,很多小伙伴都会问我一些相关的问题,看了小伙伴给我发的视觉稿,整体都还不错,但是发现图表的设计都有一些问题,大家可能对数据可视化的图表设计经验少一些,所以这篇文章就挖掘一下图表的细节表现,分享我曾经遇到过的坑和对图表设计的理解。

图表设计 

图表设计概念

图表设计是数据可视化的一个分支领域,是对数据进行二次加工,用统计图表的方式进行呈现,也是数据可视化的核心表现,图表设计既要保证图表本身数据清晰准确、直观易懂,又要在找准用户关注的核心内容进行适当的突显,帮助用户通过数据进行决策。

下面分析三种常用的可视化图表设计:

折线图

折线图常用于表示数据的变化和趋势,坐标轴的不同对折线的变化幅度有很大的影响。

左图坐标轴设定的太低,折线变化过于陡峭,图中数值区间为(10-34)数据可视化的表现过于夸大了折线变化的趋势。

右图坐标轴的数值设定的太高,则折线变化过于平缓,无法清晰的表现折线的变化。

合理的折线图应当占据图表的三分之二的茄卜位置,图表的X轴数值范围应根据折线的数值增减变化而变化,这需要跟前端小哥哥小姐姐说明,做成动态计算。

折线图的折线粗细要合理,过细的折线会降低数据表现,过粗的折线会损失折线中的大纳孝数据波动细节,视觉上较难精准找到折线点的相应数值!我通常用两个像素的线,看起来比较合适!

右图刻度线颜色过重,影响图表数据的表现,零基线跟图表内的刻度线对比不够明显,整体很乱。零基线是强调起始位置的,一般要比图表内的线颜色凸出一些。

条形图/柱状图

理想很丰满,现实很骨感。这个案例是我之前在工作中遇到的问题,数据进来后,被吓到了,问题的原因是没有跟前端小哥姐沟通好,他们把X轴写死,导致出现这种问题,其实应该情况要把这些图表的取值范围写成动态计算的。

例如,以现在数值范围为例,数据的最高值为18,X轴最高数值应该为25,当数据又上升一定的高度后,X轴再上升到相应的数值高度,这滚稿样避免了如右图的问题。

坐标轴的标签文字最好能水平排列, 当X轴标签文字过多时,不建议倾斜排列、上下排列、换行排列 文字多了这样的展示大大降低了阅读性!下图给出两个解决方案,大大提高标签文字的阅读性!

解决方案

柱子之间过于分散就会失去数据之间的关联性,过密就会变得数据之间没有独立性更不利于舒适阅读。

当柱子为n时,柱子直接的距离建议与n相差不要太大,柱子靠边的距离,最好是柱子之间的一半的距离,这样视觉上最为舒适。

饼图

左1图,不建议在饼图内与百分比数值一起显示,饼图本身的形状和大小,文字过多时容易溢出,如果出现一个2%一个1%,就很难辨别图形指向,这样也就失去了数据可视化的意义,PPT通常有这样的设计样式,因为是个死图。

左3图,人的阅读习惯是从左到右,从上到下,所以数据从大到小排列,更有助于阅读,图形也更具美感!

当饼图为检出率,或者一些重要信息检测的重点关注数据,就不建议大小数据顺时针排列,左1图这种情况一般很少出现,因为关注的是检出数值,展示未检出数据实为鸡肋,可能是极少情况的需要吧!

右图对于类似检出率的数据最为合适,直观清晰,没有无用数据干扰!

当饼图的标签维度过多时,就不适合把数据围绕饼图一周展示,会很乱,不易阅读,解决方案如右图!

图表分类图

分享一张图表分类大全,保存起来,设计数据可视化产品,会有重要参考价值!

这张图由设计师Abela对图表的各种特征进行了大致的概括总结。

『伍』 数据可视化的基本流程

作者 | 向倩文

来源 | 数据产品手记

大多数人对数据可视化的第一印象,可能就是各种图形,比如Excel图表模块中的柱状图、条形图、折线图、饼图、散点图等等,就不一一列举了。以上所述,只是数据可视化的具体体现,但是数据可视化却不止于此。

数据可视化不是简单的视觉映射,而是一个以数据流向为主线的一个完整流程,主要包括数据采集、数据处理和变换、可视化映射、用户交互和用户感知。一个完整的可视化过程,可以看成数据流经过一系列处理模块并得到转化的过程,用户通过可视化交互从可视化映射后的结果中获取知识和灵感。

图1 可视化的基本流程图

可视化主流程的各模块之间,并不仅仅是单纯的线性连接,而是任意两个模块之间都存在联系。例如,数据采集、数据处理和变换、可视化编码和人机交互方式的不同,都会产生新的可视化结果,用户通过对新的可视化结果的感知,从而又会有新的知识和灵感的产生。

下面,对数据可视化主流程中的几个关键步骤进行说明。


01

数据采集

数据采集是数据分析和可视化的第一步,俗话说“巧妇难为无米之炊”,数据采集的方法和质量,很大程度上就决定了数据可视化的最终效果。

数据采集的分类方法有很多,从数据的来源来看,可以分为内部数据采集和外部数据采集。

1.内部数据采集:

指的是采集企业内部经营活动的数据,通常数据来源于业务数据库,如订单的交易情况。如果要分析用户的行为数据、APP的使用情况,还需要一部分行为日志数据,这个时候就需要用「埋点」这种方法来进行APP或Web的数据采集。

2.外部数据采集:

指的数通过一些方法获取企业外部的一些数据,具体目的包括,获取竞品的数据、获取官方机构官网公布的一些行业数据等。获取外部数据,通常采用的数据采集方法为「网络爬虫」。

以上的两类数据采集方法得来的数据,都是二手数据。通过调查和实验采集数据,属于一手数据,在市场调研和科学研究实验中比较常用,不在此次探讨范围之内。


02

数据处理和变换

数据处理和数据变换,是进行数据可视化的前提条件,包括数据预处理和数据挖掘两个过程。

一方面,通过前期的数据采集得到的数据,不可避免的含有噪声和误差,数据质量较低;另一方面,数据的特征、模式往往隐藏在海量的数据中,需要进一步的数据挖掘才能提取出来。

常见的数据质量问题包括:

1.数据收集错误,遗漏了数据对象,或者包含了本不应包含的其他数据对象。

2.数据中的离群点,即不同于数据集中其他大部分数据对象特征的数据对象。

3.存在遗漏值,数据对象的一个或多个属性值缺失,导致数据收集不全。

4.数据不一致,收集到的数据明显不合常理,或者多个属性值之间互相矛盾。例如,体重是负数,或者所填的邮政编码和城市之间并没有对应关系。

5.重复值的存在,数据集中包含完全重复或几乎重复的数据。

正是因为有以上问题的存在,直接拿采集的数据进行分析or可视化,得出的结论往往会误导用户做出错误的决策。因此,对采集到的原始数据进行数据清洗和规范化,是数据可视化流程中不可缺少的一环。

数据可视化的显示空间通常是二维的,比如电脑屏幕、大屏显示器等,3D图形绘制技术解决了在二维平面显示三维物体的问题。

但是在大数据时代,我们所采集到的数据通常具有4V特性:Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。如何从高维、海量、多样化的数据中,挖掘有价值的信息来支持决策,除了需要对数据进行清洗、去除噪声之外,还需要依据业务目的对数据进行二次处理。

常用的数据处理方法包括:降维、数据聚类和切分、抽样等统计学和机器学习中的方法。


03

可视化映射

对数据进行清洗、去噪,并按照业务目的进行数据处理之后,接下来就到了可视化映射环节。可视化映射是整个数据可视化流程的核心,是指将处理后的数据信息映射成可视化元素的过程。

可视化元素由3部分组成:可视化空间+标记+视觉通道

1.可视化空间

数据可视化的显示空间,通常是二维。三维物体的可视化,通过图形绘制技术,解决了在二维平面显示的问题,如3D环形图、3D地图等。

图2 可视化空间示例

2.标记

标记,是数据属性到可视化几何图形元素的映射,用来代表数据属性的归类。

根据空间自由度的差别,标记可以分为点、线、面、体,分别具有零自由度、一维、二维、三维自由度。如我们常见的散点图、折线图、矩形树图、三维柱状图,分别采用了点、线、面、体这四种不同类型的标记。

图3 标记类型示例

3.视觉通道

数据属性的值到标记的视觉呈现参数的映射,叫做视觉通道,通常用于展示数据属性的定量信息。

常用的视觉通道包括:标记的位置、大小(长度、面积、体积...)、形状(三角形、圆、立方体...)、方向、颜色(色调、饱和度、亮度、透明度...)等。

图3中的四个图形示例,就很好的利用了位置、大小、颜色等视觉通道来进行数据信息的可视化呈现。

「标记」、「视觉通道」是可视化编码元素的两个方面,两者的结合,可以完整的将数据信息进行可视化表达,从而完成可视化映射这一过程。

关于可视化编码元素的优先级,以及如何根据数据的特征选择合适的可视化表达,下次会专题来分享下。


04

人机交互

可视化的目的,是为了反映数据的数值、特征和模式,以更加直观、易于理解的方式,将数据背后的信息呈现给目标用户,辅助其作出正确的决策。

但是通常,我们面对的数据是复杂的,数据所蕴含的信息是丰富的。

如果在可视化图形中,将所有的信息不经过组织和筛选,全部机械的摆放出来,不仅会让整个页面显得特别臃肿和混乱,缺乏美感;而且模糊了重点,分散用户的注意力,降低用户单位时间获取信息的能力。

常见的交互方式包括:

1.滚动和缩放:当数据在当前分辨率的设备上无法完整展示时,滚动和缩放是一种非常有效的交互方式,比如地图、折线图的信息细节等。但是,滚动与缩放的具体效果,除了与页面布局有关系外,还与具体的显示设备有关。

2.颜色映射的控制:一些可视化的开源工具,会提供调色板,如D3。用户可以根据自己的喜好,去进行可视化图形颜色的配置。这个在自助分析等平台型工具中,会相对多一点,但是对一些自研的可视化产品中,一般有专业的设计师来负责这项工作,从而使可视化的视觉传达具有美感。

3.数据映射方式的控制:这个是指用户对数据可视化映射元素的选择,一般一个数据集,是具有多组特征的,提供灵活的数据映射方式给用户,可以方便用户按照自己感兴趣的维度去探索数据背后的信息。这个在常用的可视化分析工具中都有提供,如tableau、PowerBI等。

4.数据细节层次控制:比如隐藏数据细节,hover或点击才出现。


05

用户感知

可视化的结果,只有被用户感知之后,才可以转化为知识和灵感。

用户在感知过程,除了被动接受可视化的图形之外,还通过与可视化各模块之间的交互,主动获取信息。

如何让用户更好的感知可视化的结果,将结果转化为有价值的信息用来指导决策,这个里面涉及到的影响因素太多了,心理学、统计学、人机交互等多个学科的知识。

学习之路漫漫,一直在路上, 我们会持续分享数据可视化领域的知识,记得持续follow我们哟!

阅读全文

与大数据可视化常见图形系列之一相关的资料

热点内容
js输入框获取焦点 浏览:894
mac网络测速 浏览:301
winlinux移植软件 浏览:100
代理酒店哪个网站好 浏览:207
java问题和解答 浏览:464
win10打印机设置共享的打印机 浏览:499
linux中造成死锁的原因 浏览:457
90版本贪食之源属性 浏览:348
文件权限600 浏览:109
苹果手机使用miui免费电话 浏览:732
qtudp发送文件 浏览:295
三星手机墙纸文件夹 浏览:478
iphone7输错密码震动 浏览:944
季度申报数据从哪里看 浏览:645
安卓的邮箱文件保存在哪里 浏览:441
苹果奥维导出文件在哪里 浏览:405
qq头像比较社会的女 浏览:840
手机风景修图教程 浏览:173
程序员用什么计算机语言 浏览:337
有票APP客服在哪里 浏览:692

友情链接