Ⅰ 大数据对教学的影响
大数据对教学的影响
随着时代的发展和科技的进步,“大数据”时代悄然来临。随着硬件的高速革新化与软件的高速智能化,大数据时代也对高校教育领域产生了广泛而深刻的影响。大数据就其性质来说,不是产品,也不是一种技术,而是一个抽象的概念,有人将“大数据”形象地比喻成21世纪人类探索的新边疆,是以高度发达的信息网络技术为支撑,所呈现出的巨大数据信息,当然包括伴生的相关处理技术。大数据是近年来继云计算、物联网后的新技术热点。
大数据具有4V特性,包括海量的数据规模(Volune)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)和巨大的数据价值(Value)。而就数据的实用价值,IBM认为还应具有第五个V特征,就是真实性(Veracity),在日常工作和学习中,数据信息真实性的好处不言而喻,对教育领域来说,更是最基本的要求与保障。要利用大数据时代的巨大资源为教育服务,教师的选取和甄别手段更显得尤为重要,从这个层面上来说,数据的真实性在一定方面上制约着教师教的内容和学生学的内容。
大数据时代给传统的教育提出了挑战,由于自身特点,它给教育提出了教育对象的个性化发展、教育方式的变革、教育观念的开放化、管理的科学化等要求,更有利于素质教育的开展。大数据时代的数据具有信息量大、形式多样、实时性强和价值多元等特性,因此教育模式和教育理念只有关注人的多样化发展才能培养出高素质人才。然而,与此相矛盾的是,传统的教学方式强调教师的主体地位,为了便于管理和保证教学效果,教师最有效也最轻松的方式就是以标准化来要求每一位同学,表现于统一的教材、统一的作业、统一的考核和对学生单一的评价方式上,这不仅不利于发挥学生的主动性,长此以往,更限制了学生的思维方式与视域,无法满足学生个性化发展和大数据时代对高素质人才的需求。
要想利用信息时代的数据更好地应用于教育,必须变革教学方式,对教师提出新的要求,教师不仅要树立终身学习的理念,还要更好地掌握学科前沿的动态信息,更好地利用数据的开放性、共享性等特点,充实学习内容,提升教学水平。以“慕课”和“小微课”平台的问世为广大学生所熟悉和利用,丰富和发展了在线教学模式,这更需要教师不断调整,告别传统的授业者的角色,以学生为主体,以技术为手段和平台,成为知识学习的组织者、引导者和评价者。
除了促进个性化发展、丰富学习内容和提高学习效率,大数据技术的应用更有利于教师掌握学生的身心发展规律。与传统的教师通过面谈、电话交流、家访及其他同学侧面反映和凭借工作经验判断学生心理特征等方式,应用大数据技术,分析和测量学生的心理特点,通过对以前遇到的实际问题的解决方式进行归纳和总结,这种体察方式不仅更理性,还可进一步对未来的心理状况进行有效预测,能促进教师更好地了解学生,还能有针对性地促进学习效果,提高学习能力。
大数据背景下,不仅革新教育理念,对高等学校的管理也提供了新思路。高等学校的信息化进程中会产生大量的数据,包括教师和学生信息、学籍和成绩信息、注册与选课信息等,利用大数据技术管理这些信息,对帮助学校资源管理和教学方法等方面将会产生极大的便利。目前,高等学校的信息化系统正不断发展完善。除数据管理、校园网络和远程教育系统外,还发展了图书馆信息管理系统、数字化校园等,如何对这些系统产生的大量信息进行系统分析,在信息化背景下建设优质高校就显得尤为重要。其中,教学管理、学习行为、教学评估等,均受到大数据的影响。
在教育领域如何利用大数据及其相关技术促进教育发展,是一个漫长的过程,在此过程中机遇与挑战并存,作为教育人士,我们应抓住机遇,迎接挑战,紧紧握住时代的脉搏,更好地服务于教育。
以上是小编为大家分享的关于大数据对教学的影响的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅱ 如何利用大数据及现代教育技术,辅助教师教学
无论你是在千禧年出生,还是在婴儿潮时期降临这个世界,今日的课堂与我们儿时的课堂相比,已经非常不同。
今日的小孩一上学就有平板电脑或者笔记本电脑,很多小孩拿到电脑时甚至还不能识字。一些国家为了让学生适应基于电脑的标准化测试,要求二年级的学生必须具备每分钟输入60个单词的能力。现在的小孩上学前就已经有姓名、住址、出生日期、医学和行为记录等数字记录。
在课堂上应用技术和大数据的设想已经成为现实,并且正以非常快的速度在发展,快到我们都无法预测未来几年内孩子们接受的规范教育将会变成怎样。这是我们的生活已经离不开大数据的又一证据。但当这个事情发生在我们孩子的教育上时,到底是好事还是坏事呢?
形成反馈闭环和大数据在教育中的益处
就教育而言,最重要的地方一直都是形成反馈闭环。教师提出一个问题,然后学生尝试去解决问题。从学生尝试解决问题的行为中,教师可以发现学生理解了哪些内容,以及哪些内容是不理解的,然后再基于此对教学行为作出相应的调整。同样的,学生在尝试解决问题的过程中,也能加深对问题的理解。
这个闭环在一对一或者是师生人数比率较低的情况下,非常有效,但是当学生数量过多,同时不同学生之间的水平存在差异之时,要想创建这种有效的闭环就变得异常困难。这时大数据和技术就可以发挥作用了。
任何一名教师都可以带着学生学一门课程,但是要做到对每个学生具体的问题进行精准定位,就没有那么容易了,尤其是在班级学生数量较大的情况下。一家名为Knewton的大数据公司开发了锋颤一个数字平台,该平台分析了几百万学生(从幼儿园到大学)的学习过程,并基于这一分析来设计更加合理的测试题目和更加个性化课程目标。最近,该公司与Houghton Mifflin Harcourt建立了合作关系,开发出了K-12阶段的个性化数学课程,同时还与法国创业公司Gutenberg Technology一道,开发了智能数字教科书。
简单来说,这些课程和教科书能够适应每个学生的差异。该程序可以根据学生的表现,判断当前的题目的难度是否过大,是否太容易,还是刚刚好?然后,基于判断实时的改变题目的难度。学生可以按照自己的节奏来控制学习进度,而不会受到周围其他学生的行为的影响。然后,系统会给教师一个反馈,告知哪个学生在哪个方面有困难,同时给出全班学生的表现的整体分析数据。
那么,这种教学方法有什么缺点吗?
大数据教育的阻碍
与其它所有使用大数据的应用一样,在教育中使用大数据也有人表示出不理解和担忧。人们最常担心的问题就是数据泄露,而且这种事情已经发生过了。2009年的时候,美国田纳西州的一个学区由于疏忽,将18000名K-12阶段学生的姓名、住址、出生日期和完整的社旁基嫌保号码暴露在了一个不安全的服务器上,而且整个过程持续了数月。
人们的另一个担忧是,这些数据会像以前学校曾经使用的神秘的“永久性档案”一样,一直伴随学生的整个教育生涯。毕竟,一个学生在小学时被标记为“捣蛋鬼”,并不运手代表他上了中学之后还是“捣蛋鬼”,反而可能会变成另外一个完全不一样的人。但是,由于他的数字档案里依然标记其为“捣蛋鬼”,学校当局和老师可能会基于这个过去的评价来对待已经改变的学生,这显然不合适。
另外一些团体还担心,这些学生的数据将被用于商业营销。理论上讲,学校和大数据软件开发商确实可以在特定的领域,向学生精准投放个性化广告。或许,学生写了一篇关于棒球的论文,然后就会收到关于当地棒球比赛的门票广告。
教师角色的转变
所有涉及数据的领域,从财经到零售业都会遇到这些担忧和阻碍,但是在教育领域使用大数据还有另外一个问题——教师角色的转变。随着越来越多的技术和数据应用投入的教学中,教师的角色也应该随之发生转变,即由教学角色向数据驱动的管理角色转变。然而,这是一个非常困难的过程。
优秀的教师选择成为教师,主要是因为他们热衷于教育学生。他们喜欢看到学生理解了一个问题之后,两眼放光的样子。他们也喜欢学生沉浸在一个知识点的时候,释放出的热情。不幸的是,这些优秀的教师对于让算法接管这一切感到不乐意,他们也不愿意做一些数据输入和管理工作,虽然这一切或许最终都能帮助学生走向卓越。
因此,大数据和技术或许并不是解决教育问题的灵丹妙药。我相信,我们应该开发出一些应用来辅助优秀的教师进行教学,而不是用大数据和数据分析替代他们。最终,理解和应用数据及其分析过程,将像在其他行业一样,让学生和教师都从中获得益处。
不知道各位如何看待这个问题,我们应该用数据记录和分析学生在课堂上的一切表现吗?还是我们应该保持传统教学方式,让大数据靠边站?
Ⅲ 大数据在教育方面的应用
大数据成为了这两年非常重要的一项技术,使用的地方也越来越多,在教育方面现在也有了很多的应用,下面就一起来看看大数据在教育中的使用。
1、个性化教育。通过运用大数据技术,教师可以关注学生个体的多方位的表现,可以通过对学生及时性的行为进行记录,使得数据有效整合,为教师提供真实个性的学生特点数据。
4、更新教育理念,创新教育思维。大数据时代下教育大数据扭转传统落后的教育理念与思维方式。在新时期教育领域到处充满了信息与数据,师生的一言一行以及学校的各类事物都能够转化为信息或数据。
随着智能化设备的广泛普及每位学生都可以运用计算机进行终端学习,有助于提高学生的学习积极性。
Ⅳ 大数据对高校教育的推动作用论文
大数据对高校教育的推动作用论文
当代社会互联网发达,信息技术广泛应用与社会各个领域。当然,利用信息技术来推动高校教育发展也是在信息化教育进程之中。信息技术的发展迅速,大数据也就迅速堆积,大数据记录了信息技术发展的脚步,同样有利于信息技术在社会上的有效发展。高校作为发展人才的地方,自然少不了大量数据累积,信息量巨大,大数据对高校教育也就有着非常大的影响,它不仅推动着高校教育的发展,同时也反映着高校教育数据累积的过程,这类数据与外界环境的共享,一起发挥着大数据对高校教育的推动作用。
1大数据 发挥出在高校教育的发展中的推动作用
高校教育在多年的发展中,逐渐适应了信息化的快速发展进程,将高校教育信息化是必然的条件,这对于高校教育的改革和完善具有完全有效的作用。高校教育信息化同样对提高教学质量,引导创新教学模式,发挥着重要作用。高校教育信息化有利于加强校园文化建设,促进教育高水平发展,有利于改善教学方法,发挥教育各项职能,有利于人才培养,有利于信息交流和教学环境改善。高校教育信息化是教育发展和提升的必要条件,大量的信息交流必定会产生众多数据,针对大数据进行数据收集和处理,方便数据检索和查询。高校教育本身就具有信息量大、数据多样,繁琐的鞥、特点,所以很好的利用大数据为高校教育发展做贡献,一定能更好的推动高校教育的发展。大数据在课堂上的应用,能够改变传统的教学模式,发挥信息技术的无限潜能,不管是时间还是空间的阻碍,都能被信息技术所打破,这将有利于学生更好的融入课堂,使学生更适应课堂,从而使理解知识变得容易。大数据的广泛应用,同样适用于科学研究方面,大数据的全面信息的应用对于信息的共享和交流具有关键推进作用,现代信息技术在社会科学中的应用将改善传统的研究方法,这样不但能提升结果的可信度,更能够提升工作效率,再者,大数据在服务人们方面的应用,高校能够更好的掌握社会需求,了解社会对人才的渴求,从而培养适应社会的人才。这样的好处还有能够加强高校和社会的联系,使得高校能够更好地履行社会职能。大数据还有利于高校建设校园文化与文化传承。高校对于优秀民族和世界文化都有责任和义务传播给更多学生,高校作为文化载体,有更好的条件进行文化教育,通过信息技术手段,方便文化沟通,以及技术交流等。
2大数据与高校教育之间的联系
大数据与高校教育之间不只是简单的应用关系,高校也绝不是被动的接受大数据,其实高校与大数据之间是相互依靠,相互促进的,高校教育的发展同时也是大数据的发展,同时,大数据的发展,也同样推动了高校教育的发展进程。大数据可以说是一种工具,一是顺应了高校教育的发展进程,同时也为高校教育发展做出了许多改善与提升。比方说大数据推动了高校对人才培养的进程,有利于高校选拔适合社会的高等人才,挖掘人才潜在价值,更好的为社会服务,也是为人们服务,帮助学生找到自身优势,使得人才发展变得顺利。前面说的,大数据帮助高校建立完善的文化体系,有助于高校进行文化传承,教育形式改革与创新。大数据有助于高校了解社会需求,发展与培养适应社会的全能人才。反过来,高校教育对大数据的发展也具有非常重要的推进作用。高校由于信息量巨大,也有相对完整的记录和完善形式,对于数据的收集等方面也有非常完善的系统,所以高校教育对于大数据的发展也有积极作用。高校通过长时间的数据利用,自然会产生许多有效的数据分类和整理办法,对数据的研究也非常细致和详细,对数据也会进行补充和完善,分析和创新数据记录办法,所以高校教育方面对数据的整理利用工作也会对大数据的发展做出更多贡献。说完了高校教育与大数据之间的相互利用,还应考虑大数据与高校教育之间的共同发展。许多高校在建立了比较完善的大数据处理和利用方式之后,通常会比较频繁的与外界进行数据处理办法和收集方式的交流和共享,大部分的'数据处理工作都是有目的性的,比方说在网上的数据检索工作,都是在先想好需要什么才去网上搜索的,所以对数据的分类整理工作至关重要。高校教育通常分为大体上的文科和理科,那再往下细分还有工科医科师范类商学类等等。不同的数据有不同的处理方式,不同的数据门类之间有时候也是互通的,所以大数据的处理办法和整体思维都是有分别的,也是有联系的,需要研究者长时间的分析和整理。大数据的使用需要专业的认可,不然的话就会造成资源浪费,看来社会上的机构大概也只有高校和研究员具有资格认证大数据的作用了。大数据广泛应用了信息技术和社会科学等多种学科的资源,在保证数据真实可靠地情况下,为更多数据使用者提供良好的数据参考作用。换句话说,高校教育过程中对数据的使用情况直接影响了大数据的利用率,高校对大数据提供了更多的技术支持,同时也限制了大数据的发展,所以大数据与高校教育之间的这种关系影响了两者之间的共同发展。
3大数据在推动高校教育发展过程中遇到的问题
不可否认,大数据在推动高校教育的发展过程做出了很多贡献,但是在大数据推动高校教育的过程中,仍会出现某些问题,阻止了大数据的推动作用,造成大数据没有完全发挥其应有的功能,没有很好的为高校教育做出更大贡献。首先是高校对于大数据的利用率低,主要体现在进行数据搜索和收集过程中,对需求的认识面太过狭隘,导致数据收集工作不完善,收据收集的不完全,在应用过程中就会有困难,造成信息缺失和资源不足,所以究其原因还是数据收集工作者工作中存在纰漏,或者对数据手机方法不正确不规范,造成了数据缺失情况出现。其次出现大数据利用不完全的问题是因为数据运用者技术不规范和操作不当造成数据使用不完全。和传统的数据使用方法相比,现代的利用大数据进行数据检索和使用工作已经如虎添翼,通过科技手段可以毫不费力的从大量的数据库中筛选出自己所需要的数据来进行利用。这不但大大降低了操作难度,同时也节省了很多时间,我们都知道数据挖掘工作复杂而且繁琐,更需要数据挖掘工作者认真细致的到位的工作态度,一点马虎不得。但是通过技术手段,以及先进的互联网技术,可以很好的解决很多工作中可能会出现的问题。但是机器就是机器,永远不可能有人的思维,就算有那也是人给他格外添加的,永远不可能超过人的思维,所以机器所犯的错误可能也会有很多,这就需要人来利用外力对数据采集处理等工作进行监督,一点失误就会造成数据错误,影响数据的使用。
4提升大数据推动高校教育有效性的对策
针对以上几点问题,首先提出的解决办法就是使人们充分认识大数据的作用,这样从根本上让人们建立起对大数据的作用的基本概念,才能仍大数据更好地为人们服务。大数据实在信息大爆炸的现代社会中人们必不可少的一种数据收集处理方式,对于社会的快速发展,必然会伴随数以万计的数据,那么对于这么多眼花缭乱的数据,要想提取出真正对自己有用的数据,就要利用科技手段,建立完整的数据库,方便人们的数据提取和利用。在认识了大数据的作用之后,就要合理的利用好大数据,正确的使用大数据,在大数据使用过程中应当规范使用办法,避免使用者滥用大数据,检索和分类过程也应当认真细致的操作,因为不仅仅是一次失误,之后的每一个步骤都有可能会对数据处理工作造成误解和偏差,造成大数据的错误使用。为了更好的使用大数据,推动大数据对高校教育的发展,高校应建立完善的大数据使用平台,让使用者能够有地方可查,有资源可用,提高大数据的使用率。至于校园内的配置,应当及时维护,对大数据的保管工作也应时常监督和完善,进一步加强数据使用效率,发挥其应有的价值。在人员配置选拔方面,要认真仔细筛选真正有用的人才,对数据进行分类处理和详细整理,更好的帮助校园内数据使用者进行数据使用程序。
5总结
在当下数据大爆炸的时代,能够更好的使用信息的人,将信息为己所用,那么就是发挥了大数据的真正价值。正确看待大数据,合理利用大数据,将大数据与高校教育有机的结合在一起,尽力发挥大数据应有的价值,有利于人们探索未知的知识和学问,有效的利用好大数据,就是发挥了大数据对高校教育的推动作用。
参考文献 :
[1]邱仁宗,黄雯,翟晓梅.大数据技术的伦理问题[J].科学与社会,2014(01).
[2]王成红,陈伟能,张军,宋苏,鲁仁全.大数据技术与应用中的挑战性科学问题[J].中国科学基金,2014(02).
[3]祝智庭,管珏琪.教育变革中的技术力量[J].中国电化教育,2014(01).
大数据意义
现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。[10]阿里巴巴创办人马云来台演讲中就提到,未来的时代将不是IT时代,而是DT的时代,DT就是Data Technology数据科技,显示大数据对于阿里巴巴集团来说举足轻重。[11]
有人把数据比喻为蕴藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是赢得竞争的关键。[12]
大数据的价值体现在以下几个方面:
(1)对大量消费者提供产品或服务的企业可以利用大数据进行精准营销;
(2)做小而美模式的中小微企业可以利用大数据做服务转型;
(3)面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。
不过,“大数据”在经济发展中的巨大意义并不代表其能取代一切对于社会问题的理性思考,科学发展的逻辑不能被湮没在海量数据中。著名经济学家路德维希·冯·米塞斯曾提醒过:“就今日言,有很多人忙碌于资料之无益累积,以致对问题之说明与解决,丧失了其对特殊的经济意义的了解。”这确实是需要警惕的。
在这个快速发展的智能硬件时代,困扰应用开发者的一个重要问题就是如何在功率、覆盖范围、传输速率和成本之间找到那个微妙的平衡点。企业组织利用相关数据和分析可以帮助它们降低成本、提高效率、开发新产品、做出更明智的业务决策等等。例如,通过结合大数据和高性能的分析,下面这些对企业有益的情况都可能会发生:
(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。
(3)分析所有SKU,以利润最大化为目标来定价和清理库存。
(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
(5)从大量客户中快速识别出金牌客户。
(6)使用点击流分析和数据挖掘来规避欺诈行为。
;Ⅳ 大数据对教育教学的作用
数据(data),一般而言是指通过科学实验、检验、统计等方式所获得的,用于科学研究、技术设计、查证、决策等目的的数值。通过全面、准确、 系统地测量、收集、记录、分类、存储这些数据,再经过严格地统计、分析、检验这些数据,就能得出一些很有说服力的结论。大规模、长期地测量、记录、存储、 统计、分析这些数据,所获得的海量数据就是大数据(big data)。在制作大数据时,需要严格的方案设计、变量控制和统计检验等,不然所获得的大数据就是不全面、不准确、无价值或价值不大的。
在教育特别是在学校教育中,数据成为教学改进最为显著的指标。通常,这些数据主要是指考试成绩。当然,也可以包括入学率、出勤率、辍学率、升学 率等。对于具体的课堂教学来说,数据应该是能说明教学效果的,比如学生识字的准确率、作业的正确率、多方面发展的表现率——积极参与课堂科学的举手次数, 回答问题的次数、时长与正确率,师生互动的频率与时长。进一步具体来说,例如每个学生回答一个问题所用的时间是多长,不同学生在同一问题上所用时长的区别 有多大,整体回答的正确率是多少,这些具体的数据经过专门的收集、分类、整理、统计、分析就成为大数据。
分析大数据助力教学改革
近年来,随着大数据成为互联网信息技术行业的流行词汇,教育逐渐被认为是大数据可以大有作为的一个重要应用领域,有人大胆地预测大数据将给教育带来革命性的变化。
大数据技术允许中小学和大学分析从学生的学习行为、考试分数到职业规划等所有重要的信息。许多这样的数据已经被诸如美国国家教育统计中心之类的政府机构储存起来用于统计和分析。
而近年来越来越多的网络在线教育和大规模开放式网络课程横空出世,也使教育领域中的大数据获得了更为广阔的应用空间。专家指出,大数据将掀起新的教育革命,比如革新学生的学习、教师的教学、教育政策制定的方式与方法。
教育领域中的大数据分析最终目的是为了改善学生的学习成绩。成绩优异的学生对学校、对社会、以及对国家来说都是好事。学生的作业和考试中有一系 列重要的信息往往被我们常规的研究所忽视。而通过分析大数据,我们就能发现这些重要信息,并利用它们为改善学生的成绩提供个性化的服务。与此同时,它还能 改善学生期末考试的成绩、平时的出勤率、辍学率、升学率等。
Ⅵ 大数据时代背景下的教育该如何走
“大数据”是当今最热的概念之一,有人宣称掌握大数据的人可以像上帝一样俯瞰整个世界。进入2012年,大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。
大数据(big data),指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的创新沿着从数据到大数据,再到分析和挖掘,最后是发现和预测的方向发展。随着云时代的来临,大数据也吸引了越来越多的人关注。各行各业更加意识到,谁能率先实现大数据,谁对大数据的挖掘更为深刻,谁就将抢占未来先机。
教育行业也不例外,2013年对于教育来说是传统育研究走向科学实证的重大机遇。值得我们思考的是,大数据将给教育带来什么?如何通过大数据更好的教育学生?大数据对于教育是福还是祸?
翻转课堂、MOOC和微课程是大数据变革教育的第一波浪潮
翻转课堂、MOOC和微课程的出现,改变了传统教育模式,从课堂老师滔滔不绝的讲解,到现在“视频再教育”。学生可以根据个人情况自主制定学习进度,老师可以根据学生在网上做题的情况,有针对性的了解学生学习上遇到的问题。传统课堂不再讲解新课,而成为学生当堂做作业、讲解问题或做实验的场所。
如果说翻转课堂只是一个触角的话,那MOOC的出现就是升华的翻转课堂。“视频再教育”得到进一步的提升,MOOC大规模开放在线课程,面对全球性的MOOC浪潮,中国的大学也开始行动。2013年,上海市率先引入中国式MOOC,推出了“上海高校课程源共享平台”。
MOOC的兴起,使“用视频再造教育”的学习模式迅速推广到高等教育,而且进展到可以通过选修MOOC获得学分、进入正轨教育的程度。清华大学、北京大学也相继开放了在线教育课程。
而微课程是对翻转课堂的回应,是学生自主学习不可或缺的资源。微课程是教学视频浓缩精华的微型课,主要用于学生的前期学习,目前,微课程已开始影响我国中小学信息化教学实践。微课程实践的积累,将导致微课程群的形成,微课程群的应用又会形成新的应用数据,将有利于大数据分析与挖掘、发现与预测的创新应用。可以说,教育领域的改革,首当其冲的就是大数据变革信息化教学。
大数据时代对于教育是福还是祸?
人们还没有来得及搞清楚信息时代是什么,数据时代己悄然来临。在大数据理念面前,大家各抒所见,有些人认为,大数据时代可以让教育者真正读懂学生。
相对于传统数据宏观的教育情况,大数据主要体现在微观层面。大数据使“经验式”教学模式变为“数据服务”教育模式。老师可以根据数据关注每个个体学生的微观表现,通过学生相关数据的分析,有针对性的调整教育方案,从而实现个性化教育。
一些支持大数据教育的人认为,大数据时代的教育将推动传统以“教师为中心”的教学方式向“学生为中心”教学方法的转变,推动“演员型”教师向“导演型”教师转型,从宏观群体走向微观个体,对于教育研究者来说,利用数据可以发现真正的学生。
而另一群人认为大数据是“换汤不换药”,实际上就是用大数据、云计算作为概念来包装以前的东西。虽然在线教育来势汹汹,却有“叫好不叫座”之态。以新东方为例,公开数据显示2012年底新东方在线网站于个人注册用户已逾1000万,而据新东方在线副总裁潘欣介绍,用户愿意付费的额度不高,在2012年新东方付费用户为20万,占比仅为2%。
目前主流的在线教育产品只是将线下的课程录制好搬到线上,这种模式实际上只是线下学习方式的简单复制,这样的学习方法还衍生了一些教育上的新问题:如何保证学习过程不会被中断、怎样确定是学生本人登录学习等。对于在线教育,只有学习主动性和控制力比较好的学生才能利用在线学习取得好的学习效果,而这些方面较弱的人将难以长期坚持,学习效果也可想而知。
Ⅶ 如何通过抓取教育大数据来深化课堂教学改革
现代信息技术的发展为大数据的收集和分析提供了无限的可能,大数据时代的这一趋势也对教育产生了巨大的影响:一方面,在科技理性的指导下,通过多维度收集学生行为的数据并进行模型建构,可以对学生的学习行为进行预测;另一方面,大数据时代的人文主义转向使人们更关注教学活动的适应性,教育大数据的挖掘和利用可以更好地实现适应个人需求的定制化教学。
国际数据公司(IDC)认为大数据时代数据有4大特点——数据的规模大、价值大、数据流转速度快以及数据类型多。大数据的挖掘和利用对教育——特别是课堂教学——产生着深远的影响。学习科学家索耶认为:越来越多的学习将经过计算机中介发生, 并产生越来越多的数据,我们有必要运用这些数据分析什麼时候有效的学习正在发生。所以数据挖掘可以用於探究行为与学习之间的关系,如学习者的个体差异与学习行为之间有何关系,不同行为又会导致何种不同的学习结果等。2012年美国发布《通过教育数据挖掘和学习分析促进教与学》(Enhancing Teaching and Learning through Ecational Data Miningand Learning Analytics)提出大数据时代教育数据的特点:具有层级性、时序性和情境性,其中数据的层级性指,既收集教师层面的数据也收集学生层面的数据,既收集课堂数据也收集活动数据,为後期模型的建立提供了多维度的资源;数据的时序性是指,数据是实时的、连续的,为材料的前沿性提供了保障;而数据的情境性是指,数据是基於真实情境脉的,保证了模型的信度。
大数据技术能够促进以学生为本的学习,数据不仅仅是科技理性指导下收集数据和拟合成模型,并针对学生的群体行为做出预测判断,还可能在固有模型的基础上,通过诊断学生在课堂中的行为表现,对固有模型进行修改,使课程内容更加适合学生的长尾需求,实现个性化教学。大数据的利用可以支持对教育活动行为的建模预测,还可能支持教育实践中的适应性教学。前者是後者的基础,後者是前者的深化。
建模与预测导向的大数据应用
大数据时代数据促进教育变革的方法之一是收集和分析处理数据,并进行预测。现如今,由於数据记录、存储与运算的便捷性,海量的、多层次的数据可以便捷地加以收集,由随机抽样带来的误差因此减小,建模和预测可以基於全数据和真实数据,因而就更为精确。大数据时代通过探求海量数据的相关关系获得盈利的最成功的案例是亚马逊的市场营销,亚马逊收集读者网上查阅行为和购买行为数据,建立读者偏爱阅读模型,预测读者购买的群体行为,实现书籍的推荐。近几年,教育研究的对象逐渐关注学生的学习行为,其背後是一种学习观的转变,学习被视为一种识知的过程(knowing about),识知是一个活动,而不是将知识作为一个物品加以传递。识知总是境脉化的,而不是抽象的和脱离於具体情境的。识知是在个体与环境的互动中交互建构的,而不是客观准确的,也不是主观创造的。所以,学生的行为活动数据被认为是可以反映学生在学习过程这一情境化的动态变化进程中的情况。海量、多层次、连续的行为数据在收集後被拟合成模型,实现预测,如学习管理系统(LMS)的运用。然而,由於建模和预测依赖的基本原理为数理统计,其预判对象主要是学生的群体行为。
1.案例分析
学习管理系统(Learning Manage System)简称LMS,是基於网络的管理系统平台,用於监控学生学习活动行为,识别和预测学困生(student at-risk),并为其提供相应的帮助。大多数LMS包括5个部分:有和课程相关的学习资料、用於确保学生提交作业与完成测试的评价工具、用於沟通的交流工具(如邮件、聊天室等)、用於确保教师记录和存储学生的学习活动并发布活动截止日期的课程管理工具、用於帮助学生学习回顾和跟踪学习进程的学习管理工具。在高校大量使用的BB(Blackboard)平台就是一个常见的学习管理系统。系统记录了学生参与选修的网上课程的种类、在线时长、阅读和浏览的文章数量,反映学习者的学习行为。2008年,Leah P.Macfadyen和Shane Dawson教授在加拿大不列颠哥伦比亚大学通过分析5个本科班级使用BB平台选修生物课的数据,建立了预测模型。平台记录了学生课程材料的使用情况、参与学业交流情况和完成作业提交和考试情况。大数据时代教育数据记录的层级性在这裏充分显现,课程材料的使用包括记录在线时长、邮件的阅读时间、邮件的发送时间、讨论信息的阅读时间等。参与学业交流记录了发布新讨论的时间、回复讨论的时间、使用搜索工具所花的时间、访问个人信息的时间、文件的浏览时间、浏览谁同时在线的时间、浏览网页连结的时间等等。评价模块记录了评价的阅读时长和提交评价的时间等。通过应用统计工具描述散点图,发现了在LMS记录下学生在线时长和学业表现呈相关关系。在进行多元回归时,研究者发现,学业成就处在後四分之一的学生在线时间略长於平均时间,而学业成就处於前四分之一的学生的在线学习时间低於平均水平。紧接着,研究人员为了作出预测,利用逻辑斯特回归生成了一个预测模型,通过收集学生的新的行为数据,预测学生是否处於真正参与了学习活动,并得出如下结论:讨论举行的次数、邮件信息发送量和测评的完成情况这三个维度构成的模型可以预测学生的学业水平情况。
大数据时代,通过探求学生行为与学业水平之间的相关关系,建立模型,实现预测,能够对课堂教学产生重要影响。然而,数据建模过程中,为了保证模型的效度与信度,极端个别数据被处理,使模型只能实现群体行为的预测,不能针对学习者个体实现定制化和个性化。
2.建模与预测的不足
数据建模与预测的背後充分体现了实证主义的思想和方法。19世纪上半叶,以孔德为代表的社会学家提出了实证主义的基本信条:利用观察、分类,探求彼此的关系,得到科学定律。实证主义的哲学思潮到20世纪60年代,演变成一种科技理性,实践知识逐渐染上了工具性的色彩,专业活动存在於工具性的解决问题之中,所有的专业活动都被视为厘定目标、套用已知的方法解决问题的过程。这一期间,大量的学科被系统地整合发展,甚至包括教育学和社会学这样的「软科学」。用证据解决未知的问题,用数据预测未来一时成为潮流。
学生活动行为数据的建模尤其侧重体验实证主义的思想,模型注重成功教学行为的共性,忽视教师与学生群体的独特性需求时,科技理性的主导有可能使课堂教学被视为独立於真实境脉的模块,只要教学行为取得成功,就会被数据抽象化,形成模型,对学生群体行为产生预测。科技理性有赖於人们认同的共有目标,教学实践目标的厘定极其复杂,包含巨大的不确定性和独特性,甚至,由於社会角色的不同,还会带来价值冲突。一个稳定的、为所有人所认同的目标不复存在,依据科技理性精神和方法推理预测的行为模式并不可能满足每一个人的需求,教育变革在大数据时代下出现新的取向。
从数据模型到支持适应性学习
在数据建模的基础上实现教学的适应性是大数据时代促进教育变革的另一成果。数据建模及行为预测依旧属於科技理性指导下的行为模式,可能会造成忽视学生个性需求的现象,而个性化需求正是知识社会的重要特徵,个性化的教育也受到教育研究者、政策制定者和教育实践者越来越多的关注。教育系统设计专家赖格卢斯认为,教育投入没有达到效果的一个很重要的原因是忽视了社会的转型。「社会已经从工业社会步入了资讯时代,劳动力市场对人才的要求不再是工业时代在流水线上操作的工人,而是具有创新性思维、决断力强的知识性人才。」教学面临从产生清一色的劳工转向产生有判断力和适应性能力的人群。2010年,OECD的报告《The Nature Of Learning》中指出,适应性能力(adaptive competence)是21世纪核心竞争力,包括在真实的境脉中灵活并有创造力地使用有意义的知识和技能。吴刚在《大数据时代的个性化教育:策略与实践》中提出了个性化教育的必要性和必然性,指出「只有利用信息技术所提供的强大支持,才有可能真正实现个性化学习」。大数据时代的来临,正是个性化教育发展的一个良好契机。2012年,美国颁布了《通过教育数据挖掘和学习分析促进教与学》,提出大数据时代,通过收集在线学习数据,对数据进行分类和探寻数据之间关联的方式挖掘数据,形成数据模型。通过学生行为和模型的互动,形成适应性学习系统。概言之,我们可以以对行为数据的充分利用为基础,改变教学的内容和进度,构建适应性评价和教学系统,充分实现教育的定制化,满足学生的长尾需求。
1.案例分析:
适应性教学系统又称适应性学习系统,(Adaptive Learning Support System),简称ALSS系统,强调基於资源的主动学习,认为学习不是知识的传递,而是学习者的自我建构。自上世纪90年代以来,研究者开发了不少适应性学习系统,如1998年De Bra开发的AHA系统,2003年,Brandsford和Smith开发的针对任务型学习的MLtutor系统,以及近几年颇受关注的翻转课堂(Flipped Classroom Model)简称FCM系统。
内容传递模块:传递相关知识与信息支持学生的学习。
学习者数据库:存储学生在参与教学活动中的相关行为。
预测模块:包括学生信息和学生行为数据,跟踪学生的学习,并做出预判。
显示模块:为学生生成行为报告。
自适应模块:根据学生行为生成的报告,反馈到预置模型,为模型做出相应的改变,使之更符合学生。
干预模块:使教师、系统管理者和领导可以在系统运行时实施人为干涉。
学习者学习相关学科内容时,学习行为被记录跟踪下来,学生的学习行为数据被传送到後台,记录在学习者数据库内,作用於预测模块。预测模块通过改变内容传递模块,再次作用於学习者。在整个过程中,教师、教学管理者起干涉作用。
适应性学习系统是一个交互的动态系统,系统往往会提供给学生一些学习行为建议。奥地利针对学生的问题解决的过程设计了一个适应性学习系统。适应性学习系统的第一步是教育数据挖掘(ecational data mining),简称EDM。数据挖掘的过程包括数据收集、数据预处理、应用数据的挖掘和诠释评价发展结果。Moodle提出了CMS数据挖掘系统(Course Management System)。研究者先使用原始数据进行建模,第一步是原始数据的收集,原始数据大约包含2007年73名用户产生的28000活动例子,2008年97名用户产生的265000份解决问题的案例和2009年45名用户产生的115000个活动案例。除了记录学生解答问题时产生的数据,原始数据还收集了学生的信息、问题的信息和解决问题的步骤;在对数据进行分类後,归纳出问题解决的类型,利用很擅长拟合连续数据的Markvo Models(MMs)的一个子模型DMMs拟合了如上的连续性数据,通过添加判断学生学习行为的结果模型和一系列监控和调节模块,构成了整个面向问题解决的适应性系统。当学生使用这个模型时,模型会根据学生的行为数据为学生提供他们所偏爱的解决问题的过程与方法。
除了适应性教学系统,还有适应性评测系统。LON-CAPA(Learning Online Network with Computer-Assisted Personalized Approach)是一个计算机辅助的个性化网络学习测评平台,平台不提供课程设计和课程目标,而是一个教学工具。CAPA通过後台记录学生的基本资料,学生参与的互动交流、学业情况,针对学业课程中的疑难点,提供个性化的考试资源。
2.适应性转向的意义
在大数据时代,科技理性指导下的模型预判在面对结构不良的问题时显得应对能力不足。科技理性指导下的数据建模忽视学习的真实境脉,只能支持群体行为的预判,模型的推广可能会使人们忽视其实践成功背後的个体经验与具体情境,从而导致科技理性与哲学思辨对抗。然而,完全依靠哲学思辨和经验进行教学不仅不利於教育学科系统理论性的发展,也不利於课堂实践的管理与教师的培训。唐纳德·A.舍恩提出了一种适应性思维模式。他指出:「如果科技理性的模式在面对『多样』的情境时,是无法胜任、不完整的,甚至更遭的话,那麼,让我们重新寻找替代的、较符合实践的、富有艺术性及直觉性的实践认识。」适应性学习是在系统理论知识的指导下,针对个体差异,使学习内容和活动高度个性化的学习方式。
适应性平衡了理性与经验的两难,英国学者Hargreaves(1996)首次提出基於证据的教育研究向医疗诊断学靠拢。临床诊断学和教育的相似之处在於,他们都要面对变动不居、极其复杂的环境,在这样一个结构不良的系统中,充分意识到客体(患者或者学生)的独特性与共性,利用系统的专业知识解决问题。
Ralf St. Clair教授在参考医学临床实践研究的三要素後提出基於证据的教育研究的三要素——研究的证据、教育工作者的经验、学习者的环境与特点。其中,行为预测关注的是研究的证据,而适应性学习系统的建设则关注的是教育工作者的经验和学习者的环境与特点。
从预测行为到支持适应性教学的转向,是一种人文主义的转向,教育研究的重点从关注研究的证据走向关注教育工作者的经验与学习环境特点,关注以证据支持个性化学习的实践变革。证据不再是其在科技理性时代所处的指导决策的角色,而是被视作一种资源,教育工作者在大量的基於证据的课堂教学决策中找寻最适合自己特点和学生特点的方式,推进课堂教学流程。也就是说,大数据的更重要价值在於支持适应性学习,满足个性化学习和个性化发展的时代需要。数据的预测功能依赖於大数据收集数据的全面性与处理数据的便捷性,根据统计学原理对群体行为做出预测,一定程度上弱化了个体特徵和具体情境。其主要指向行为预判。而适应性是在模型与客体的交互作用上改变模型,如图3所示,数据的适应性运转模型比预测模型多了一个循环(loop until)系统,使其更加契合个人需求,其主要指向实践改进。预测是支持个性化学习的基础,而支持个性化学习是预测功能的深化和转化——从整体人群到个体学习者、从理论模型到实践策略的转化。
分析与启示
大数据时代由於数据量大,数据收集与携带便捷,使海量学生行为数据被挖掘、收集,通过数据建模对学习者行为的分析变得比前大数据时代更为全面和可靠。数据时代在数据的挖掘和预测上固然潜力十足,但是大数据时代更多的价值是满足学习者的适应性长尾需求,在预测行为的基础上,修改教学模式,使之个性化与定制化。从数据建模走向支持适应性教学,支持对象从群体转向了个人,对教育活动的影响从对行为的认识转向了教育活动的实践,从科技理性指导下的去境脉转向了基於真实情境的教学活动。
走向适应性,不仅改变人类行为方式,更重要的是改变了认知方式。前大数据时代人们在科技理性的指导下完全被数据证据左右(driven by the data),教师和学生、教育决策者和学校形成传统社会契约关系,当事人把自己百分之百地交给专业工作人员,而专业工作人员遵守契约,对当事人全心全意地负责,从而使专业工作人员享受至高无上的垄断性地位。大数据时代,教师不再是知识的控制者,他通过参与学生的学习活动,根据学生的先拥知识和认知特点、个性需求,不断地调整教学步骤、教学进度和难度。学生不用完全将自己有如病人交付给医生一般完全托付给教师。在学习的过程中,通过与教师的互动交流,在教师的协助下,成为自己学习的主体,控制并对自己的学习负责。由於教师精力有限,大数据时代下网络计算机辅助学习系统可以为教师和学生提供辅助指导的机会。
尽管如此,一方面,我们要拥抱大数据给我们带来的便捷的生活和高质量的教育,另一方面,我们需要保持警惕和防止因果关系和相关关系的误用,并且维护数据安全。
在推理方面,教育工作者需要警惕将相关关系和因果关系误用,以Leah P.Macfadyen教授的前述案例为例,BB平台在线时间的长短和学生的学业成就有相关关系,而非因果关系,成绩优异的学生在线时间低於平均在线时间,但不能说低於平均在线时间的学习导致学生成绩优异而要求学生减少在线学习时间。
此外,在信息安全方面,学生和教师的大量信息被收集和使用,在使用的过程中,必须制定相关私隐保护法,保证信息的安全,警惕数据滥用。学生的行为数据也不可以作为教师教学评优的依据,让大数据真正成为支持教学变革、提升教学效能、促进学生发展的手段,而不是控制教师和学生的工具。