导航:首页 > 网络数据 > 医药大数据应用

医药大数据应用

发布时间:2024-06-02 16:34:23

Ⅰ 医疗行业大数据应用的三个案例

医疗行业大数据应用的三个案例
文章从华大基因推出肿瘤基因检测服务、大数据预测早产儿病情、广东省人民医院利用大数据调配床位3个医疗行业大数据应用案例中,以应用背景、数据源、图说场景、实现途径、应用效果5个视角去看待大数据在医疗的应用状况。
案例一:华大基因推出肿瘤基因检测服务
应用背景:
伴随着生物技术、大数据技术的发展,个体基因检测治疗疾病已经成为现实。其中,最广为人知的是美国好莱坞女星安吉丽娜?朱莉,在 2013 年经过检测她发现自身携带致癌基因——BRCA1 基因,为防止罹患卵巢癌,于 2015 年切除了卵巢和输卵管。目前,国内外已经有多家基因检测机构,如我国的华大基因、贝瑞和康、 美国的 23andMe、 Illumina 公司等。华大基因一直致力于肿瘤基因组学研究,已经研究 20 多类癌症。近日,华大基因推出了自主研究的肿瘤基因检测服务,采用了高通量测序手段对来自肿瘤病人的癌组织进行相关基因分析,对肺癌、乳腺癌、胃癌等多种常见高发癌症进行早期、无创伤检测。
数据源:
检测数据:患者血清、口腔黏膜数据、基因测序等。
其它数据:体检数据、电子病历、遗传记录、患者调查、地理区域以及生活条件等。
图说场景:

实现路径:
首先采取患者样本,通过测序得到基因序列,接着采用大数据技术与原始基因比对,锁定突变基因,通过分析做出正确的诊断,进而全面、系统、准确地解读肿瘤药物与突变基因的关系,同时根据患者的个体差异性,辅助医生选择合适的治疗药物,制定个体化的治疗方案,实现“ 同病异治” 或“ 异病同治” ,从而延长患者的生存时间。
应用效果:
癌症诊断和预测。肿瘤医院的病人中有 60%至 80%刚到医院时就已经进入中晚期,癌症早期的筛查可以帮助患者有针对性的改善生活习惯或者采取个体化的辅助治疗,有益于身体健康;同时将癌症扼杀在摇篮里,从而降低日后巨大的医药开支和生活困扰。助力个性化医疗。结合生物大数据,挖掘疾病分子机制最终可以做到更好的筛查,更好的临床指导以及更好用药的过程。
案例二:大数据预测早产儿病情
应用背景:
安大略理工大学的卡罗琳·麦格雷戈( Carolyn McGregor)博士和一支研究队伍与 IBM 一起和很多医院合作,用一个软件来监测处理即时的病人信息,然后把它用于早产儿的病情诊断。
数据源:
个人体征数据:心率、呼吸、体温、血压和血氧含量。
其它数据:孕妇产检数据、电子病历、遗传数据等。
实现路径:
系统会监控 16 个不同地方的数据,比如心率、呼吸、体温、血压和血氧含量,这些数据可以达到每秒钟 1260 个数据点之多。在明显感染症状出现的 24 小时之前,系统就能监测到早产儿细微的身体变化发出的感染信号,及早预测控制早产儿的病情,从而提高新生儿的出生率。
应用效果:
预测病情。早产儿的稳定不是病情好转的标志,只有通过海量的数据并且找出隐含的相关性才能发现提早知道病情,医生就能够提早治疗,也能更早地知道某种疗法是否有效,这一切都有利于病人的康复。
案例三:广东省人民医院利用大数据调配床位
应用背景:
起因于国外医院的经验以及广东省人民医院各专业科室差异很大的病床使用率。长期以来,优势专业病源充足,病人候床情况严重,排队入院,相反有些专业空床情况明显,病床使用率仅 65%左右。为此管理层打出了模糊临床二级分科、跨科收治病人、集中床位调配权的一套“ 组合拳” 。
数据源:
患者数据:挂号数据、电子病历、患者基本数据等。
医院数据:各科室床位使用情况、诊疗活动、平均住院费用、平均住院周期等。
实现路径:
对跨科收治病人之后的科与科之间的工作量、收入、支出、分摊成本等指标进行合理的划分,强化了入院处的集中床位调配权,解决病人入院排队情况,使医院更好地履行了社会责任,同时也给增加了医院的效益。
应用效果:
提高病床使用率。病床使用率由 87%提高到 92%,优势专业候床排队现象明显减少。
支持决策判断。优势专科与弱势专科的病人在地域构成比、平均住院费用等标上存在显著差异,支持决策判断。

Ⅱ 大数据技术应用在医疗行业的哪些方面

【导读】大数据技术可以说目前已经应用到了各行各业中,对于各行各业都是有很大的帮助和促进作用的,在医疗行业,能够促进医学研究,帮助改善我们的生活质量,有效促进相关疾病的治疗等等,那么大数据技术应用在医疗行业的哪些方面呢?下面我们就来一起了解一下。

1、新型冠状病毒大数据搜索报告

该数据有可能更好地预测各种情况和当前公共卫生问题引起的区域性暴发疫情的情况。反过来,医疗服务提供者能够采取适当的预防措施,并分配必要的资源,以应对与健康有关的特定疾病的区域性升级

2、区域医疗保健监控

可以将数据用于预测医学研究,从而有助于预防可能的疾病传播。例如,通过跟踪他们搜索的医疗问题来了解患者人群及其医疗保健需求以及跟踪他们在医疗站点上提供的信息,这些都是促进预防保健和研究的方法。

3、打击性传播疾病

如果及时报告,则可以治疗性传播疾病(STD)和性传播感染(STI)。但是,诸如缺乏性教育等问题通常会导致症状不受控制。大数据可以利用本地经验,并帮助科技公司和医疗保健提供商填补信息空白并传播对性健康的认识。

4、机器人护士

如今,在医学研究和发展中使用大数据至关重要。人工智能和机器学习正在引领医学数据的收集,新药疗法的发现以及患者预后的改善。通过实时分析公共卫生问题,大数据可以促进多个领域的医学研究,改善患者护理并防止致命疾病的传播。

5、改善医疗保健支持系统

医疗技术的主要进步之一是医疗保健机器人技术,预计到2021年其收入将增长到28亿美元。医疗保健机器人技术包括外科机器人培训,机器人护士,智能假肢和仿生学等专业,以及治疗,药丸,远程呈现和后勤方面的帮助。使用大数据驱动的机器人技术有可能极大地改善医疗保健支持的质量,这已经通过少数著名的机器人护士(如Robot
Dinsow)看到,它可以监控患者并提醒他们用药;Paro机器人可以提醒护理人员。

关于大数据技术在医疗行业应用,就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于大数据工程师相关内容,可以点击本站的其他文章进行学习。

Ⅲ 大数据在医疗行业的应用有哪些

大数据专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。所以大数据在众多行业都有应用,下面说说其在医疗领域的应用。
随着互联网规模不断的扩大,大数据正在改变着这个时代的绝大一部分的行业或者企业,医疗行业也不例外,医疗健康正在成为人们关注的重点问题,以智能化、数字化为特征的医疗信息化正在蓬勃兴起,医疗行业的数据类型也在向海量、复杂、多样的类型方式转变。
1.就医数据进行电子化管理
对电子医疗记录的收集,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。在信息系统中进行分享,每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。
2.健康预测
通过智能手表等可穿戴设备的数据,建立健康预测模型,通过这些可穿戴设备持续不断地收集健康数据并存储在云端,实时汇报病人的健康状况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。
3.医学影像以及临床诊断
通过让大数据机器人来识别记住各类海量的医学影像,例如X射线、核磁共振成像、超声波……等各种的图像。对大量病历进行深度挖掘与学习,训练其对影片的诊断,最终实现辅助医生进行临床决策,规范诊疗路径,提高医生的工作效率。
4.药品研发
利用大数据进行数据建模并进行分析,预测药物的临床结果,可以为临床阶段的实验结果提供参考,节省临床阶段的时间并优化临床实验结果。制药公司也可以通过数据建模进行分析,从而生产出治疗成功率更高的药品并极大地缩短药品从研发到投入市场的时间。

Ⅳ 大数据医疗行业的5大应用

一、电子病历


到目前为止,大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。


这些记录通过安全的信息系统(究竟是否安全值得商榷)在不同的医疗机构之间共享。每一个医生都能够在系统中添加或变更记录,而无需再通过耗时的纸质工作来完成。这些记录同时也能帮助病人掌握自己的用药情况,同时也是医学研究的重要数据参考。


二、健康监控


医疗业的另一个创新是“可穿戴设备”的应用,这些设备能够实时汇报病人的健康状况。


和医院内部分析医疗数据的软件类似,这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。这些可穿戴设备持续不断地收集健康数据并存储在云端。


三、医护资源配置


这个看似不可能完成的任务,已经在大数据的帮助帮助下在一些“试点”单位实现。在法国巴黎,有四家医院通过多个来源的数据预测每家医院每天和每小时的患者数量。


他们采用一种被称为“时间序列分析”的技术,分析过去10年的患者入院记录。这项研究能够帮助研究人员发现患者入院的规律并利用机器学习,找到能够预测未来入院规律的算法。


四、大数据与人工智能


人工智能技术通过算法和软件,分析复杂的医疗数据,达到近似人类认知的目的。因此AI使得计算机算法能够在没有直接人为输入的情况下预估结论成为可能。由AI支持的脑机接口可以帮助恢复基本的人类体验,例如因神经系统疾病和神经系统创伤而丧失的说话和沟通功能。


五、医学影像


医学影像包括X射线、核磁共振成像、超声波等,这些都是医疗过程中的关键环节。


放射科医生往往需要单独查看每一个检查结果,不但产生了巨大的工作量,同时也有可能耽误患者的最佳治疗时间。但是大数据却可以有效解决这一问题。


关于大数据医疗行业的5大应用的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅳ 医疗大数据五大应用透视

医疗大数据五大应用透视
医疗行业是较早运用大数据分析的传统行业之一。其中,五大医疗服务领域包括临床业务、网络平台、公众健康管理、远程病人监控、新药开发等,对大数据运用的深度和广度都走在了前面。大数据分析大幅度提高了医疗效果和用户满意度。
临床记录和医保大数据
汇总患者的临床记录和医疗保险数据集并进行高级分析,将提高医疗支付方、医疗服务提供方和医药企业的决策能力。比如,对医药企业来说,他们不仅可以生产出具有更佳疗效的药品,而且能保证药品适销对路。临床记录和医疗保险数据集的市场刚刚开始发展,扩张的速度将取决于医疗保健行业完成EMR和循证医学发展的速度。
世界各地的很多医疗机构(如英国的NICE、德国IQWIG、加拿大普通药品检查机构等)已经开始了CER项目并取得了初步成功。2009年,美国通过的复苏与再投资法案,就是向这个方向迈出的第一步。在这一法案下,设立的比较效果研究联邦协调委员会协调整个联邦政府的比较效果的研究,并对4亿美元投入资金进行分配。这一投入想要获得成功,还有大量潜在问题需要解决。比如临床数据和保险数据的一致性问题,当前在缺少EHR(电子健康档案)标准和互操作性的前提下,大范围仓促部署EHR可能造成不同数据集难以整合。再如病人隐私问题,想在保护病人隐私的前提下提供足够详细的数据以保证分析结果的有效性不是一件容易的事。还有一些体制问题,比如目前美国法律禁止医疗保险机构和医疗补助服务中心(Centers for Medicare and Medicaid Services)(医疗服务支付方)使用成本/效益比例来制定报销决策,因此,即便他们通过大数据分析找到更好的方法也很难落实。
网络平台和社区
另一个潜在的大数据启动的商业模型是网络平台和大数据,这些平台已经产生了大量有价值的数据。比如PatientsLikeMe.com网站,病人可以在这个网站上分享治疗经验;Sermo.com网站,医生可以在这个网站上分享医疗见解;Participatorymedicine.org网站,这家非营利性组织运营的网站鼓励病人积极进行治疗。这些平台可以成为宝贵的数据来源。例如,Sermo.com向医药公司收费,允许他们访问会员信息和网上互动信息。
公众健康
大数据的使用可以改善公众健康监控。公共卫生部门可以通过覆盖全国的患者电子病历数据库,快速检测传染病,进行全面的疫情监测,并通过集成疾病监测和响应程序,快速进行响应。这将带来很多好处,包括医疗索赔支出减少、传染病感染率降低,卫生部门可以更快地检测出新的传染病和疫情。通过提供准确和及时的公众健康咨询可以大幅提高公众健康风险意识,降低传染病感染风险。所有这些都将帮助人们创造更好的生活。
远程病人监控
从对慢性病人的远程监控系统收集数据,并将分析结果反馈给监控设备(查看病人是否正在遵从医嘱),从而确定今后的用药和治疗方案。
2010年,美国有1.5亿慢性病如糖尿病、充血性心脏衰竭、高血压患者,他们的医疗费用占到了医疗卫生系统医疗成本的80%。远程病人监护系统对治疗慢性病患者是非常有用的。远程病人监护系统包括家用心脏监测设备、血糖仪乃至芯片药片。芯片药片被患者摄入后,实时传送数据到电子病历数据库。举个例子,远程监控可以提醒医生对充血性心脏衰竭病人采取及时治疗措施,防止紧急状况发生,因为充血性心脏衰竭的标志之一是由于保水产生的体重增加现象,这可以通过远程监控实现预防。更多的好处是,通过对远程监控系统产生的数据分析,可以减少病人住院时间,减少急诊量,实现提高家庭护理比例和门诊医生预约量的目标。
新药开发
医疗产品公司可以利用大数据提高研发效率。拿美国为例,这将创造每年超过1000亿美元的价值。
医药公司在新药物的研发阶段,可以通过数据建模和分析,确定最有效率的投入产出比,从而配备最佳资源组合。模型基于药物临床试验阶段之前的数据集及早期临床阶段的数据集,尽可能及时地预测临床结果。评价因素包括产品的安全性、有效性、潜在的副作用和整体的试验结果。通过预测建模可以降低医药产品公司的研发成本,在通过数据建模和分析预测药物临床结果后,可以暂缓研究次优的药物,或者停止在次优药物上的昂贵的临床试验。
除了研发成本,医药公司还可以更快地得到回报。通过数据建模和分析,医药公司可以将药物更快推向市场,生产更有针对性的药物,有更高潜在市场回报和治疗成功率的药物。原来一般新药从研发到推向市场的时间大约为13年,使用预测模型可以帮助医药企业提早3~5年将新药推向市场。

Ⅵ 大数据在医学领域有什么应用

1、健康监测


大数据技术可以提供居民的健康档案,包括全部诊疗信息、体检信息,这些信息可以为患病居民提供更有针对性的治疗方案。并且通过智能手表等可穿戴设备,随时带着,可以实时汇报病人的健康情况。应用于数百万人及其各种疾病的预测和分析,并且在未来的临床试验将不再局限于小样本,而是包括所有人。


2、数据电子化管理


患者的影像数据,病历数据、检验检查结果、诊疗费用等各种数据录入大数据系统,统一管理起来,每位医生都能够在系统中查到病人的详细资料以及变更记录。而无需再通过耗时的纸质工作来完成,这对于大夫更好地把握疾病的诊断和治疗十分重要。


3、医疗科研


在医疗科研领域,运用大数据技术对各种数据进行筛选、分析,可以为科研工作提供强有力的数据分析支持。例如健康危险因素分析的科研中,利用大数据技术可以在系统全面地收集健康危险因素数据,包括环境因素,生物因素,经济社会因素,个人行为和心理因素,医疗卫生服务因素,以及人类生物遗传因素等的基础上,进行比对关联分析,针对不同区域、家族进行评估和遴选,研究某些疾病发病的家族性、地区区域分布性等特性。

阅读全文

与医药大数据应用相关的资料

热点内容
ps入门必备文件 浏览:348
以前的相亲网站怎么没有了 浏览:15
苹果6耳机听歌有滋滋声 浏览:768
怎么彻底删除linux文件 浏览:379
编程中字体的颜色是什么意思 浏览:534
网站关键词多少个字符 浏览:917
汇川am系列用什么编程 浏览:41
笔记本win10我的电脑在哪里打开摄像头 浏览:827
医院单位基本工资去哪个app查询 浏览:18
css源码应该用什么文件 浏览:915
编程ts是什么意思呢 浏览:509
c盘cad占用空间的文件 浏览:89
不锈钢大小头模具如何编程 浏览:972
什么格式的配置文件比较主流 浏览:984
增加目录word 浏览:5
提取不相邻两列数据如何做图表 浏览:45
r9s支持的网络制式 浏览:633
什么是提交事务的编程 浏览:237
win10打字卡住 浏览:774
linux普通用户关机 浏览:114

友情链接