⑴ 为什么说厚数据时代已经来临
“数字会说话”可能是大数据时代最常见的口号,但唯一的现代统计预测是内特·西尔弗(Nate Silver)的提醒:“数字不会自己说话。”我们为他们说话。我们可能是一个有利的方式来解释数据,使数据从客观现实。”
为什么说厚数据时代已经来临?海量数据的时代已经到来了吗?大数据不是简单地由数据的数量或来源决定的,而是由“人”通过数据组合和交叉比较形成的“判断”或“预测”。特别是在营销领域,大数据是与人打交道,而不是与无生命的物体打交道。大数据营销的背后是人们的行为模式和需求。因此,不可能仅仅根据数字或统计数字来作出判断。更深入地思考品牌、产品和人之间的关系是有必要的,这种思考将是下一个厚数据时代的开始。
为什么说厚数据时代已经来临?海量数据的时代已经到来了吗?所谓的厚数据不同于强调数据大小的大数据。厚数据更关注人、产品或行业数据之间的深度和背景。一个好的数据视图通常来自于厚数据而不是大数据。“厚数据”强调需要有深厚的用户背景,基于扎实的行业知识或经验。通过密集的数据,工业产品和消费者之间的联系更加紧密。
在未来,如果我们仅仅从现有的大数据中发现和判断大数据,过于相信数字所呈现的结果很可能会导致误判。如果能够通过深入的使用语境来探究未来受消费者需求影响的行业发展趋势,就可以体现出厚数据的重要价值。
厚数据时代已经来临?没有准备好的数据分析师将面临这个,大数据不是单纯由数据量或来源决定的,而是由“人”通过数据组合和交叉比较形成的“判断”或“预测”。你能处理好吗?如果您还担心自己入门不顺利,可以点击本站其他文章进行学习。
⑵ 大数据VS小数据 9种数据类型及利用方法
大数据VS小数据:9种数据类型及利用方法
如今,具有压倒性的数据量使得市场营销人员和广告商们已经难以理解哪些信息非常重要,哪些信息是纯粹的噪音,哪些数据是正确的?而哪些数据又是可以信赖的?不同类型的数据具有什么作用,又应该如何被使用?下面笔者根据专注以数据为基础的多渠道营销自动化智能化机构webpower的数据客观可信度排名,给大家介绍9种不同类型的数据,以及它们应该如何被有效使用。
1.试验性数据
通过客观的专业第三方精心设计和严格控制的试验,得到最可靠的数据。并且全程和专业熟练的分析人员一起,对数据中的噪声进行了分离。
2.调查研究数据
由经验丰富的专业第三方专业人士做科学研究,产生的可靠数据。研究设计,规范的数据,数学建模,刺激控制,统计控制,历史经验,质量保证标准等使得数据往往非常精确,噪声往往最小。
3.营销组合模型数据
创造一个分析数据库,并清理和规范这些数据,采用多元统计和建模去隔离和消除部分噪音,以使营销组合模型数据比实际销售数据更好。营销组合建模数据中的信号更稳定,更可靠,更加可测量。这种类型的数据可以帮助企业了解哪些变量推动了他们业务,如是媒体广告,或者销售人员的数量,或定价差异?但通常需要多年的数据积累来从营销混合建模中获得最大价值。
4.媒体组合建模数据
这和营销组合建模是相同的概念,规则相同,只是应用了一组不同的变量。一个分析数据库,数据清洗,建模和使数据中噪声被最小化,从而使各种媒体的影响被分离开来。同样,如果再与控制实验结合,那么这些数据和分析将更具有解释说明性。
5.销售数据
webpower认为销售数据一定程度上可以被信任,但以销售数据衡量实际销售效果并不完美。因为销售可能还受广告效果、最佳媒体花费、产品质量、服务效率、有竞争力活动等等影响。经济,竞争活动,天气,通货膨胀,度假周期,新闻事件,政治事件,库存和分销偏差,定价紊乱等因素也制造了错误的反馈和歪曲的景象,所以销售数据并不是衡量原因和效果的最好方法,而只是理智的衡量什么已经发生,它并不会告知为什么发生以及什么使之发生。
6.眼球追踪数据
眼球追踪主要是研究眼球运动信息的获取、建模和模拟。而获取眼球运动信息的设备除了红外设备之外,还可以是图像采集设备,甚至一般电脑或手机上的摄像头,其在软件的支持下也可以实现眼球跟踪。随着测量设备和软件的稳步改善,您可以利用眼球追踪技术获取及生成有用的诊断信息,以帮助理解为什么一个项目、网站或广告没有成功引起用户注意或注册某些消息或图像。
7.生物识别或生理测量
皮肤电反应,眼睛的瞳孔扩张,心脏率,脑电图(脑电波)测量,面部情绪识别等都非常有趣和令人兴奋,他们都可能将来成为进入人的灵魂的门户,但目前,这些措施在很大程度上是推测性的和未经证实的。其中一些措施在跟踪人的意识觉醒上相当不错,但如果没有引入测量或定性研究,就没有精确的方法去知道这个觉醒是否积极或者消极。
8.群体或咨询小组数据
许多大公司都购买了一些能够使其经常对一小组目标客户进行调研及对话的系统。企业的各类人群每天或每周都在持续地进行这种小众的调查。如果不把结果的质量考在内,每次调查或测量的成本相对比较低。但是由于这样的群体并不真正具有代表性,也不是随机选择的,且很少验证过,所以随着时间的推移,条件反射和惯性学习的风险将破坏群体的代表意义。
9.社会化媒体数据
社交媒体数据非常受欢迎。因为该数据往往比较便宜的,数量大,并且实时(每天或每时)。许多新的软件工具和系统也比较容易对数据进行分析。社交媒体数据也许作为早期预警系统最有价值,但是,必须始终以怀疑和质疑的态度去对外社交媒体数据,webpower认为有以下几个原因:
1)许多产品类别和品牌几乎从来没有在社会化媒体上被提及,使得样本量太小,数据的可靠性无法确定。
2)社交媒体评论受复杂因素影响,如新闻,特别活动,媒体广告,促销,宣传,电影,竞争活动和电视节目等,因此数据中的噪音很多。
3)社交媒体数据受到操作。你可能会认为你正在跟随一个重要的数据趋势,后来才得知这只是竞争对手混淆你的一个聪明的计谋。越来越多的企业和其他组织都在努力创造社会媒体内容和管理社会化媒体评论,因此数据的研究价值也正在迅速减少。
社交媒体评论是通过网页抓取识别和收集的,我们几乎从来不知道确切的来源,背景,刺激因素,或评论背后的历史。这些未知因素使得诠释社交媒体数据变得危险。这就是为什么我们要以畏惧的精神和充满怀疑的眼光去审视社交媒体数据。
小数据
笔者曾经也说过,在目前阶段,如果企业决策者能够依靠一些小数据工具和系统,而不是大数据的设想,数据将能够更好地服务于你的企业。抽样理论告诉我们,如果样本是随机的,企业可以通过与很少量的人群进行交谈,以测量整个目标群体的行为或心理。
一个包含1500的样本足以预测谁将会赢得总统选举。200-300受访者的样本通常足以预知整个人口喜欢一个新的产品或服务的程度。对一个包含200个用户的样本进行一个新的家用花生酱测试,可以精确地确定该产品是否是最优,一旦推出之后占有的市场份额。
这些都是小数据的例子。调查研究是相对便宜,但非常准确,因为专业研究人员知道来源,刺激因素,背景和历史,并具有可靠的测量仪器,数据规范,质量保证和控制。尽管大家都在谈论及憧憬大数据,但小数据往往为企业决策提供了更完善、更准确的依据。少量(小)数据又应如何正确地被分析被理解,以获得更高的成本效益,提供更好的营销洞察力,在以数据为基础的多渠道营销自动化智能化机构。
以上是小编为大家分享的关于大数据VS小数据 9种数据类型及利用方法的相关内容,更多信息可以关注环球青藤分享更多干货
⑶ 大数据与小数据到底有哪些不同之处
1.大数据与小数据,大量数据的区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这就颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。
2.还有一个重要的区别是在用途上,过去的数据很大程度上停留在说明过去的状态,拿数据说话,实际上是用过去的数据说明过去,而大数据的核心就是预测。大数据将为人类的生活创造前所未有的可量化的维度。使数据从原来停留在说明过去变为驱动现在,我以为预测对企业的作用从两个方向:
A.宏观是对趋势的预测,给企业做大势分析,
B.微观是对个体的精准分析,给企业做个性化精准营销
3.从结构上,大数据更多的体现在海量非结构化数据本身与处理方法的整合
大数据与小数据判断原则:
A.数据的量
B.数据的种类、格式
C.数据的处理速度
D.数据复杂度
4.分析基础不同,大数据是只有在大规模数据的基础上才可以做的事情,而这需要有从量变到质变的过程,也正因为科技的创新在方法上打下基础,而利用互联网展开的新的生活与工作方式,让信息积累到可以引发变革的程度,而很多事情在小规模数据的基础上是无法完成的
也就是说,数据驱动企业是一个数据积累从量变到质变的过程,不是工具问题,是数据积累问题。一切以为做个好的信息化工具就可以实现数据驱动企业,都会出问题。
大数据带来的改变?
前面所有的文章都在谈改变。这个话题要不停地谈。其最主要的是其让我们获得新认知,创造新的价值;从而改变市场、组织机构,政府与企业。改变企业的商业模式与运营模式、改变目前的所有行业,目前已经在天文学和基因学得到广泛利用。
⑷ 大数据离不开 “厚数据”
大数据离不开 “厚数据”
当前,全世界各种规模的公司都在被告知需要大数据——大数据是驱动下一轮创新的源动力。风投公司专门确立针对大数据的投资组合,初创公司对外宣称自己是 “大数据” 公司,成熟的巨头企业会成立专门做大数据项目的数字创新团队。面对先进的计算数据收集和分析能力,许多初创公司和大型企业不惜以牺牲人的洞察为代价,过度地专注于收集定量数据。这种把定量数字凌驾于定性洞察之上的做法着实令人担忧。我就曾亲眼见证了一家公司为此遭受到的重大影响,没有任何一家公司会希望遵循这种做法。
2009年 的时候,我在诺基亚做调研工作。诺基亚是当时新兴市场最大的手机公司。我在研究中发现,这家公司在整体商业模式上正面临挑战。经过多年在中国的人类学研究工作,不论是与外来打工者一起生活,体验街头小贩的辛酸苦辣,还是沉浸在网吧世界,这些都让我看到了大量的市场信号,我有理由相信,低收入消费者已经准备好为更昂贵的智能手机买单。
当时我的结论是,诺基亚必须转变他们当前的产品开发策略,从制造价格昂贵、面向精英用户的智能手机,转而开发价格适中、面向低收入用户的智能手机。我把我的研究报告和相关建议汇报给了诺基亚总部。但诺基亚在看过我的研究发现后却不知道该怎么做。他们说,我的样本量只有 100 个,和他们成百上千万的样本量相比,简直就是微不足道。另外他们还说,根据他们现有的数据资料,我的洞察发现根本就没有任何根据可言。
当然现在,我们所有人都知道诺基亚后来发生了什么。微软在 2013年 收购了诺基亚手机业务,目前它的全球智能手机市场份额仅占 3%。诺基亚的衰落是由很多原因导致的,但其中最严重的原因之一,也是我亲历的一个原因就是,诺基亚过度依赖数字。他们过于注重定量数据,以至于在面对难以衡量或现有报告里没有的数据时,就变得不知所措。原本可以成为诺基亚的竞争筹码,最后却帮了一个倒忙,导致它走向衰亡。
自从诺基亚的那次工作经历以来,企业组织这种过度重视定量数据而忽略定性数据的做法就一直让我感到非常不解。随着大数据时代的崛起,我发现这种情况开始愈演愈烈,一些公司不惜扣减花在以人为本调研上的预算,而宁愿花重金投资在大数据技术上。人类学定性研究工作在大数据时代下的生存现状让我深感忧心。
在当前这个以数据为驱动的世界,人类学研究工作(经常以市场调研、设计调研和定性调研的形式在行业里出现)正面临一个非常严重的认识误区。经常会听到人们谈论说,人类学研究的数据样本量太小,人类学研究数据是 “小数据”,就像当时诺基亚高层说的一样。
由于缺少概念性文字来快速界定人类学研究在大数据时代的价值,自去年开始我一直在用 “厚数据”(在此向 Clifford Geertz 致意!)这个词来表示我对综合性研究法的提倡和支持。厚数据是指利用人类学定性研究法来阐释的数据,旨在揭示情感、故事和意义。厚数据难以量化,但能从少量样本中就解读出深刻的意义和故事。厚数据与大数据截然不同,定量数据需要依赖大量的样本,同时借助新技术来捕捉、存储和分析数据。要让大数据变得可分析,它就必须经过一个正常化、标准化的定义和归类过程,这个过程会在无形之中剔除数据中所包含的背景、意义和故事。而厚数据恰恰能防止大数据在被解读的过程中丢失这些背景元素。
“厚数据是指利用人类学定性研究法来阐释的数据,旨在揭示情感、故事和意义。”
整合大数据和厚数据能让企业站在全局的高度,更全面、更彻底地把握任何情形。企业要纵观全局,就必须同时运用大数据和厚数据,从中获得不同类型的洞察,获得丰富的广度和深度。大数据需要借助大量样本来揭示特定模式,而厚数据只要借助少量样本就能从深层次解读出各种以人为本的模式。厚数据依赖人的学习活动,而大数据依赖机器的学习活动。厚数据体现着各种数据关系背后的社会背景,而大数据体现的是从一系列特定定量数据中提炼出的洞察。厚数据技术能包容不可化约的复杂性,大数据技术则是通过分离变量来明确模式。厚数据缺少广度,大数据缺少深度。
运用大数据存在风险
企业组织在运用大数据时,如果没有一套整合框架或权衡尺度,那么大数据就会变成一个危险因子。Steven Maxwell 指出:“人们过度沉迷于数据信息的量,却忽略了 ‘质’ 的部分,也就是分析法所能揭示的商业洞察。” 量越大并不意味着生成的洞察就一定越多。
另一个问题是,大数据往往过于注重定量结果,而贬低了定性结果的重要性。这就会导向一种比较危险的看法,即认为经统计分析得出的标准化数据要比定性数据更有用、更客观,从而进一步肯定了定性数据就是小数据这一观点。
以上两个问题导致企业组织几十年来仅仅凭借定量数据来做管理决策。一直以来,企业管理咨询顾问都是利用定量数据来让提升企业的运作效率和赢利。
利用大数据的风险在于,企业和个人会开始依赖运算法则,把它作为衡量标准来做决策和优化表现。
如果没有一种平衡力量,大数据很可能会导致企业和个人总是依据从运算法则得来的标准来做决策和优化。在这个优化过程中,包括人、故事、真实的体验在内的一切都会被忽视。正如 Clive Thompson 写道的:“把人的决策因素从这个等式中抹去,就意味着我们会与深思熟虑的做法渐行渐远,而这些深思熟虑的时刻恰恰是我们从道德层面反思自己行为的机会。”
释放大数据与厚数据的整合效应
大数据产生的信息量实在太过庞大,以至于不得不借助其他方式才能填补和 / 或揭示知识缺口。而这恰恰是人类学研究工作在大数据时代的价值所在。下面,我会分享一些有关企业如何整合使用厚数据的方式。
厚数据是勾勒未知世界的最佳方式。当企业组织想了解他们并不了解的领域时,就需要厚数据的帮助,因为它能带来大数据所没有的东西——灵感。收集和分析故事有助于生成洞察。
当企业组织想要了解并不熟悉的领域时,就需要 “厚数据” 的帮助,因为它能带来大数据所无法带来的东西——灵感。收集和分析故事有助于生成洞察。
故事能激发企业组织探索通往目的地的不同途径,这个最终目的地就是洞察。打个比方,假设你在开车,厚数据能让你瞬间移动到想去的地方。厚数据常常会带来一些意料之外的发现,既让人困惑又让人惊喜。但不论怎样,它都能带来灵感启发。只有在富于想象力的企业,创新才能赖以生存。
当企业想要与利益相关方建立更稳健的关系时,他们就会需要用到 “故事”。“故事” 包含着情感,而这是经分析过滤的标准化数据所不能提供的。数字无法折射出日常生活中的各种情感:信任、脆弱、害怕、贪婪、欲望、安全、爱和亲密。很难用算术法则来表示一个人对服务 / 产品的好感程度,以及这种好感会随着时间变化而发生怎样的转变。相对地,“厚数据” 分析法能深入人们的内心。毕竟,利益相关方与企业 / 品牌的关系是感性的,而不是理性的。
厚数据和大数据的未来整合机会点
大数据概念的提出者 Roger Magoulas 强调了故事的必要性:“故事能很快传播开来,把数据分析法的经验教训扩散到企业组织的各个角落。”
仅仅使用大数据会带来问题,关键是要懂得如何同时利用起大数据和厚数据,让两者相辅相成。对于定性研究者来说,这是他们在以定量结果为主导的大数据时代定位自己工作性质的绝佳机会。像 Claro Partners 这样一些公司甚至已经开始重新界定我们如何问有关大数据的问题。在他们的个人数据经济(Personal Data Economy)研究中,他们并没有问大数据对人类行为的启示这类问题,而是反过来问了人类行为对大数据在日常生活中的作用的启示。他们还为客户开发了一套工具,帮助他们转变思维视角,“从以数据为核心转变为以人为核心。”
有关大数据和厚数据如何在企业组织中发挥协同效应,我梳理了以下机会点(当然并不仅限于这些):
健康医疗
随着个人能越来越方便地追踪自己的健康状态,自我量化值正在成为一种主流。医疗服务提供者会有越来越多的机会收集到各种匿名数据。像 Asthma Files 这列项目可以让你迅速展望厚数据和大数据将如何共同解决全球健康问题。
重新定位来自移动运营商的匿名数据
全球各地的移动公司已经开始重新包装和出售他们的顾客数据。市场营销者不是唯一的买家。城市规划者正在用 Air Sage 的蜂窝式网络数据来了解当地的交通状况。为了保护用户隐私,这些数据会采取匿名或抹去个人通信记录。当然,没有了关键的个人详情,数据也就丢失了关键的背景信息。在这种情况下,若没有厚数据,企业就很难破译这些因个人信息被抹去而丢失的个人情况和社会背景,也就无法真正解读数据。
社交网络分析
社交媒体能产生大量数据,这些数据能让社交网络分析法变得更为丰富。目前,包括 Hilary Mason、Gilad Lotan、Duncan Watts 和 Ethan Zuckerman (以及他在 MIT Media Lab 的实验室) 在内的研究科学家都在研究信息在社交网络上的传播方式,以及同时会产生哪些问题,而这些问题只能借助 “厚数据” 才能回答。现在越来越多的公司把社交媒体作为衡量尺度,对此企业必须谨慎对待,不要误认为仅仅透过数据就能看到 “影响因素”。媒体对 Cesar Hildalgo 工作的误读就是大数据网络分析结果被曲解的一个实例,意指维基网络可以成为文化代理。(点击此处查看 Heather Ford 对此做出的纠正。)
品牌战略和生成洞察
一直以来,企业都习惯于依赖市场分析来制定企业战略和生成洞察。如今,企业正在转向用一种更为以人为本的方式,也就是立足于 “厚数据”。《快公司》杂志(Fast Company)在最近一期 Jcrew 的报道中明确指出,在以大数据为驱动的管理咨询法宣告失败后,带领品牌走出困境的恰恰是那些真正懂得消费者想要什么的员工。其中,一位叫 Jenna Lyons 的员工有机会与消费者一起反复尝试、修改和实时测试产品。她的这套方法在消费者中引起了反响,最终成功地把 Jcrew 转变为一个让人顶礼膜拜的品牌,营收翻了三番。
产品 / 服务设计
单单借助运算法则并不能解决问题,但仍然有很多公司依赖运算法来指导产品和服务开发。施乐公司(Xerox)就是利用大数据来为政府解决问题,但它同时还借助了人类学研究法作为数据分析法的补充。施乐帕罗奥多研究中心(Xerox PARC)的人类学家 Ellen Issacs 在提及厚数据对设计工作的重要性时这样说道:“即使你对某项技术有着清晰的概念,你仍然需要把它设计出来,确保这套概念符合人们对自己行为活动的看法……你必须看他们怎么做。”
落实企业组织战略
厚数据可以作为大数据的补充,与大数据相辅相成,以减少经过规划的企业转变所造成的颠覆性影响。定量数据可能会显示必须做出某种转变,但企业组织内部的颠覆代价是巨大的。重新布局企业组织架构图,重新撰写职位描述,转换工作职能,重新设定成功标准——所有这些颠覆式转变都要付出昂贵代价,而这一后果可能并不会体现在大数据计划中。企业需要厚数据专家与业务领导一起协作,共同了解转变会带来的影响和发生背景,从文化的角度决定哪些转变是可行的,以及如何设计整个流程。Grant McCracken 把厚数据专家叫做首席文化官(Chief Cultural Officer),他们就好比是 “企业的眼睛和耳朵,会敏锐地嗅出即将发生的转变,即使这些潜在转变只是发出非常微弱的信号。” 首席文化官就是厚数据专家,负责收集、讲述和传播故事,保持企业组织的灵气和灵活性。大数据概念的提出者 Roger Magoulas 强调了故事的必要性:“故事很快就能传播开来,把分析总结带来的习得散播到整个企业组织。”
综合运用同理心和数据资源进行创新
除了所有这些有待挖掘的机会点,还有一点很重要的就是,大数据仍有很大的改进空间。高德纳咨询公司(Gartner)的研究显示,在投资大数据能力的公司当中,只有 8%的公司在利用大数据做一些具有深远意义的事情。其余公司仅仅只是用大数据来拉动渐进式增长。这意味着很多公司虽然都在谈论和投资大数据,但他们并没有真正利用起大数据来推动真正的变革。
我认为,企业和机构要想充分发挥大数据的潜力,就必须结合运用厚数据,这也是为什么我们现在比以往任何时候更需要从事以人为灵感来源的研究工作者,不论是人类学家、市场调研者、设计调研者、设计师、产品经理、纪录片导演、制片人、作家还是社交媒体经理,因为这类研究工作者是始终带着同理心在收集和分析数据。最有创新力的公司往往就是那些懂得如何综合运用大数据与同理心的公司。这也是为什么阿里巴巴、网络和腾讯这些公司得以如此成功的原因之一,他们总能闪电般地迅速掌握实际用户所处的情境,以此来驱动他们的技术革新。未来,中国的创新将同时有赖于情境和数据。
以上是小编为大家分享的关于大数据离不开 “厚数据”的相关内容,更多信息可以关注环球青藤分享更多干货
⑸ 大数据与小数据是否存在明显的界限
摘要 大数据技术(Big Data),或称巨量资料,指的是所涉及的资料两规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营更积极目的的资讯。大数据的特点,简单总结为高容量、多元化、持续性、高价值。