❶ 市面上大数据的书不少,如果只挑一本,哪本值得推荐
市场上大数据的说不少,但是你要挑一本的话,其实我还是觉得你在网络上选择一些自己可以公开的数据。因为每个人需要的每个程度的书是不一样的,你可以选择购买一些书的电子版本。电子版本反而比书籍会更好一点。
❷ 大数据相关的书籍有哪些,麻烦推荐一下
初级阶段:《大数据时代》
读完这本书,要求你形成大数据的概念专,对大数据有个全面的认属识和了解。
中级阶段:《失控》
用统计的方法,而不是因果的方法,预测未来,用统计的方法来对某些东西进行预测.
高级阶段:《复杂性》
指明了一个无穷叠代,即 “关系的关系的……关系”,而智能将在这里涌现,解决复杂性问题预测的关键很可能就在这里,这句话打开了一个非常广阔的前景,将象宇宙一样没有穷尽。
高级阶段(2):《量子物理史话》
停止争论吧,上帝真的掷骰子!随机性是世界的基石,当电子出现在这里时,它是一个随机的过程,并不需要有谁给它加上难以忍受的条条框框。……而统计规律则把微观上的无法无天抹平成为宏观上的井井有条。——摘自《量子物理史话》
❸ 我想学习数据分析,但是0基础,看什么书可以快速入门啊
很多人都需要学习大数据是需要有一定的基础的,编程语言就是必备的条件之一,编程语言目前热门的有:java、Python、PHP、C/C++等等,无论是学习哪一门编程语言,总之要精细掌握一门语言是非常必须的,我们先拿应用广泛的Java说起哦。
Java的方向有三个:JavaSE、JavaEE、JavaME,学习大数据的话只需要学习JavaSE就可以了,在学习Java的时候,我们一般需要学习这些: HTML,CSS,JS,java的基础,JDBC与数据库,JSP java web技术, jQuery与AJAX技术,Spring、Mybatis、Hibernate等等。这些课程都能帮助我们更好了解Java,学会运用Java。
再者就是Linux,大数据相关的软件基本都是在Linux运行的,所以从事大数据工作还是需要学习Linux的哦,而且能够让你迅速掌握大数据相关技术,也有很大的帮助。学习shell就能够很好的看到脚本更容易理解和配置大数据集群,对以后新出来的大数据技术学习会更快。
对于零基础学习大数据的人,不管是学习哪一门语言,实战很重要,所以学习之后一定要及时运用起来,只有不断使用,才会更有经验,更能学到大数据的技巧,多联手,相信你一定可以掌握这门技术的。
大数据学习路线图——让自己系统学习,知道每一个阶段的学习内容。
阶段一、大数据基础——java语言基础方面
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
(2)HTML、CSS与Java
PC端网站布局、HTML5 CSS3基础、WebApp页面布局、原生Java交互功能开发、Ajax异步交互、jQuery应用
(3)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
此阶段是针对没有编程基础,或者对基础不扎实的同学一次补习,这个很重要,就像建一座大厦,这就是地基,地基不稳,就算修再高,总有一天会轰然倒塌!
阶段二、Linux&Hadoop生态体系
Linux体系、Hadoop离线计算大纲、分布式数据库Hbase、数据仓库Hive、数据迁移工具Sqoop、Flume分布式日志框架
这章是基础课程,帮大家进入大数据领域打好 Linux基础,以便更好地学习Hadoop、hbase、NoSQL、Spark、Storm、docker、kvm、openstack等众多课程。因为企业中无一例外的是使用 Linux来搭建或部署项目。
Hadoop生态系统的课程,对HDFS体系结构和shell以及java操作详细剖析,从知晓原理到开发的项目,让大家打好学习大数据的基础。
详细讲解 Maprece,Maprece可以说是任何一家大数据公司都会用到的计算框架,也是每个大数据工程师应该熟练掌握的。Hadoop2x集群搭建前面带领大家开发了大量的 MapRece程序。
大数据学习路线,一共分为这几个阶段
阶段三、分布式计算框架和Spark&Strom生态体系
(1)分布式计算框架
Python编程语言、Scala编程语言、Spark大数据处理、Spark—Streaming大数据处理、Spark—Mlib机器学习、Spark—GraphX 图计算、实战一:基于Spark的推荐系统(某一线公司真实项目)、实战二:新浪网(www.sina.com.cn)
(2)storm技术架构体系
Storm原理与基础、消息队列kafka、Redis工具、zookeeper详解、实战一:日志告警系统项目、实战二:猜你喜欢推荐系统实战
Spark大数据处理本部分内容全面涵盖了 Spark生态系统的概述及其编程模型,深入内核的研究,。不仅面向项目开发人员,甚至对于研究 Spark的学员,此部分都是非常有学习指引意义的课程。
阶段四、大数据项目实战(一线公司真实项目)
数据获取、数据处理、数据分析、数据展现、数据应用
项目练习其实是穿插课程其中的,在讲解大数据理论的同时,将实践知识穿插其中,增加学生对大数据技术的理解和应用。
阶段五、大数据分析 —AI(人工智能)
Data Analyze工作环境准备&数据分析基础、数据可视化、Python机器学习
1、Python机器学习2、图像识别&神经网络、自然语言处理&社交网络处理、实战项目:户外设备识别分析
此阶段是深入提升阶段,为学生想转行人工智能打下良好的基础,多重技能,更能大大提升就业质量。
❹ 对即将学习大数据专业的学生有什么建议和推荐的书籍
对于即将学习大数据专业的学生,个人认为主要取决于,自己对大数据的理解,其实很多人对大数据仅限于知道,而并非真正了解大数据,个人的主要建议就是,一定要明白什么是数据,大数据的入门基础,如果大数据的基本概念,都不明白,那怎么来学习。
❺ 有哪些关于云计算,大数据,物联网的书籍值得推荐
关于大数据书籍有以下基本了参考看:
1.大数据预测
2.大数据时代
3.大数据分析:决胜互联网金融时代
4.为数据而生:大数据创新实践
5.爆发:大数据时代预见未来的新思维
❻ 提高数据分析能力必读书籍推荐
【导读】随着互联网的发展,数据分析已经成了非常热门的职业,大数据分析师也成了社会打工人趋之若鹜的职业,不仅高薪还没有很多职场微世界的繁琐事情,不过要想做好数据分析工作也并不简单,参看一些好书,对行进数据分析会更有帮助!今天小编就给大家带来了提高数据分析能力必读书籍推荐,希望对各位小伙伴有所帮助。
数据分析进阶
1.《精益数据分析》
本书展示了怎样验证自己的设想、找到实在的客户、打造能挣钱的产品,以及行进企业知名度。并经过30多个事例剖析,深化展示了怎样将六个典型的商业办法运用到各种规划的精益创业、数据分析根底,和数据驱动的思维办法中,找到企业添加的首先要害方针。
2.《数学之美》
本书把深邃的数学原理讲得愈加通俗易懂,让非专业读者也能领会数学的魅力。读者经过具体的比方学到的是考虑问题的办法 ——
怎样化繁为简,怎样用数学去向理工程问题,怎样跳出固有思维不断去考虑立异。
数据挖掘
1.《数据挖掘导论(无缺版)》
本书全面介绍了数据挖掘,包括了五个主题:数据、分类、相关剖析、聚类和异常检测。除异常检测外,每个主题都有两章。前一章包括根柢概念、代表性算法和点评技术,然后一章谈论高档概念和算法。这样读者在透彻地了解数据挖掘的根底的一同,还可以了解更多重要的高档主题。
2.《数据挖掘概念与技术》
本书无缺全面地叙说数据挖掘的概念、办法、技术和最新研讨翻开。本书对前两版做了全面修订,加强和从头组织了全书的技术内容,要害论说了数据预处理、再三办法挖掘、分类和聚类等的内容,还全面叙说了OLAP和离群点检测,并研讨了挖掘网络、凌乱数据类型以及重要运用范畴。
3.《数据挖掘与数据化运营实战:思维、办法、技巧与运用》
现在有关数据挖掘在数据化运营实践范畴比较全面和系统的作品,也是诸大都据挖掘书本中为数不多的交叉许多实在的实践运用事例和场景的作品,更是发明性地针对数据化运营中不同剖析挖掘课题类型,推出逐一对应的剖析思路集锦和相应的剖析技巧集成,为读者供给“菜单化”实战锦囊的作品
作为数据分析师,如果仅仅安于现状,不注重自我行进,那么,不久的将来,你很或许成为公司的“人肉”取数机,影响往后的工作生计。
以上就是小编今天给大家整理分享关于“提高数据分析能力必读书籍推荐”的相关内容希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,一直学习,这样更有核心竞争力与竞争资本。
❼ 从入门到精通 互联网数据分析书籍清单
从入门到精通:互联网数据分析书籍清单
任何一个技能的学习,都有从浅到深的过程,数据分析也不例外。一个完整的数据分析知识体系类似金字塔结构:最顶层是对数据价值的认知、业务理解,中间是数据分析方法论,而最底层则是数据分析的解决方案或者具体的操作方法。我把数据分析的推荐书籍划分成三个段位,便于大家渐进式学习。
数据分析入门版
入门版适合数据分析的入门者、对数据分析没有整体概念的人,常见于应届毕业生、经验尚浅的转行者。
入门版推荐书籍
《深入浅出数据分析》:O’Relly出版的HeadFirst(深入浅出)系列书籍之一,书中有大量的图片和有趣的案例组合。本书浅显易懂形象生动,可以使入门者对分析的概念有个全面的认知。
《谁说菜鸟不会数据分析》:本书详细介绍了数据分析的基本方法和过程,并且以Excel表格为例进行了案例阐述。同时本书还介绍了数据分析在职场的意义,可以帮助职场小白快速上手。
《赤裸裸的统计学》:作者年轻时是个追求学习的学霸,后来自己从统计学中发掘了很多可以应用到生活的地方。这也是本书的主旨,结合生活讲解统计知识,生动有趣。可以避免统计学一上来就大讲贝叶斯概率和随机分析的枯燥。
同样类似的书籍还有《统计数字会撒谎》,这本书知名度要高点,通过揭露“虚假数字信息”来帮助大家理解背后的统计学原理。
数据分析进阶版
进阶版具有一定的行业针对性,要求分析者具备一定的数据分析常识和业务理解;适合网站分析师,商业分析师以及数据产品经理等人群。
进阶版推荐书籍
《精通web analytics 2.0》:Analytics将点击流网站分析工具与定性数据、测试与试验以及竞争情报工具相结合,从而推演出详尽的网站战略以及操作层方案。此书虽老,但其中很多思想和流量分析的案例仍然很有借鉴意义,现在国内只能买到二手的旧书。
与此类似的有《网站分析实战》,是国内一本讲网站分析的书,没有上面经典,但胜在新出,很多案例和理念都有及时的更新。
《深入浅出统计学》:与上面的《深入浅出数据分析》同属于Headfirst系列书籍,运用充满互动性的真实世界情节,帮助读者快速了解统计方面的理论知识。
《数据化管理》:黄成明著,讲解在企业中应用数据的例子,读完受益匪浅,里面举的很多例子都很接地气。虽说偏向于零售业管理,但大道归一,可适用于很多行业,当时依据里面的理念规划了美团外卖面向BD的数据产品。
《MySQL必知必会》:这本也是我当年学习SQL的入门书,薄册子一本,看起来很快。SQL是个性价比很高的技能,简单而强大。任何想进一步提高自己数据分析技能的产品/运营/分析师 同学,都建议点亮这个技能点。
《互联网增长的第一本数据分析手册》:我们公司的出的一本数据分析手册,全书以增长为主题。这本手册介绍了互联网创业企业增长方法论、互联网数据分析的常见方法(趋势、转化、留存、实时、分群、细查、热图)、细分行业(如SaaS、互联网金融、电商等)的应用。
数据分析高阶版
更高阶的数据分析相对来说专业性就强了,如涉及到企业内部数据治理,数据结合的业务分析,数据可视化等。当然,还有数据挖掘算法之类的更深入的东西,这块没有研究就不瞎推荐了。
高阶版推荐书籍
《决战大数据》:阿里巴巴前数据副总裁车品觉老师所著,讲解了阿里巴巴在企业内部治理数据过程中的心得,所讲“存-通-用”数据管理三板斧和“从数据化运营到运营数据”,字字珠玑,可堪借鉴。
《精益数据分析》:此书优势在于将企业分成了几个大的行业类别,并分门别类的讲解了每个行业的商业模式特点及分析技巧,对使用者的分析能力要求较高,且必须具备相应的业务知识。
《The Wall Street Journal Guide to Information Graphics》,华尔街日报负责商业分析的人做的可视化指南,精华且实用,我之前写过读书笔记《华尔街日报是这样做数据可视化的》,可供大家参考。
《数据仓库经典教程》:网上有人整理出来的资料,优点是简单明了,不像正常的数据仓库教材厚厚一本。
当然,数据分析是一门很深的学问,我也只是窥得冰山一角。要想做好数据分析必须具备多方面的技能:需要看清数据的价值并且懂业务,需要熟知数据分析的方法论,同时也要熟练掌握数据分析软件的操作。在学习上面数据分析推荐书籍的同时,不断在实践中加深自己的理解,用数据来驱动业务和客户增长。