导航:首页 > 网络数据 > 摸象大数据融资

摸象大数据融资

发布时间:2024-05-11 16:40:43

1. 大数据的商业价值实现关键在于连结

大数据的商业价值实现关键在于连结

我的英文主题的大数据的商业价值实现关系在于连结,但是在这个之前,我想跟大家分享一下前面阿里几位演讲嘉宾的评论我很受启发。

第一个大数据是相通的,数据本身并不本身任何的意义,只有在当他和一个他所表示的一个事情连结上以后,才能知道这个意义在哪里,或者价值在哪里。比如说有一种大数据对你来说就是一个大市场的表现,有一种大数据就是一个很大的人群,他们在你的平台上的行为,只有这么想了以后这个大数据才他对您真正的价值和意义有链接。

第二个我很受启发的,大数据在很多年前已经提出,那么他对你的意义如何?其实每个工业的形成,都有这样一条发展的路程,第一是由少数的人他们比较有远见,看到了一个很小的一个数据的能够被储存,能够被用来表达一个很复杂的现象,或者一个事物,从这个里面发挥了以后就逐渐进入一个新的商业应用的领域,这是当年的数据库计算机的发明和应用都是走了这样的路子,所以第一个是少数人的远见促进了这样一个形成。第二个进入科学阶段,有了科学之后这个事情就能不断的重复,而且可以有方法来证明,如果你是照着某一种进程来开展活动的话,你的结果是可以被预测。第三个部分就是进入工程的应用。我也很欣赏品觉一句话,真正的价值在于更多的人使用,只有一两个人能懂能使用这个价值不会很大。第四个部分跟我今天的主题有关,大数据的来源,为什么在今天不在一百年之前,或者在于电脑刚刚发展的时候,或者在于数据库,在几十年形成的时候,为什么这些数据不大呢,为什么今天的大就变得这么重要呢?主要的原因是一个网络。这个网络的形成,不是有了电脑就形成网络了,而且网络广泛的使用也是有很多的阶段。第一初级的网络是在企业内部的,电脑的使用的这个网络。第二部是英特网,把很多的公司很多子网络联在一起。

第三个是在网络上软件的开发,使得很多本来根本没有在网络硬件的基础上获取信息、交流信息以及传播信息今天都成为可能。所以,这一些网络的这个建设和网络的普遍应用成熟,使得大数据的产生有了今天的这样一个可能。

回到演讲。我今天要讲的主题是什么呢?再回到这个网络,大数据形成的本身,并不能保证他的大量的价值的实现,那么要实现这个价值,又得回到这个网络。举个比喻,中国现在汽车的发展这么迅速,很大的一个原因是在道路的开拓,有了很多的道路,这个汽车有地方可以车。但是如果道路的形成,道路的管理跟不上汽车的销售以及使用的话,就出现了大量的道路拥挤,汽车的价值无法实现。那么数据同样的道理,在网络当中形成的数据,如果被很多种原因变成一个一个单独的平台,单独的一个应用的这样一个环境的话,他的价值也远远无法实现。所以必须通过网络的想法来想这个大数据的价值以及他的运用。

大数据是一种洪水的现象,数据实际上已经远远超过我们从里面得到的洞察,以后根据洞察我们所采取的行动这种能力。就像以前感觉到吃饭吃不够,还想吃,但是今天这个是吃不了。这种现象是很多的程度上都存在于我们生活的体验中,那么现在到了数据,这是一种更极端的体验。大家可以看到,文明的开始我们创造了这么多字节,我们以前在国内在图书馆的时候我基本上都能看过,现在图书馆的书基本没有办法看全,所以这个现象已经到了极端。大数据还在不断的增长,这里面其中还牵涉到数据和数字不是完全等同的,数据可以在电脑里面用数字来表达,但是他表达的这些数据的形式往往现在更多的是跟人的交换信息是比较一致的,比如说用文字、图象、音乐。昨天我跟玫瑰爵士,玫瑰讲到一个美,很多人看到玫瑰都认为是美的,但是用数据怎么表达?如果对美能够用数据表达出来,对音乐的欣赏能够用数据表达出来,让美不断达到一种极限也是成为一种可能。所以这里面就形成了很多数据已经成为半结构或者无结构的,但是这些结构远远不足以表达我们的大自然、市场、想象力的丰富。

第三个大数据成倍的增长,这种增长我们感到必须提高到我们每一个大企业管理层必须得到高度的重视,这个里面很可能有一种企业有一种管理的方式,有一种工程的软件的实现,会使得这个数据的资源的利用,远远超过我们现在产生大数据的这些大平台已经大公司。所以阿里我感到确实有远见,把这个提高到这样一个高度。

大数据形成了很多悖论,所谓的大,我们看到的数据之大,但是价值之小。这就像你有一只船在大海里开,你看到很多水,但是一滴水都不能喝。现在大数据的情形就很类似,所以我们要能很快的能够解决这个瓶颈口的问题。

这个大数据的提出呢,已经使得很多方面的专业人士、管理人士感到应用的可能,大家都在探索。其中一个探索很大的领域就是营销。营销以前都是我们说的广播的方式,媒体的传播是很广的,当然媒体的使用只有少数人能够使用,大家都在想怎么能够把我媒体的宣传,以及营销的个性化。但是这个个性化了以后你就做不到大,你覆盖的范围就小了,成本就提高了。但是现在有了数据有了媒体的技术的提高,使得在大规模的前提下,覆盖面可以达到整个市场,但是还能保证你的个性化的发挥。所以呢,我们今天有很多媒体的朋友在,我引进了一个新词,这是用一个大数据的形式用技术的手段来实现一个窄播,而不是广播。那么窄播现在用技术的力量可以比广播更有效,而且达到的覆盖面以及有效的回报更广。

我做了一些想象,以前我们的数据不大,我们是怎么生活的呢?我们是怎么会有这样一个阿里这么一个强劲的公司呢,我们为什么会国家经济发展了,现在在数据这么大了以后,这个情况是不是会更好呢?我就想这样一些问题。

以前数据是小,所以由于数据小信号是不全,但是信号的使用信号的被发现,信号的价值还是比较充分的,这是相对来说。有了大数据以后,信号是成倍成倍的增大了,但是毫无疑问,信号的增大并不代表信号本身的发现是容易的,因为这个噪声的增加,没用信息的增加,远远超过信息的增加。这里也给大家看一下,在营销的这个领域里面,跟消费者互动的这个方面,大数据的一些起到的作用,以及他们对数据管理、数据的速度的反应这方面的一些要求。

在很多年以前,安客诚公司已经开始,先在美国然后在全球,开拓了很多的数据。这些数据就是单从数据方面来说,已经是达到相当大的规模,在美国我们管理一个消费者的数据库,有2.4亿个成人在这个数据库里面,总共人口是差不多4亿,2.4亿成人就是18岁以上都在我们数据库里面。这2.4亿相当于是1.4亿个家庭,这1.4亿个家庭每个家庭的单位上我们有1700条信息,再加上4000个购买倾向性模型打分。那么这些东西呢,在储存、使用方面,当然是有很大的挑战,但这已经有很多的技术被有效的使用来管理这么大的信息。这是我讲到的字节的数量,以及他们时间上的要求,今天的数据传播和使用的一些时间上的反应速度。

第二个阶段呢,就是到了把他数据再专门化,用到每个应用上去,这时候反应速度的要求是在几分钟以内,字节相对来说比较小一些,因为他更窄了,针对某一个专业的应用,使得它能够适合他的要求,比如说对某一个客户的要求,某一个在媒体方面的使用,数据量不大,但是对时间反应速度的要求就提高了。再往上继续保持这个趋势,数据量减少,应用专门性提高,那么对他反应的要求也进一步提高,在秒钟这个级别。在往上消费者就是要跟大批的消费者,在媒体上互动,他在网页上点击一下,你下一个网页不是同一个网页,而是根据消费者行为的了解和个人的了解,下一个网页是最有效最具有个性化的,那么他的反应速度达到微秒级,那么这个网页往往不是在PC上,而是在手机上的,包括现在更进一步的是孩子们,他们对数据反应的要求是更高,所以达到微秒级。

那么这些大数据的数量和他的速度呢,还不是一个真正大的问题,因为这一方面有了技术,有了企业这方面应用的思维,这已经不是一个最大的问题。

我今天想是超前一点,并不是说我们非得马上今天就要连结,但是这个连结已经成为很大的问题,哪一个公司,哪一个企业能够在这个方面跨第一步,得到的商业上的回报是会最大的,整个工业我们认为也在朝这个方向努力。用个比喻,我们大家都知道这个故事,盲人摸象,每个盲人摸到的反映都是不一样的,有人认为是一个矛,有人认为是一条蛇,或者一棵树等等。那么大数据的使用已经不是盲人摸象了,很多人亮着眼睛看这个象了,但是这个象已经长大几千倍了,但是即使用眼睛看,但是还是看不清楚,只能看到一个局部。所以这些问题主要的原因,我们还没有充分的运用我们的技术,我们尤其是企业操作的一种游戏规则—来使得不同的数据能够交流。因为人有这样的能力,我们懂得的东西或者我们要懂得一个原理,远远超过我们的感官能够达到,我们很多东西是看不到,听到,闻不到,尝不到的,但是我照样因为我们的理解能力,通过数据的连结我们知道是怎么回事,这个数据可以是一本书,可以是一部电影等等之类。通过这个数据的表达,使得我们知道远远超过我们的感官能够达到这样的境地。

但是要达到同样的能力,在企业上来说就必须有大量的连结,首先是数据的连结,包括哪些方面呢?

第一个数据是很多位数,尤其是很多复杂的现象,我们现在讲的复杂的现象就是消费者,消费者是怎么做决定的,为什么买这个东西,为什么出这么多钱。在美国我们感到很新奇的,为什么有很多人要在苹果出来的第一天排队八个小时,花400美元买一部,在半年以后只要100美元,不需要排队。那么在这种时候呢,如果你要掌握市场的脉搏,始终走在消费者前面,给他们提供最有效的信息以及产品的话,就需要连结,这个连结保证人文、行为、态度以及场景这方面数据的连结。然后我们看到了很多公司以及他们有技术平台,因为他们跟消费者每天都在接触,所以他们的行为接触往往超过了人文以及购买以外消费的信息。还有他们的商品很窄,我们美国安客诚所服务的有几千家公司,我经常去一些大公司跟他们谈,比如说花旗银行,大的人寿保险公司,大的零售商等等。我看到一个现象很有意思,他们看每个消费者是很窄的,他们看到的是用自己的产品品牌去看一个消费者。等八小时之后他们自己是消费者的时候,他们把视野扩大了很多。所以这就是一个问题,如果我们回到消费者本身,而不是局限于消费者这一部分数据的了解,我们的商业行为也会更有效。

第二个这些客户的生活方式和他们的兴趣。每一个东西,每一个客户的行为都有一定的道理,他有一定的背景,这种背景使得驱动他们对某一个产品感兴趣。这一方面我等一会儿再举一个例子。第三个是客户竞争和合作的关联。我们阿里巴巴有很多品牌,消费者去购买东西,或者跟他们媒体发生互动。那么这些方面呢,如果了解的话,我们更能知道我们在消费者心目当中的地位,他们是怎么使用我们的平台以及我们提供的服务,相对于其他一系列的他们的兴趣和其他的品牌的影响。第四个就是媒体。媒体现在是越来越多,那么这对消费者绝对有利的。出现什么现象呢?由于这些媒体的使用,首先是实现了营销者,公司对消费者能够接触、能够宣传他们的品牌以及产品,但第二部分是消费者可以使用媒体来更多的了解不同的公司不同的产品,他们价格、性能、体验方面的区别。

第三个方面更多的消费者是跟消费者自己直接联系,他们大家互相能够谈体验、谈对商品的反映,而且远远超过他们认识的人的这些团体的限制。所以使得很多媒体在消费这个阶段上已经完全连结在一起,但是公司与公司的数据连结并没有实现。最后一个就是社交的群体。社交的群体使得每一个个人不再是一个个人,但是我们的数据库里面,包括我们的分析的手段,分析的一些模型的这种结构,还是往往停留在这样一个假设,这个假设就是每一个个人,他就是一个个人,他今天的购买和另外一个个人的购买,可以分开对待,可以不同的用数据来表达,现在我们还没有发现一个公司把个人与个人的关系,以及个人与消费行为进行有效的联系,所以就形成了盲人摸象的问题。

以上是小编为大家分享的关于大数据的商业价值实现关键在于连结的相关内容,更多信息可以关注环球青藤分享更多干货

2. 央行征信和大数据征信的不同之处

没有完善的征信体系,就没有真正的互联网金融。由于人民银行的征信系统与互联网金融的数据平台无法对接,信息无法共享,P2P网贷平台与众筹等不得不通过线下调查客户信用和调取央行征信报告,各自组建线下征信风控团队,这样的网贷与小额贷款公司其实并无实质区别。
支付和征信是互联网金融发展的基础,信用就是公民的“第二张身份证”。P2P投资理财平台最先兴起的英国、美国等国家拥有完善的征信体系,P2P理财机构能够与之相连,能够在线上快速完成交易。目前,美国最大的P2P平台LendingClub基本只做线上交易,而将LendingClub模式引入中国的P2P公司,尽管拥有最新的分析技术,但依然有80%的审核业务需要在线下完成。
在国内,由于征信体系不健全,央行征信系统相对互联网金融是闭环的,线上交易受到很大局限。现在银行只在全国7000多家小贷公司中挑选一部分获得央行的征信信息和征信报告,P2P公司由于没有明确的法律地位,难以进入银行的征信系统。
征信体系不健全导致P2P在中国举步维艰,这成为中国互联网金融行业发展的最大瓶颈。恶意圈钱跑路不断,虚构注册地址等,都是因为互联网金融企业的资质不公开,投资人无法查询相关信息,而网上活跃的一批恶意借款人也让众多网贷公司头疼。没有方便快捷的征信系统,互联网金融的发展就如“盲人摸象”,借贷双方互不知底。投资者对P2P公司的投资也变成了高利诱惑下的赌博。
央行的征信中心是国内最大的金融数据库,共收录法人1940万户,自然人8.5亿人。但其部分数据可能没有互联网金融活跃,互联网金融在典当、借贷活动中,贮存了大量时效性强的活跃信息。同时,互联网企业通过拥有大量电商活动建立了宝贵的信用资源,从电商、微博等平台获取客户网络痕迹,从中判断借款人的信用等级,形成整体风险导向,完善大数据的积累。但互联网金融企业实力和技术参差不齐,一些报告的合规性和规范性、安全性以及客户隐私保护都难以达到央行征信系统的要求。如果在互联网金融数据规范基础上实现二者联网,互联网金融完全可以反哺央行的征信中心。

3. 大数据 大变革、大机遇

大数据:大变革、大机遇

从来没有哪一次技术变革能像大数据革命一样,在短短的数年之内,从少数科学家的主张,转变为全球领军公司的战略实践,继而上升为大国的竞争战略,形成一股无法忽视、无法回避的历史潮流。互联网、物联网、云计算、智慧城市、智慧地球正在使数据沿着“摩尔定律”飞速增长,一个与物理空间平行的数字空间正在形成。在新的数字世界当中,数据成为最宝贵的生产要素,顺应趋势、积极谋变的国家和企业将乘势崛起,成为新的领军者;无动于衷、墨守成规的组织将逐渐被边缘化,失去竞争的活力和动力。毫无疑问,大数据正在开启一个崭新时代。

大数据时代有什么本质特征?大数据的来源是什么?大数据又将流向哪里?大数据在提升政府治理、改善经济治理、再造公共服务模式、激发商业创新方面有哪些卓越案例?中国需要怎么样的战略反应才能抓住大数据带来的宝贵机遇?一系列问题亟待研究者给出深入解析。

“数据驱动发展”成为时代主题

如今,大数据已经被赋予多重战略含义。从资源的角度,数据被视为“未来的石油”,作为战略性资产进行管理;从国家治理角度,大数据被用来提升治理效率、重构治理模式、破解治理难题,它将掀起一场国家治理革命;从经济增长角度,大数据是全球经济低迷环境下的产业亮点,是战略新兴产业的最活跃部分;从国家安全角度,全球数据空间没有国界边疆,大数据能力成为大国之间博弈和较量的利器。总之,国家竞争焦点将从资本、土地、人口、资源转向数据空间,全球竞争版图将分成新的两大阵营:数据强国与数据弱国。

宏观上看,由于大数据革命的系统性影响和深远意义,主要大国快速做出战略响应,将大数据置于非常核心的位置,推出国家级创新战略计划。美国2012年发布《大数据研究和发展计划》,并成立“大数据高级指导小组”,2013年又推出“数据—知识—行动”计划,2014年进一步发布《大数据:把握机遇,维护价值》政策报告,启动“公开数据行动”,陆续公开50个门类的政府数据,鼓励商业部门进行开发和创新。欧盟正在力推《数据价值链战略计划》,英国发布《英国数据能力发展战略规划》,日本发布《创建最尖端IT国家宣言》,韩国提出“大数据中心战略”。中国多个省市发布了大数据发展战略,国家层面的《关于促进大数据发展的行动纲要》也于2015年8月19日正式通过。

微观上看,大数据重塑了企业的发展战略和转型方向。美国的企业以GE提出的“工业互联网”为代表,提出智能机器、智能生产系统、智能决策系统,将逐渐取代原有的生产体系,构成一个“以数据为核心”智能化产业生态系统。德国企业以“工业4.0”为代表,要通过信息物理系统(CPS——cyber physical system),把一切机器、物品、人、服务、建筑统统连接起来,形成一个高度整合的生产系统。中国的企业以阿里巴巴董事局主席马云提出的“DT时代”(data technology)为代表,认为未来驱动发展的不再是石油、钢铁,而是数据。这三种新的发展理念可谓异曲同工、如出一辙,共同宣告了“数据驱动发展”成为时代主题。

与此同时,大数据也是促进国家治理变革的基础性力量。正如《大数据时代》作者舍恩伯格在定义中所强调的,“大数据是人们在大规模数据的基础上可以做到的事情,而这些事情在小规模数据的基础上是无法完成的”。在国家治理领域,阳光政府、责任政府、智慧政府建设,大数据为解决以往的“顽疾”和“痛点”提供了强大支撑;精准医疗、个性化教育、社会监管、舆情监测预警,大数据使以往无法实现的环节变得简单、可操作;大数据也使一些新的主题成为国家治理的重点,比如维护数据主权、开放数据资产、保持在数字空间的国家竞争力等。

从哲学意义上来看,大数据不仅仅是一场技术革命,也不仅仅是一场管理革命或者治理革命,它给人类的认知能力带来深刻变化,可谓是认识论的一次升华。具体而言,大数据可以为决策者解决“四个问题”,提升“两种能力”。一是解决“坐井观天”的问题,以往人们决策只能基于视野之内极为有限的局部信息,和井底之蛙无异,大数据则可以实现整个苍穹尽收眼底;二是解决“一叶障目”的问题,以往不具备全样本数据分析能力,只能用小样本分析近似推理,犹如从“泰山”中取来“一叶”,而真理可能存在于全样本的海量数据之中,借助大数据则可完全克服;三是解决“瞎子摸象”的问题,七个瞎子根本无法根据各自的认识加总出完整的大象,因为他们的信息是相互离散的,无法有效关联起来,而大数据的基本优点是在深入关联中还原事物的原貌;四是解决“城门失火,殃及池鱼”的问题,人们习惯于因果分析,遇到这种“稀奇古怪”的因果链则很难前瞻和推理,但大数据注重相关关系,可以准确地发掘出规律。提升两种能力,一个是“一叶知秋”的能力,体现大数据敏锐的洞察能力,另一个是“运筹帷幄,决胜千里”的能力;体现大数据对时空约束的突破。这些足以说明,大数据是人类认识世界和改造世界能力的一次升华。

中国成为数据强国的优势、挑战与路径

值得振奋的是,中国具备成为数据强国的优势条件。从2013年至2020年,全球数据规模将增长十倍,每年产生的数据量由当前的4.4万亿GB,增长至44万亿GB,每两年翻一番。从全球占比来看,中国成为数据强国的潜力极为突出,2010年中国数据占全球比例为10%,2013年占比为13%,2020年占比将达到18%,届时,中国的数据规模将超过美国的数据规模,位居世界第一。中国成为数据大国并不奇怪,因为我们是人口大国、制造业大国、互联网大国、物联网大国,这都是最活跃的数据生产主体,未来几年成为数据大国也是逻辑上必然的结果。

尽管存在成为数据强国的潜力,但在目前的政策环境之下,我国推进大数据战略仍存在以下几个清晰的挑战。第一,顶层设计方面,全球大国之间围绕大数据的竞争颇为激烈,中国作为一个后发国家,想要实现弯道超车,后来居上并非易事。如何能够紧扣创新前沿,把准未来趋势,超前战略部署,对政策设计来说是一个非常现实的挑战。第二,数据开放方面,“数据孤岛”广泛存在,虽然政府掌握着80%的数据,但现实中却相互割裂,自成体系,“部门墙”“行业墙”“地区墙”阻碍了数据的流动共享,数据被视为部门的利益和隐私,这与大数据时代的基本理念准则相悖。第三,大数据相关的法律、法规、标准缺位,导致能够开放的数据不开放,需要保护的隐私不保护,企业由于标准模糊而无法大胆创新。第四,“数据主权”容易受到侵蚀,由于数据空间是国家新的战略维度,尚没有完备的安全保障体系,再加上电脑、手机、芯片、服务器、搜索引擎、操作系统、软件等核心的数据“基础设施”大量依赖进口,数据资产极易流失,数据主权极易受到侵蚀。

把握优势,克服挑战,抓住大数据革命带来的“机会窗口”,建设数据强国,是实现中华民族伟大复兴的一个有力支撑。然而,我们需要怎样做才能更好地拥抱大数据时代,确保在数字化趋势中立于不败之地呢?首先,需要在国家顶层设计上有一个清晰的行动框架,包括由什么部门主导、哪些部门参与、什么样的协作机制、沿着什么优先次序、克服哪些既有的障碍、达到什么战略目标,只有这样,各部门、各地区、企业界、学术界才能形成合力,在一个共同的路线图上协作推进。其次,盘活数据资产,在数据开放上取得实质性突破。一些基本的建议包括:加快G2G(政府与政府之间)、G2B(政府与企业之间)、G2C(政府与公民之间)大数据开放与共享;推动基础性、战略性大数据资源库整合;加强大数据基础设施建设,编制国家大数据档案。最后,把强大的“国家企业”和活跃的“万众创新”结合起来。一方面,要培育可以和国际“八大金刚”并驾齐驱的巨型企业作为大数据环境中竞争的中坚力量,同时,鼓励和引导大众创业、万众创新成为数据生态系统中的活跃力量。

以上是小编为大家分享的关于大数据 大变革、大机遇的相关内容,更多信息可以关注环球青藤分享更多干货

4. 大数据时代网络舆情管理变革探讨

大数据时代网络舆情管理变革探讨

大数据时代的到来对人类的生活、工作与思维产生变革性影响,深刻改变着商业王国及公共管理等各个领域的面貌,“大数据”日渐成为各行业创新的助推器。当前中国网络舆情环境复杂,网络舆情危机时有发生,社会热点舆情事件和涉官涉政舆情事件不断涌现,造成社会民主生活和政治稳定间的不平衡等诸多影响。大数据背景下的网络舆情正在发生巨大的变化,网络舆情管理变得日益复杂和重要,如何抓住大数据时代为网络舆情管理变革带来的机遇,以“大数据观”变革传统网络舆情管理思维,准确把握网络舆情的内在特征及其在演变过程中的潜在规律,实现网络舆情管理在思维、模式以及技术上的创新,对于新形势下做好网络舆情引导工作,加强和改进网络内容建设,具有重要的理论意义和实践价值。

一、大数据时代必然要求网络舆情管理变革

“大数据”概念最早在20世纪80年代提出,2011年麦肯锡咨询公司发布其研究成果《大数据:下一个创新、竞争和生产率的前沿》,使这个概念得以大范围推广。2012年3月29日,奥巴马宣布将投入2亿多美元启动“大数据发展和研究计划(Big Data Research and Development Initiative)”,将“大数据战略”上升为国家战略。近两年,大数据备受学术界、产业界和政府部门的关注,成为国内外强有力的前沿词汇。大数据又称巨量数据、海量数据、大资料,指的是所涉及的数据量规模巨大到无法通过目前主流软件工具在合理时间内进行抓取、管理和处理的数据集合,是必须通过深度挖掘、计算、分析才能创造价值的海量信息。大数据在体量、复杂性、产生速度及价值密度四个方面都极大地超越了传统的数据形态,具有4V特征:大量(Volume)、多样(Variety)、高速(Velocity)、价值(Value)。数量庞大的网民通过论坛、微博、微信等多种途径方便快捷地发表言论观点,网络舆情的规模和复杂性急速上升,体量巨大而价值密度低,其内在特征的变化必然要求实现网络舆情管理的变革以适应大数据时代的发展,这些要求主要体现在四个“转向”上。

(一)从监测转向预测。大数据的核心和目标就是预测。复杂网络的研究专家巴拉巴西认为,“93%的人类行为是可以预测的,当我们将生活数字化、公式化以及模型化的时候,我们会发现其实大家都非常相似。生活如此抵触随机运动,渴望朝更安全、更规则的方向发展,人类行为看上去很随意、很偶然,却极其容易被预测”[1]。例如,亚马逊可以推荐我们想要的图书,淘宝知道我们的喜好,而人人网可以猜出我们认识谁。传统网络舆情管理把监测已经产生的舆情信息作为起点,这种明显的滞后性使其在网络舆情危机的应对中处于消极被动的位置。而目前留给突发事件的处理时间越来越少,从传统的“黄金24小时”变为“黄金4小时”,如此短的时间使舆情分析和决策尚未来得及参与进来,整个事件就已经造成了爆炸性的效果。在大数据时代,通过挖掘数据相关性,把数学算法运用到海量的数据上进行分析,在敏感消息进行网络传播的初期就提前开始监测,然后建立模型,模拟仿真网络舆情的演变过程,使网络舆情突发事件发生的可能性和倾向性变得可以预测。

(二)从节点转向网络。由监测舆情转向预测舆情的目标实现,最关键的大数据技术就是挖掘数据的相关性。在小数据时代,由于受到数据库和计算分析能力的限制,无论是对于因果关系还是相关关系的追寻,都耗资耗时,并且易受传统的思维模式和特定领域隐含的固有偏见的影响,无法保证舆情分析结果的准确性。因此传统的网络舆情管理只注重舆情内容的监测,通过分析单个数据节点,如网民“说什么”来抓住比较浅层的社会语义表达。大数据则在保留了原始数据的同时,记录了网民“为什么这么说”背后的社会心理和社会关系网。按照大数据思维,每一个数据都是一个节点,可无限次地与其他关联数据形成舆情链上的乘法效应——类似微博裂变传播路径,数据裂变式的关联状态蕴含着无限可能性[2]。通过对海量信息的解构与重构,充分整合政府和企业的数据资产,利用一系列飞速发展的新技术和新工具,描绘、测量、计算各节点之间的关系,深度挖掘数据的相关性,以此排除偏见和视觉盲点,掌握易被忽略的社会动态,预测舆情的发展趋势。因此大数据时代必然要求网络舆情管理变革其监测系统,由节点转向网络,把握相关性,进而分析舆情背后的社会互动,乃至网络族群之间的界限和相互勾连。

(三)从定性转向定量。舆情分析师或解读者从自身经验和视角出发,在传统网络舆情管理的过程中进行定性分析时,必然使其分析结果带有个人价值与理念的主观印记,甚至不同的舆情机构对同一舆情事件会得出相悖的结论。在大数据时代,所有元数据都可通过量化关联转化为有价值的信息,并实现多次利用,每一次利用都是一种创新,大数据成为网络舆情定量管理的力量源泉。尽管数据的相关性决定了某些数据价值的潜藏性,但新技术、新软件的出现使得通过数学分析实现数据的价值转化变为可能。而多维解读舆情和新的深刻洞见的揭示,使舆情分析结果的全面性和客观性大大超越传统的网络舆情管理。但数据的量化并不等同于简单的“数字化”,而是数据的可计算化,舍恩伯格将其称之为“数据化”,是指一种把现象转变为可制表分析的量化形式的过程[3]。“数据化”使态度和情绪转变为一种可以分析的形式,网络舆情的相关信息得以进行深入分析,一些社交媒体如Facebook、Twitter、QQ、微博、微信等坐拥大型数据的宝藏,一旦实现对其自身数据库的深度利用,就能轻易获得社会各个领域和所有用户的几乎全部动态信息。

(四)从样本转向全体。在传统的网络舆情工作模式中,所采集的舆情关联数据仅为样本信息,构建的数据库结构单一、数据量有限。其数据源一般是基于抽样或者针对重点网络站点进行的数据抓取,仅能对小规模、有结构或类结构的数据进行分析,标准不一,难以在不同领域中通用。同时,样本分析并不能保证结果的准确,即使分析方法和操作没有问题,但采样过程的任何偏误都将使舆情分析结果与事实相去甚远。大数据体量巨大,从TB级别跃升至PB乃至ZB级别,完整记录了社情民意,成为人类生存痕迹和心理变化的记录仪。采样的目的是以尽可能少的数据获得尽可能多的信息,但大数据是建立在掌握所有数据,至少是海量数据的基础上的,在数据处理技术日新月异的今天,变革传统舆情管理思维与方法,改变采样的惯性行动成为必要。通过运用大数据技术,建立网络舆情自动分析系统,全天候自动搜索并采集与目标舆情看似毫不相关实则具有内在关联的信息,在抓取和收集页面之后,对信息自动分类、自动获取关键词、自动内容分析和自动报警等。样本扩大至几乎全体,舆情分析的结果更加客观可靠。

二、大数据时代网络舆情管理变革的效应前瞻

抓住大数据时代变革网络舆情管理的新机遇,迎接大数据时代网络舆情管理的新挑战,顺应大数据时代网络舆情管理的新要求,变革与创新网络舆情管理将会产生良好的管理效应,实现新时期网络舆情管理的升级转型。

(一)实现“防火”式管理。传统的网络舆情管理因为无法把握数据相关性,不能准确预测舆情未来的发展趋势,因此采用的是“灭火”式管理模式。政府通常在舆情产生或者已形成舆情危机的情况下才开始采取措施,如发布信息、引导舆情、满足诉求等,以此达到“灭火”效果。在此种模式下,政府经常被动陷入网络舆情漩涡,由此形成视网络舆情为“敌情”的偏见。为了摆脱这一困境,政府总是试图“控制”、“引导”和“应对”网络舆情,以一种上位者的姿态去支配、主宰网民及其舆情表达的方式。然而,若网民在网络舆情中的主体地位得不到保证,网络舆情就会失去其“减压阀”的功能,网络舆情问题将会是治标不治本。大数据时代,政府转变网络舆情管理思路,变革网络舆情管理模式,应用大数据技术对网络舆情进行关联分析、级别划分、聚类分析和倾向性分析,将实现“灭火”式管理到“防火”式管理的转变。通过寻找“导火索”与“减压阀”之间的平衡点,在发挥网络“民间舆论场”作用的同时,将网络舆情危机扼杀在摇篮里。例如美国中央情报局通过抓取海量数据来追踪恐怖分子和监控社会情绪,在“阿拉伯之春”中,通过大数据分析多少人和哪些人的立场从温和变为激进,并“算出”谁有可能会采取有害行为。

(二)打捞“沉没的声音”。大数据源于互联网的分享、开放,但“数字鸿沟”的存在却使“信息穷人”与网络隔绝。尽管互联网的发展使这一部分人的比例越来越低,但发展不均衡性的扩大意味着现在和将来仍然有一个不容忽视的群体将无法提供任何数据。即使是那些能够充分利用网络的人群,也有可能因为在某种情境下成为舆论中的弱势群体,或者因其在舆情主流中的异质思维而选择不在网络上发声。当然,这种选择既可能是主动也可能是被动的。正如美国哲学家埃里克·霍弗所言,“一个国家最不活跃的人群,为占大多数的中间层次。他们是在城市工作和在乡间务农的正派老百姓,然而,他们的命运却受分据社会光谱两头的少数人——最优秀的人和最低劣的人所左右”[4]。显而易见的是,单凭技术体系构筑的大数据平台无法真正获取“全部数据”,通过改革网络舆情管理去打捞那些可能代表某一个群体或一定数量级的“沉没的声音”十分必要。因此,全面思考和理清大数据时代网络舆情管理面临的机遇和挑战,通过“大舆情”观念的构建,变革网络舆情管理的工作理念和模式,将有利于打捞“沉没的声音”。例如,将舆情服务与社会调查相结合,重视实地调研与第一手材料的采集,而不是把网络舆情管理捆绑在技术上,将避免得到不全面的舆情或做出误导性决策。

(三)识破“伪舆情”。当前备受关注的网络舆情,越来越成为依存于影星式的学者、影星式的记者、影星式的商人和影星式的政客为中心的“伪舆情”[5]。重大敏感事件发生后,部分网管和有影响力的舆情机构快速封堵其主观上认为的“有害信息”,选择性地编撰舆情报告,以片面、虚假的“伪舆情”影响决策层对形势的研判,使其做出符合自身利益诉求的决策。有些利益集团则精心扶植和培育自己的网络发言人,引导网民思考的内容和方向。结果,这些舆论领袖对关键事件和问题的看法在网络上大行其道,并淹没其他异质言论,使群众对真相的认知产生巨大偏差。当舆情被各方利益集团的政治力量和经济力量操纵时,它便丧失了独立性,一旦“伪舆情”被识破,舆情机构就可能失去其公信力。基于全网的完整、准确和极速的信息抓取有利于为舆情分析报告提供一手的材料、纯粹的事实,从而获得真实全面的舆情,使网民在不知道“为什么”的情况下,依然能获得对“是什么”的比较公正客观的认知,并以此助力网络舆情的引导。同时,通过变革网络舆情管理的体制机制,保持舆情管理的独立性将有力识破“伪舆情”,剔除“杂音”与“噪音”,使大数据时代的网络舆情真正成为现实世界的“镜像”。

(四)克服“盲人摸象”和“信息孤岛”。海量信息无限增长与网民关注、分析能力有限之间的矛盾,造成了“数据爆炸”与“知识贫乏”的怪象,加剧了社会舆论的“盲人摸象”效应。大数据时代下,网络媒体促进了信息的开放和沟通的便捷,人们对公共事件的参与达到了一个前所未有的高度,但是分众传播、个性化传播的凸显以及信息的碎片化,使得全面、深刻地关注和分析事件变得越来越困难。网民非理性、易激动的特点导致网络舆情的偏激和情绪化,网络的“群体极化”被放大。大数据时代的舆情监测是建立在传统人工和软件无法进行的全网舆情信息采集的基础上,样本扩大到全体。通过运用大数据技术,建立网络舆情自动分析系统,避免因数据源不全面而造成的重要信息监测缺失,将有利于消弭“盲人摸象”现象。与此同时,由于信息化应用水平参差不齐,政府和企业不同的部门之间都存在“信息孤岛”问题:有多少个部门就有多少个信息系统,每个系统都有自己的数据库、应用软件和用户界面,完全是独立的体系,阻碍了数据的互通互联[6]。变革大数据时代网络舆情管理的工作模式,统一舆情行业的技术标准,共享数据,建立网络舆情服务联盟,统筹政府、企业、媒体及社会力量,实现网络舆情的多元共治将有利于解决“信息孤岛”问题。

三、大数据时代网络舆情管理的变革路径

当大数据给各行各业带来变革性影响时,全世界都没做好迎接这场产业革命的准备。但与英美等发达国家相比,中国更像是处在大数据时代的前夜。而中国的人口和经济规模决定了中国大数据的规模为全球最大,为中国抓住时代的脉搏进行改革提供了难得的机遇。在这种大背景下,大数据对传统舆情管理也产生了深刻的影响,要使网络舆情管理变革产生应有的预期效应,适应时代的发展要求,须从思维观念、方法手段、体制机制、技术保障、人才建设等路径着手。

(一)树立大舆情观念。大数据时代网络舆情管理的变革,首要在于树立大舆情观念。这里的大舆情,包括两层含义。第一,强调“大数据观”,即充分实现网络数据平台的开放共享。按照“一切皆可量化”的大数据逻辑,一个新增的相关性数据的产生,通常会带来一个新的分析结果。因此只有形成“大数据观”,实现数据的动态分享,才能有效防止信息“碎片化”,最大限度地消除“盲人摸象”和“信息孤岛”现象。第二,强调网上和网下数据的整合。网络舆情与社会调查结合不足,可能降低舆情的真实性,误导决策。例如,对于假期调整方案的选择,各舆情机构组织的网络投票的结果各不相同,其做出的舆情分析报告也和真实民意相左。因此只有真正掌握“大舆情”,打捞“沉没的声音”,才能正确决策,打造一个更安全、更高效的社会。树立大舆情观念,首先,必须实现数据分析的动态化,打破数据垄断,统一标准,共享数据,预防孤立的舆情机构闭门造车,制定片面或错误的舆情分析报告。其次,应把网上网下各方面数据整合起来,挖掘网络舆情与社会动态背后的深层次关系,实现网络舆情管理和社会治理的紧密联动、同步推进[7]。最后,完善和创新包括舆情抓取、预警、研判到决策、评估等在内的网络舆情管理的各个环节,使舆情管理功能不仅仅限于危机处理,更能发挥辅助决策的作用。

(二)变革网络舆情的引导战略。做好舆论引导工作,应把握好时、度、效。但是目前许多地方和部门对如何进行网络舆情的引导仍然缺乏正确认识,于“时”不能把握好“黄金4小时”,于“度”不能掌握火候,拿捏分寸,于“效”不能保证网络舆情引导的实效质量。大数据由于自身具有的特点,使其利于变革网络舆情的引导战略,变“封改删”、“鸵鸟战术”为“网上引导,网下落地”,使“伪舆情”失去生存的土壤。因此,我们要充分发挥大数据的优势来提高舆情引导工作的能力。其一,利用大数据提升网络舆情引导的预见性和目的性。通过数据抓取和相关性分析,构建网民意见倾向分析模型,了解网民的偏好和特点,建设和完善政府网站、官方微博,扶植和借助意见领袖,做到“善说话、说对话、接地气、办实事”。其二,通过数据的价值转化,实现网络舆情的价值引导。在充分收集相关数据的基础上,运用图表等数据可视化技术揭示事件的前因后果,让数据“发声”,使网民既“知其然”也“知其所以然”,从而全方位360度无死角了解事件的来龙去脉,消除“盲人摸象”现象。其三,提升舆情引导的公信力。一方面加强新老媒体间的互动,发挥各自的优势与公众沟通,破解谣言和流言,达到时效性和权威性的双重保障;另一方面要避免舆情分析师在处理数据的过程中受经验偏好的影响,并防止大数据沦为某些机构和个人更便捷地操纵舆论的手段。

(三)健全大数据舆情管理体制机制。当前,网络舆情管理的体制机制尚不完善,很多地区尚不具备系统规范的舆情应对与处理的管理体系。舆情分析和预测手段落后,危机应对系统缺失,舆情管理组织机构不健全、不稳定,以及多头管理等问题非常普遍。健全大数据舆情管理的体制机制,对于从源头上解决网络舆情管理过程中出现的问题和困难,实现标本兼治,具有决定性作用。因此,为使网络舆情管理取得实效,提升网络舆情工作的规范化和科学化水平,我国应加快建立健全大数据舆情管理的体制机制。首先,建立网络舆情多元管理的互动机制,由国家出台大数据发展战略规划,产学研相结合,统筹政府、企业、社会和公民的力量,形成合力,实现共治。其次,变革网络舆情管理的机构设置,改变以往通过临时组建领导小组或临时办公室等机构,或者以宣传部门为“消防队”等方式被动应对舆情危机的模式,通过常态化机构的设置和专业人员的配备,使网络舆情管理专门化、精细化。再次,建立权责明确的责任机制,通过加快数据立法进程明确各级各部门包括政府部门、企业媒体、人民团体等的权利义务;通过建立由网信部门牵头的大数据舆情管理体制,改变多头管理的局面,并设立政府首席信息官责任制度等。最后,健全大数据网络舆情管理的资源保障机制,大数据时代变革网络舆情管理面临初期成本高、短期效益不明显等问题,需要加大资金、技术、物资、人力等资源的投入。

(四)创新大数据网络舆情管理的方法与技术。大数据时代的到来,要求网络舆情管理必须采用更为先进的技术,这主要表现在对各种相关软件的大量应用以及对大数据技术支撑平台的依托。目前中国网络舆情监测采集软件中较具代表性的有TRS互联网舆情信息监控系统、北大方正智思舆情监控系统、军犬网络舆情监控系统、乐思网络舆情监测系统等。此外,还应完善和创新大数据技术支撑平台的五大基石——数据监测技术、数据挖掘技术、数据存储技术、数据分析技术、数据安全技术,使大数据为网络舆情管理服务的同时又不超出我们的控制。同时,我们也不能陷入“技术是万能的”误区而盲目迷信和依赖技术,更不能因相信大数据强大的预测功能而导致“数据独裁”,变成数据的奴隶。因此,网络舆情管理还需要依靠其他方法和手段相辅相成,共同作用。法律因其具备最大的强制性和权威性,成为最有效的管理控制的手段。法律与道德相互联系,在极具复杂性和特殊性的虚拟空间里,教育和自律被摆在重要的位置上。例如,欧美发达国家如美国、英国、加拿大等都通过倡导用户自律和自我管理来提高网民的媒介素养,加强自我把关能力。此外,还可以效仿韩国、新加坡等运用行政手段,要求网络用户在获得国家有关部门颁发的许可证的情况下,才能访问政府严格控制的信息等。

(五)培育大数据时代的网络舆情管理人才。大数据时代的网络舆情将会形成多向度的研究,例如对社会话语表达、社会心理描绘、社会关系呈现、社会诉求预测等的分析研究。网络舆情将真正成为一门与多学科交叉的社会显学,对人才的全面性要求很高。中国教育的学科划分和培养体系,客观导致培养出来的人才很难跨界。换句话说,真正进入这个行业的门槛是很高的。正因如此,各国越来越重视对数据科学家的培养,如美国在大学专门开设研究大数据技术的课程,通过严格的业务培训和职业资格认证,培养下一代的数据科学家。2013年9月,我国人社部联合人民网启动“网络舆情分析师职业培训计划”,“网络舆情分析师”成为一项被正式认可的职业。但是我国现有舆情工作人员的水平仍然严重滞后,很多舆情机构尤其是地方政府并没有专业的数据处理、分析团队和专门的网络舆情管理部门。为突破大数据时代变革网络舆情管理的人才瓶颈,从短期看,可以通过招考、录用等方式引进数据挖掘、分析人才,通过委托培养、网络培训等方式强化已有专业人才力量,通过购买服务的方式短期租赁大数据舆情管理的高素质人才。从长远看,则要系统梳理网络舆情管理所需人才目录,培养和壮大既精通数据挖掘、数学建模,又拥有较高学习能力、分析能力和知识水平,横跨统计学、社会学、计算机学、传播学、管理学等学科的复合型人才,打造一支大数据网络舆情管理的专业人才队伍。

以上是小编为大家分享的关于大数据时代网络舆情管理变革探讨的相关内容,更多信息可以关注环球青藤分享更多干货

5. 人工智能电话营销机器人到底能做什么

功能上来能做到自动拨打源用户电话,识别用户语义,自动分类用户,与用户互动,筛选出高意向的用户,声音也很贴近自然人声了。对运营人员来说只要分析数据,看是否需要二次跟进就行了,可以节省80%以上的人工成本。

相当于一个低成本的精准营销方式,由机器人筛选过滤意向用户,销售或者业务员再跟进。
目前做得比较好的是摸象大数据、百应AI、晓芯、小语,百应AI规模大一些,服务行业广一些,摸象有自己研发的DMP数据平台,支持添加用户微信。

6. 如何正确认识大数据的价值和效益

1、数据使用必须承担保护的责任与义务

我国数据流通与数据交易主要存在以下问题:数据源活性不够,数据中介机构还处于起步阶段;多源数据的汇集技术尤其是非结构化数据分析技术滞后;缺乏熟悉不同行业并掌握在特定领域使用数据技术的人才。

数据的价值在于融合与挖掘,数据流通、交易有利于促进数据的融合和挖掘,搞活数据从而产生效益。数据共享开放、流通交易和数据保护及数据安全对数据技术提出严峻挑战,对法律的制定及执行提出了很高要求。为此,数据使用必须承担保护的责任与义务。

7. 如何在投标过程中提高中标率

中招投标方法分析

《中华人民共和国招标投标法》规定:全部或者部分使用国有资金投资或者国家融资项目的勘察、设计、施工、监理以及与工程建设有关的重要设备、材料等的采购,必须进行招标。

目前,建设工程招标一般采用有标底和无标底招标两种方法。

有标底招标法就是招标者在开始招标之前,根据设计图纸、预算定额等预先计算出工程的价格,并以此为标底。在对项目进行评标时,以标底为基准,对参与投标的单位的报价进行打分的一种方法。

无标底招标法就是招标者在招标中不做标底,施工单位投标书实质上响应招标文件要求而评标价格又最低便可以中标。

无标底招标法会造成招标者很难控制工程的价格,对工程造价心中无底。但是对于有标底招标法存在编制、审核过程容易泄露的负面因素。综上所述,这两种方法都不完美。在招投标实践过程中,总结出了一个招标方法,叫做标底价公示法,这种标招方法既可有效将造价降低,还可以不必要担心是否泄漏了标底。

标底价公示法招标是按目前预算编制方法编制的标底作为工程项目最高限价。标底价公示法要求施工单位在知晓标底价的基础上,不要将报价低于单位的成本价,更不能比公告的标底价还要高,然后在招标中优选合适的单位中标。

(7)摸象大数据融资扩展阅读:

影响投标竞争力的因素

经营决策班子是否健全

企业经营决策班子如果没有固定的造价专业人员和技术管理人员,班子就形同虚设,无法系统管理,缺乏凝聚力。

是否具备竞争优势

如果参与投标的施工单位从不研究竞争对手,提高自身企业资质及人员条件,闭门造车,那么最终则会导致企业的投标方案无法在众多方案中脱颖而出成为中标候选人。

工期、质量、安全措施是否合理

工期、质量、安全三大指标往往是影响中标的重大因素。招标人在一些具有战略决定意义或季节性的施工项目上往往会对施工的工期严格要求。“百年大计,质量第一”,质量、安全是项目实施的灵魂所在,投标企业必须做出可靠承诺,忽视或是不实质地响应招标要求,势必严重影响评标结果。

投标报价策略决策是否正确

投标报价虽不是决定中标与否的唯一因素,但却是第一因素。企业的第一目标是为了获得最大的利润,而招标人的目标则是在获得预期效果的情况下尽可能降低投资金额。

决定投标单位是否进入评标阶段甚至击败对手拿到项目的武器便是投标单位的报价策略。

投标文件要突出专业性

指定专人来编写技术文件,除了要对招标文件仔细地研究阅读,理解招标人的意图,还要尽可能地满足招标人对于企业资质、企业业绩、人员资格的要求。

运用报价技巧增加中标率

在投标报价中所使用的技巧是一种可以增加其中标率的技能和谋略,在投标过程中使用一些合规的技巧可以增加投标企业的中标概率和增加利润。这里结合实际简要介绍几种报价技巧。

不平衡报价法

该方法是在不提高总报价的前提下达到中标的目的。一般是在确定总的报价之后,再调整总报价中的各单项工程的单价。采用这种报价方法时,要根据工程项目不同特点及施工条件等选择。

它有三方面的选择:

首先,预计工程量在施工图阶段增加或者招标工程量不明确的项目,其投标单价可以适当提高,这样在工程最终结算时可以适当增加费用。对一些工程内容解释不清楚或预计工程量减少的项目,可适当降低其单价,这样在结算的时候便可以降低损失。

其次,降低工期靠后的项目报价,同时提高工期靠前的项目的报价。例如,一些公司的资金周转不开,便可以适当地提高基础工程或者土石方工程的报价,这样便可以有效地降低公司的资金周转问题。

最后,暂定项目或可选择项目,在国际工程经常有这方面的报价,报价时需要具体分析。这一类型的项目是否要实施是在项目开工后由招标者决定的,对于不一定实施的工程项目则可以相应地降低其单价,同时适当增加肯定要实施的工程项目的单价。因此针对该项报价需要慎重考虑,以免引起损失。

不同报价法

根据招标项目的不同特点采取不同的报价。报价不仅要考虑施工的条件,还要具体分析工程实际情况,更要考虑到自身的情况,正所谓知己知彼,百战不殆。

对一些如工程施工量大、工程竞争激烈、招标者信誉良好以及施工条件优良的工程我们可以适当地降低标书中的报价。对于具有独特优势的工程,山地工程、跨河流工程、技术难度大以及专业要求高或施工条件差的工程,自己不愿意参与或不方便投标的工程、工期紧迫的工程等等,我们可以调高其报价。

多方案报价

对一些相关条款不够清晰、不够客观公正,施工的范围比较模糊等,我们在报价时可多报几个价格。对于这样的工程可以按原标书报一个价,同时准备一个假如出现某些情况降多少的报价,以便吸引业主。

增加建议方案报价

有时招标文件规定,可以对原方案提出建议报价。投标单位在投标过程中,需要组织专业人员对招标的文件、施工方案进行详尽分析。针对施工方案以及招标文件两个资料,研究出最符合自己利益,同时又保证业主要求的方案,通过降低工期或总的建造价格来吸引招标者。

突然降价法

在进行最后的投标者交流中,利用真真假假的消息迷惑竞争对手,在其他投标者面前故意报出高价和不屑于中意标段,但是却在最后时间突然调整报价,达到击败对手的目的。这种报价方法,一定要充分分析和判断各种情况,再做最后决策。

无利润投标法

为了一个分期建设项目或者打入一个新市场,我们可以通过降低价格来获得首期项目,为以后竞争创造机会及优势,取得后期更大的利润.

8. 人工智能电话营销机器人到底能做什么

人工智能发展比较快,可以说飞速了,现在已经能实现电话营销了,适合证券、信用卡、房地产、教育、旅游等电销需求大的行业。

功能上能做到自动拨打用户电话,识别用户语义,自动哪漏孙分类用户,与用户互动,筛选出高意向的用户,声音也很贴近自然人声了。对运营人员来说只要分析数据,看是否需要二次跟进就行了,可以节省80%以上的人工成本。

相当于一个低成本的精准营销方式,由机器人筛选过滤意向用户,销售或者业务员再跟进。

目前做得比较好李链的是摸象大数据、百应AI、晓芯、小语,百应AI规模大一些,服务行业广一些,摸象有自己研发的DMP数据平台,支持添加用户微信搜旅。

阅读全文

与摸象大数据融资相关的资料

热点内容
appleld的代码是什么形式 浏览:659
图片转word文件保存在哪 浏览:757
count是哪个编程语言 浏览:85
写言情小说哪个网站好 浏览:365
iphone外接电视 浏览:423
哪些地方网络信号更好些 浏览:753
jar反编辑工具 浏览:614
描述数据波动大小有哪些 浏览:584
u盘exfat可复制4g以上的文件吗 浏览:667
a4大小的文件过塑多少钱 浏览:26
畅天游2app在哪里下载 浏览:844
微信看文字的图片 浏览:298
将文件直接粘入word 浏览:134
VIP解析APP有哪些 浏览:463
怎样彻底卸载cad文件 浏览:829
iphone4港版 浏览:624
怎么用命令打开程序错误 浏览:665
iphone6怎么改控制中心 浏览:808
ns错误代码 浏览:653
iphone4s如何取消软件更新提示 浏览:538

友情链接