导航:首页 > 网络数据 > 初识大数据

初识大数据

发布时间:2024-05-10 01:54:06

① 入行大数据,需要学习哪些基础知识

每个机抄构的课程方式都不一样的吧 都有自己的一套方式
这个是三点共圆的 可以参考看看
基础部分
主要技能:
javaSE、Linux操作基础、数据库jsP、Servlet、JSP+Servlet+JDBC企业级项目介绍
Hadoop大数据阶段

主要技能:
初识Hadoop、HDFS体系结构和Shell以及Java操作、详细讲解MapRe ce、MapRece案
Hive/HBase数据库
主要技能:
数据仓库Hive、分布式数据库HBase
Storm流式计算
主要技能:
全面掌握Storm内部机制和原理,Redis缓存系统课程大纲、Kafka课程、Storm实时数据处理
Spark内存计算
主要技能:
Scala课程、Spark大数据处理、Spark Streaming实时计算实时数据处理
项目评审与就业服务
主要技能:
通过综合项目评审,掌握面试技巧,综合项目评审、就业常见问题的解决

② 大数据必学的Java基础有哪些

远标教育为你解答:
初识Java
1java发展简史,主要特征
2java运行机制
3第一个Java程序,注释
4javac,java,javadoc等命令
5标识符与关键字
6变量的声明,初始化与应用

数据类型与运算符
1数据类型(基本,引用)
2类型转换
3转义字符
4Java运算符与表达式

流程控制
1选择控制语句if-else,
2选择控制语句switch-case
3循环控制语句while
4循环控制语句do-while
5循环控制语句for与增强型for

循环控制与数组
1循环控制break,continue与return
2循环标签
3数组的声明与初始化
4二维(多维)数组
5main方法命令行参数

类与对象
1面向对象的基本思想
2类与对象(声明,创建,使用)
3成员变量与方法(声明与应用)
4参数传递(基本数据类型与引用类型)

方法重载
1方法重载
2构造器
3构造器重载
4this的使用

访问权限
1包的使用(package,import)
2访问权限修饰符
3类的封装性(私有化,seter与geter)
4static(静态成员变量,方法,类)
5final(修饰变量,方法,类)

继承
1类的继承概念
2成员继承
3super的使用
4调用父类构造器

多态
1方法的重写与隐藏
2变量的隐藏
3利用继承实现多态
4继承下的类型转换
5instanceof

抽象类
1抽象类
2抽象方法
3继承抽象类
4抽象类与多态

接口
1接口概念与使用
2利用接口实现多态性
3接口与抽象类对比
4注解

内部类
1静态内部类
2成员内部类
3方法内部类(本地类)
4匿名内部类
5eclipse集成开发环境

常用类
1包装类
2String,StringBuilder,StringBuffer
3Math,Date,Calendar,Random,Scanner

异常处理
1异常处理概念
2try-catch-finally
3throwthrows
4自定义异常

集合(上)
1泛型基本介绍与优势
2类型通配符
3泛型类与泛型方法
4Collection接口

集合(下)
1List接口及实现类
2Set接口及实现类
3Map接口及实现类

IO流
1File类的使用字节流(InputStream与OutputStream)的使用
2字符流(Reader与Writer)的使用
3缓存流BufferedReader与BufferedWriter

反射
1类加载,链接与初始化
2ClassLoader的使用
3Class类的使用
4通过反射创建类的实例

多线程
1Thead创建线程
2Runnable接口创建线程
3线程的相关方法
4线程同步(wait,notify,notifyall)
5线程死锁

MySQL基本操作
1数据库,表结构相关概念
2MySQL数据库的配置与操作
3MyManagerLite
4三种注释
5MySQL数据类型
6表的相关操作
7查询数据(单表,多表),where条件
8插入,修改,删除数据
9别名使用

常用函数与内外连接
1流程控制相关函数if,case等
2常用字符串处理函数
3聚合函数与groupby子句
4分组过滤having
5排序orderby
6内连接cross(inner,natural)join
7using
8外连接left(right)outerjoin

JDBC
1JDBC概念
2java.sql相关接口
3JDBC数据库连接MySQL
4数据库连接池

html&css
1.html简介
2.html结构
3.html标签
4.html应用
5.css简介
6.css常用选择器
7.css应用

javascript
1.javascript简介
2.javascript数据类型
3.javascript流程控制
4.javascript编程
5.json对象简介及应用
6.jQuery简介及应用

Servlet&Jsp
1.Servlet简介
2.Servlet接口
3.Servlet生命周期
4.Servlet编程
5.jsp简介
6.jsp标签
7.jsp编程

③ 大数据来自哪里大数据会去哪里

大数据来自哪里?大数据会去哪里?
初识大数据,首先我们需要知道什么是大数据呢?用通俗一点的话来说就是一堆一堆又一堆的、海量的数据。通过网络我们知道“大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。”
在当下的互联网飞速发展的时代,任何一个技术都是为了达到某种目的而发展的,而大数据从根本上来说就是为了做决定存在的,大数据为企业的决策提供有力的依据。比如市场方针的制定,精准营销的目标群体、营销数据等等。大数据的存在不仅是为企业提供了数据支撑,而且为用户提供了更为便捷的信息和数据服务。
大数据体现的是数据的数量多,数据类型丰富。我们需要通过对数据的关系的的挖掘,才能最终将数据进行更好地利用。
谁是物联网?
物联网是什么呢?通俗的概念来讲,物联网就是通过网络信息技术和工业自动化控制技术将硬件和网络进行有效的集合并通过传感器进行对应的信息控制,以此达到对物件的自动控制的混合网络。通过网络我们知道“物联网(The Internet of things)就是物物相连的互联网”。这有两层意思:第一,物联网的核心和基础仍然是互联网,是在互联网基础上的延伸和扩展的网络;第二,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用。”
随着工业控制、信息识别和互联网网络的发展,物联网将是下一个信息浪潮。
大数据与物联网的联系既有区别也关联。以小编的个人愚见,物联网行业如果需要有较好的发展,那么需要大数据强力的支持,而针对物联网行业的大数据,则是不断来源于物联网超级终端的数据采集。所以,物联网对大数据的要求相比于大数据对物联网的依赖更为严重。
大数据来自哪里?大数据会去哪里?
浅谈大数据的来源
大数据的来源这个问题其实很简单,大数据的来源无非就是我们通过各种数据采集器、数据库、开源的数据发布、GPS信息、网络痕迹(购物,搜索历史等)、传感器收集的、用户保存的、上传的等等结构化或者非结构化的数据。
浅谈大数据能够带给我们什么
大数据能给我们带来什么?很多公司现在都在炒大数据的概念,但是真正能做好的有几个呢?大数据重在积累、强在分析、利于运用。没有经过多年的有意的数据收集、没有经过严谨细心的数据分析。那么,如何来谈论大数据能给企业或者个人来带来便捷呢?
大数据能带给企业的项目立项的数据支撑、精准化营销、电商的仓位储备等等。但是针对个人用户有时候就是麻烦了,因为你随时都可以接收到很多的营销短信、隐私暴露太多。另外对于个人用户大数据的好处是可以快速找到自己想要东西、为用户提供信息服务、获取消费指导等等。换个角度看问题的话,小编认为应该是利大于弊。
大数据是怎么带给我们想要的支撑?
庞大的数据需要我们进行剥离、整理、归类、建模、分析等操作,通过这些动作后,我们开始建立数据分析的维度,通过对不同的维度数据进行分析,最终我们才能得到我们想到的数据和信息。
1、 项目立项前的市场数据分析为决策提供支撑;
2、 目标用户群体趋势分析为产品提供支撑和商务支撑;
3、 通过对运营数据的挖掘和分析为企业提供运营数据支撑;
4、 通过对用户行为数据进行分析,为用户提供生活信息服务数据支撑和消费指导数据支撑。
如何通过大数据挖掘潜在的价值?
模型对于大数据的含义
模型有直观模型,物理模型,思维模型,符合模型等。我们在进行数据挖掘前需要考虑我们需要用这些数据来干什么?需要建立怎么样的模型?然后根据模型与数据的关系来不断优化模型。
只有建立了正确的模型才能让数据的挖掘和分析更有便捷。

④ 大数据如何入门

首先我们要了解Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

大数据

Java :只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据基础。


Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。


Hadoop:这是现在流行的大数据处理平台几乎已经成为大数据的代名词,所以这个是必学的。Hadoop里面包括几个组件HDFS、MapRece和YARN,HDFS是存储数据的地方就像我们电脑的硬盘一样文件都存储在这个上面,MapRece是对数据进行处理计算的,它有个特点就是不管多大的数据只要给它时间它就能把数据跑完,但是时间可能不是很快所以它叫数据的批处理。


Zookeeper:这是个万金油,安装Hadoop的HA的时候就会用到它,以后的Hbase也会用到它。它一般用来存放一些相互协作的信息,这些信息比较小一般不会超过1M,都是使用它的软件对它有依赖,对于我们个人来讲只需要把它安装正确,让它正常的run起来就可以了。


Mysql:我们学习完大数据的处理了,接下来学习学习小数据的处理工具mysql数据库,因为一会装hive的时候要用到,mysql需要掌握到什么层度那?你能在Linux上把它安装好,运行起来,会配置简单的权限,修改root的密码,创建数据库。这里主要的是学习SQL的语法,因为hive的语法和这个非常相似。


Sqoop:这个是用于把Mysql里的数据导入到Hadoop里的。当然你也可以不用这个,直接把Mysql数据表导出成文件再放到HDFS上也是一样的,当然生产环境中使用要注意Mysql的压力。


Hive:这个东西对于会SQL语法的来说就是神器,它能让你处理大数据变的很简单,不会再费劲的编写MapRece程序。有的人说Pig那?它和Pig差不多掌握一个就可以了。


Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。


Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。


Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰流流的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接受方(比如Kafka)的。


Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。

⑤ 大数据培训课题有哪些

大数据培训的话分开发方向和运维方向,主要包括前端、java、数据库、大数据自身的一些课程

⑥ java大数据主要学习什么

大数据是一个概念性的东西,指代海量的数据资源;java是语言开发工具,Java是学习大数据技术的基础,大数据技术还包含了Hadoop、spark、storm等体系,java不等于大数据。只不过Hadoop是用Java写的,所以学习Hadoop,最好能有一点Java的基础。

⑦ 达内Java大数据培训课程包括哪些内容

这个您在网上一搜就知道了。如果您想学习java建议您从口碑,老学就业等多方面来考虑

⑧ 大数据主要学什么

静态网页基础(HTML+CSS)
主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等。

JavaSE+JavaWeb

主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)、JDBC、线程、反射、Socket编程、枚举、泛型、设计模式。

前端框架
主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui。
企业级开发框架

主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webService CXF、Tomcat集群和热备 、MySQL读写分离

初识大数据

主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapRece应用(中间计算过程、Java操作MapRece、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)

大数据数据库

主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)

实时数据采集

主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化

SPARK数据分析

主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性

⑨ 大数据培训需要多长时间难不难学

一般大数据的学习方式有两种:

线下脱产学习,线上视频教学。如果是版0基础学员参加线下脱权产班学习的话,大多数培训机构都是6个月左右的周期。

大数据的学习有一定难度,对于0基础的小白来说,一定要细心、耐心,认真听课,多多练习。大数据的薪资待遇是比较可观的,目前大数据开发招聘还是以技术为主,大数据需要学习hadoop、spark、storm、超大集群调优、机器学习、并发编程等,加米谷的具体如下:

Java,大数据基础:Linux基础、Maven基础

HDFS分布式文件系统

MapRece分布式计算模型+Yarn分布式资源管理器+Zookeeper分布式协调服务

Hbase分布式数据 库+Hive分布式数据仓库

FlumeNG分布式数据采集系统+Sqoop大数据迁移系统

Scala大数据黄金语言+kafka分布式总线系统

SparkCore大数据计算基石+SparkSQL数据挖掘利器+SparkStreaming流式计算平台

SparkMllib机器学习平台+SparkGraphx图计算平台

大数据项目实战

阅读全文

与初识大数据相关的资料

热点内容
iphone6降级ios7 浏览:92
怎么隐藏三星应用程序图标不见了 浏览:203
可以兼职的app 浏览:493
iphone圆角图标制作 浏览:659
建设银行app怎么申请 浏览:163
系统备份文件夹在哪 浏览:998
qq分组exo韩文 浏览:849
华硕装装win7系统教程视频 浏览:407
什么是数据直连 浏览:210
笔记本连接无线网络慢 浏览:486
压缩文件怎么控制在4m以内 浏览:1
indesign最新版本2016 浏览:300
为什么压缩文件窗口变小 浏览:904
居民医保工行手机app怎么缴费 浏览:602
图论与网络流理论答案 浏览:913
安装win10后需要输入WiFi密码吗 浏览:412
c语言加法的编程格式是什么样的 浏览:195
用户大数据怎么计算 浏览:717
手机app软件怎么开发 浏览:785
记得app 浏览:854

友情链接