⑴ 大数据在未来有什么样的发展趋势_大数据的未来发展前景
大数据的未来发展趋势主要有以下几点:趋势一:数据资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合大数据离不开云处理,云处理为大数据提供了弹性可拓乱樱宽的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一起助力大数据革命,让大数据营销发挥出更大的影响力。
趋势三:科学理论的突破随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
趋势四:数据科学和数据联盟的成立未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
趋势五:数据泄露泛滥未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会哗陆丛面临悉孙数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。
趋势六:数据管理成为核心竞争力数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。
趋势七:数据质量是BI(商业智能)成功的关键采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。
趋势八:数据生态系统复合化程度加强大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。
⑵ 大数据未来的前景怎么样
1、从行业来说:是很有发展前景的,因为互联网发展已经关乎各行各业,大数据不仅是行业的选择也是发展的选择
2、从所在城市来说:如果是一线城市,那么学成就业没有问题,但二三线城市现阶段有局限性
3、从个人能力来说:有专业技术就有发展前景,没有专业技术,任何一个行业都没有发展前景,也无法承受行业内卷。
⑶ 未来大数据发展的七大趋势
未来大数据发展的七大趋势
在未来一段时间内,大数据将成为企业、社会和国家层面重要的战略资源。大数据将不断成为各类机构,尤其是企业的重要资产,成为提升机构和公司竞争力的有力武器。
大数据正在不断改变人们的生活趋势一:数据隐私标准将出台大数据将面临隐私保护的重大挑战,现有的隐私保护法规和技术手段难以适应大数据环境,个人隐私越来越难以保护,有可能会出现有偿隐私服务,数据“面罩”将会流行。预计各国都将会有一系列关于数据隐私的标准和条例出台。趋势二:成为重要战略资源在未来一段时间内,大数据将成为企业、社会和国家层面重要的战略资源。大数据将不断成为各类机构,尤其是企业的重要资产,成为提升机构和公司竞争力的有力武器。企业将更加钟情于用户数据,充分利用客户与其在线产品或服务交互产生的数据,并从中获取价值。此外,在市场影响方面,大数据也将扮演重要角色——影响着广告、产品推销和消费者行为。趋势三:分析方法发生变革大数据分析将出现一系列重大变革。就像计算机和互联网一样,大数据可能是新一波的技术革命。基于大数据的数据挖掘、机器学习和人工智能可能会改变小数据里的很多算法和基础理论,这方面很可能会产生理论级别的突破。趋势四:与云计算深度融合大数据处理离不开云计算技术,云计算为大数据提供弹性可扩展的基础设施支撑环境以及数据服务的高效模式,大数据则为云计算提供了新的商业价值,因此,从2013年开始,大数据技术与云计算技术必然进入更完美的结合期。总体而言,云计算、物联网、移动互联网等新兴计算形态,既是产生大数据的地方,也是需要大数据分析方法的领域。趋势五:网络安全问题凸显大数据的安全令人担忧,大数据的保护越来越重要。大数据的不断增加,对数据存储的物理安全性要求会越来越高,从而对数据的多副本与容灾机制提出更高的要求。网络和数字化生活使得犯罪分子更容易获得关于人的信息,也有了更多不易被追踪和防范的犯罪手段,可能会出现更高明的骗局。趋势六:催生数据分析师等职业大数据将催生一批新的就业岗位,如数据分析师、数据科学家等。具有丰富经验的数据分析人才成为稀缺资源,数据驱动型工作机会将呈现出爆炸式的增长。趋势七:大数据学科诞生数据科学将作为一个与大数据相关的新兴学科出现。同时,大量的数据科学类专着将出版。
以上是小编为大家分享的关于未来大数据发展的七大趋势的相关内容,更多信息可以关注环球青藤分享更多干货
⑷ 大数据分析领域有哪些发展趋势
1.基于云的大数据分析
Hadoop是用于处理大型数据集的一个框架和一组工具,这个最初被设计工作在物理机的集群上,但是目前这种现象已经改变,越来越多的基于云中的数据处理器技术出现,例如亚马逊利用云的数据BI的托管长款,谷歌BigQuery中的数据分析服务,IBM的Bluemix云平等等,这些都是基于云的大数据分析平台。
2. Hadoop:新的企业数据操作系统
Hadoop,分布式的分析框架,如今正在演变成分布式资源管理器,它可能将是数据分析的一个通用的操作系统。有了这些系统,你可以将不同的数据操作和分析操作插入到Hadoop分布式存储系统中来执行。
3.更多的预测分析
随着大数据的发展,分析师不仅会嗯更多的数据一起工作,而且还将处理大量的许多属性的工具。但是随着大数据行业的发展,针对旧数据的分析更多的是为了提供预测的功能,毕竟人们更希望利用原有的数据来对未来产生有利的用途。
4. 更多更好的NoSQL
替代传统的基于SQL的关系数据库的产品被称为NoSQL数据库,如今被迅速的普及在特定种类的分析应用程序中。而且这一势头在持续增长,据估计,预计未来将有15至20个开源的NoSQL数据库共同存在,他们各自有的的专长,这些数据库会得到快速的发展。
5.在内存分析
使用内存数据库来加快分析处理的方式如今越来越受欢迎,很多用户都非常喜欢这种方式,目前很多基于内存的分析管理工具以及出现,其中以亚马逊的HANA一体机尤为明显。
除了分析软件看好这个市场,作为全球的企业级市场的处理器生产商,英特尔也非常看好这一领域的发展,从目前其产品推出的发展趋势来看,其内存支持将会越来越大,一些特定的产品甚至支持的比硬盘的容量还要大。
关于大数据分析领域有哪些发展趋势,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑸ 深度分析大数据的八大趋势与创新
深度分析大数据的八大趋势与创新
伴随着大数据技术与数据分析的发展趋势,拥有丰富数据的分析驱动型企业应运而生。下面我们来具体看下大数据技术与数据分析有哪些趋势和创新。文中,也用了一些IBM在帮助客户找到创新型大数据解决方案的应用案例。
1. 数据驱动创新
如今,数据已成为企业竞争优势的基石。利用数据和复杂数据分析的企业将目光投向了“创新”,从而打造出高效的业务流程,助力自身战略决策,并在多个前沿领域超越其竞争对手。
2. 富媒体数据分析呼唤先进技术
如果没有合理分析,大部分数据毫无用处。而大数据和数据分析又会带来哪些机遇呢?国际数据公司(IDC)预测,2015年,富媒体(视频、音频和图像)分析将至少扩大两倍,并成为大数据以及分析技术投资的关键驱动力。富媒体数据分析需要先进的分析工具,这为企业提供了重大的市场机遇。以针对电商数据进行图像搜索为例。对图像搜索结果的分析要准确,且无需人工介入,这就需要强大的智能分析。未来,随着智能分析水平的不断提升,企业将获得更多机遇。
3. 预测分析必不可少
当前,具有预测功能的应用程序发展迅速。预测分析通过提高效率、评测应用程序本身、放大数据科学家的价值以及维持动态适应性基础架构来提升整体价值。因此,预测分析功能正在成为分析工具的必要组成部分。
4. 混合部署是未来趋势
IDC预测,未来5年,在基于云的大数据解决方案上的花费将是本地部署解决方案费用的4倍之多,混合部署将必不可少。IDC还表示,企业级元数据存储库将被用来关联云内数据和云外数据。企业应评估公共云服务商提供的产品,这有助于其克服大数据管理方面的困难:
安全和隐私政策及法规影响部署选择;
数据传输与整合要求混合云环境;
为避免出现难以应付的数据量,需构建业务术语表并管理映射数据;
构建云端元数据存储库(包含业务术语、IT资产、数据定义和逻辑数据模型)。
5. 认知计算打开新世界
认知计算是一种改变游戏规则的技术,利用自然语言处理和机器学习帮助实现自然人机交互,从而扩展人类知识。未来,采用认知计算技术的个性化应用可帮助消费者购买衣服,挑选酒,甚至创建新菜谱。IBM最新的电脑系统Watson率先利用了认知计算。
6. 大数据创造更多利润与价值
越来越多的企业通过直接销售其数据或提供增值内容来获利。IDC调查表明,目前70%的大公司已开始购买外部数据。到2019年,这一数字将达到100%。因此,企业必须了解其潜在客户重视的内容,必须精通包装数据和增值内容产品,并尝试开发“恰当”的数据组合,将内容分析与结构化数据结合起来,帮助需要数据分析服务的客户创造价值。
7. 物联网推动实时分析发展
预计物联网未来5年的复合增长率将达30%。它将以商业驱动者的角色引领企业迈出使用流分析的第一步。物联网引发的数据大爆炸将促进实时分析和流分析的发展,要求数据科学家和主题专家筛选数据,寻找可开发成事件处理模型的可重复性模式。然后,事件处理模型可处理传入事件,将其与相关模型关联,并监测需要响应的实时情况。此外,事件处理不间断,所以要求响应时间尽可能接近于实际时间。事件处理因此成为大数据系统和应用程序中不可或缺的模块。
8. 复合型数据分析人才之争
很多企业都希望将业务知识与业务分析结合起来,但很难找到复合型数据分析人才。特别是大企业对此感触颇深。随着企业不断在内部加强技术的使用,对复合技能的需求变得越来越明显。业务知识和分析技能的结合对速度驱动型企业非常重要,这有助于企业深入理解业务驱动力以及相关数据,从而更快地将商业洞见转化为行动。