导航:首页 > 网络数据 > 大数据阈值

大数据阈值

发布时间:2024-04-21 04:53:20

A. 大数据处理中数据质量监控从哪几个方面进行

数据落地监控
数据掉0监控:实际扩展一下就是数据量阈值监控,少于某个量就告警
重复数据监控:很多表一定要监控重复数据的,这点至关重要。
关键指标监控
数据同比环比监控

B. 大数据科学家需要掌握的几种异常值检测方法

引言

异常值检测与告警一直是工业界非常关注的问题,自动准确地检测出系统的异常值,不仅可以节约大量的人力物力,还能尽早发现系统的异常情况,挽回不必要的损失。个推也非常重视大数据中的异常值检测,例如在运维部门的流量管理业务中,个推很早便展开了对异常值检测的实践,也因此积累了较为丰富的经验。本文将从以下几个方面介绍异常值检测。

1、异常值检测研究背景

2、异常值检测方法原理

3、异常值检测应用实践

异常值检测研究背景

异常值,故名思议就是不同于正常值的值。 在数学上,可以用离群点来表述,这样便可以将异常值检测问题转化为数学问题来求解。

异常值检测在很多场景都有广泛的应用,比如:

1、流量监测

互联网上某些服务器的访问量,可能具有周期性或趋势性:一般情况下都是相对平稳的,但是当受到某些黑客攻击后,其访问量可能发生显著的变化,及早发现这些异常变化对企业而言有着很好的预防告警作用。

2、金融风控

正常账户中,用户的转账行为一般属于低频事件,但在某些金融诈骗案中,一些嫌犯的账户就可能会出现高频的转账行为,异常检测系统如果能发现这些异常行为,及时采取相关措施,则会规避不少损失。

3、机器故障检测

一个运行中的流水线,可能会装有不同的传感器用来监测运行中的机器,这些传感器数据就反应了机器运行的状态,这些实时的监测数据具有数据量大、维度广的特点,用人工盯着看的话成本会非常高,高效的自动异常检测算法将能很好地解决这一问题。

异常值检测方法原理

本文主要将异常值检测方法分为两大类:一类是基于统计的异常值检测,另一类是基于模型的异常值检测。

基于统计的方法  

基于模型的方法

1、基于统计的异常值检测方法

常见的基于统计的异常值检测方法有以下2种,一种是基于3σ法则,一种是基于箱体图。

3σ法则  

箱体图

3σ法则是指在样本服从正态分布时,一般可认为小于μ-3σ或者大于μ+3σ的样本值为异常样本,其中μ为样本均值,σ为样本标准差。在实际使用中,我们虽然不知道样本的真实分布,但只要真实分布与正太分布相差不是太大,该经验法则在大部分情况下便是适用的。

箱体图也是一种比较常见的异常值检测方法,一般取所有样本的25%分位点Q1和75%分位点Q3,两者之间的距离为箱体的长度IQR,可认为小于Q1-1.5IQR或者大于Q3+1.5IQR的样本值为异常样本。

基于统计的异常检测往往具有计算简单、有坚实的统计学基础等特点,但缺点也非常明显,例如需要大量的样本数据进行统计,难以对高维样本数据进行异常值检测等。

2、基于模型的异常值检测

通常可将异常值检测看作是一个二分类问题,即将所有样本分为正常样本和异常样本,但这和常规的二分类问题又有所区别,常规的二分类一般要求正负样本是均衡的,如果正负样本不均匀的话,训练结果往往会不太好。但在异常值检测问题中,往往面临着正(正常值)负(异常值)样本不均匀的问题,异常值通常比正常值要少得多,因此需要对常规的二分类模型做一些改进。

基于模型的异常值检测一般可分为有监督模型异常值检测和无监督模型异常值检测,比较典型的有监督模型如oneclassSVM、基于神经网络的自编码器等。 oneclassSVM就是在经典的SVM基础上改进而来,它用一个超球面替代了超平面,超球面以内的值为正常值,超球面以外的值为异常值。

经典的SVM  

1

 基于模型的方法

2

基于神经网络的自编码器结构如下图所示。

自编码器(AE)

将正常样本用于模型训练,输入与输出之间的损失函数可采用常见的均方误差,因此检测过程中,当正常样本输入时,均方误差会较小,当异常样本输入时,均方误差会较大,设置合适的阈值便可将异常样本检测出来。但该方法也有缺点,就是对于训练样本比较相近的正常样本判别较好,但若正常样本与训练样本相差较大,则可能会导致模型误判。

无监督模型的异常值检测是异常值检测中的主流方法,因为异常值的标注成本往往较高,另外异常值的产生往往无法预料,因此有些异常值可能在过去的样本中根本没有出现过, 这将导致某些异常样本无法标注,这也是有监督模型的局限性所在。 较为常见的无监督异常值检测模型有密度聚类(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一种典型的无监督聚类方法,对某些类型的异常值检测也能起到不错的效果。该算法原理网上资料较多,本文不作详细介绍。

IF算法最早由南京大学人工智能学院院长周志华的团队提出,是一种非常高效的异常值检测方法,该方法不需要对样本数据做任何先验的假设,只需基于这样一个事实——异常值只是少数,并且它们具有与正常值非常不同的属性值。与随机森林由大量决策树组成一样,IsolationForest也由大量的树组成。IsolationForest中的树叫isolation tree,简称iTree。iTree树和决策树不太一样,其构建过程也比决策树简单,因为其中就是一个完全随机的过程。

假设数据集有N条数据,构建一颗iTree时,从N条数据中均匀抽样(一般是无放回抽样)出n个样本出来,作为这颗树的训练样本。

在样本中,随机选一个特征,并在这个特征的所有值范围内(最小值与最大值之间)随机选一个值,对样本进行二叉划分,将样本中小于该值的划分到节点的左边,大于等于该值的划分到节点的右边。

这样得到了一个分裂条件和左、右两边的数据集,然后分别在左右两边的数据集上重复上面的过程,直至达到终止条件。 终止条件有两个,一个是数据本身不可再分(只包括一个样本,或者全部样本相同),另外一个是树的高度达到log2(n)。 不同于决策树,iTree在算法里面已经限制了树的高度。不限制虽然也可行,但出于效率考虑,算法一般要求高度达到log2(n)深度即可。

把所有的iTree树构建好了,就可以对测试数据进行预测了。预测的过程就是把测试数据在iTree树上沿对应的条件分支往下走,直到达到叶子节点,并记录这过程中经过的路径长度h(x),即从根节点,穿过中间的节点,最后到达叶子节点,所走过的边的数量(path length)。最后,将h(x)带入公式,其中E(.)表示计算期望,c(n)表示当样本数量为n时,路径长度的平均值,从而便可计算出每条待测数据的异常分数s(Anomaly Score)。异常分数s具有如下性质:

1)如果分数s越接近1,则该样本是异常值的可能性越高;

2)如果分数s越接近0,则该样本是正常值的可能性越高;

RCF算法与IF算法思想上是比较类似的,前者可以看成是在IF算法上做了一些改进。针对IF算法中没有考虑到的时间序列因素,RCF算法考虑了该因素,并且在数据样本采样策略上作出了一些改进,使得异常值检测相对IF算法变得更加准确和高效,并能更好地应用于流式数据检测。

IF算法

RCF算法

上图展示了IF算法和RCF算法对于异常值检测的异同。我们可以看出原始数据中有两个突变异常数据值,对于后一个较大的突变异常值,IF算法和RCF算法都检测了出来,但对于前一个较小的突变异常值,IF算法没有检测出来,而RCF算法依然检测了出来,这意味着RCF有更好的异常值检测性能。

异常值检测应用实践

理论还需结合实践,下面我们将以某应用从2016.08.16至2019.09.21的日活变化情况为例,对异常值检测的实际应用场景予以介绍:

从上图中可以看出该应用的日活存在着一些显著的异常值(比如红色圆圈部分),这些异常值可能由于活动促销或者更新迭代出现bug导致日活出现了比较明显的波动。下面分别用基于统计的方法和基于模型的方法对该日活序列数据进行异常值检测。

基于3σ法则(基于统计)

RCF算法(基于模型)

从图中可以看出,对于较大的突变异常值,3σ法则和RCF算法都能较好地检测出来, 但对于较小的突变异常值,RCF算法则要表现得更好。

总结

上文为大家讲解了异常值检测的方法原理以及应用实践。综合来看,异常值检测算法多种多样 ,每一种都有自己的优缺点和适用范围,很难直接判断哪一种异常检测算法是最佳的, 具体在实战中,我们需要根据自身业务的特点,比如对计算量的要求、对异常值的容忍度等,选择合适的异常值检测算法。

接下来,个推也会结合自身实践,在大数据异常检测方面不断深耕,继续优化算法模型在不同业务场景中的性能,持续为开发者们分享前沿的理念与最新的实践方案。

C. python 处理大数据程序运行的越来越慢的问题

最近编写并运行了一个处理1500万个数据的程序,本来最初每秒可以处理150个左右的数据,预计大概15个小时的时间就可以处理完,晚上的时候就开始运行,本以为等到第二天中午就可以得到结果呢,,,

可是,等我第二天的时候一看,什么???还没处理完,当前的数据处理速度变成了一秒5个左右,然后还需要等待300个小时。

然后就查了一下这个问题,原来同样也有很多人在处理培察蔽大数据的时候遇到了这个问题,大多数的文章分析的原因都是说由于GC(垃圾回收)造成的性能下降。
Python的垃圾回收机制的工作原理为每个对象维护一个引用计数,每次内存对象的创建与销毁都必须修改引用计数,从而在大量的对象创建时,需要大量的执行修改引用计数操作,对于程序执行过程中,额外的性能开销是令人可怕的。回收的触发时机有两种可能,一是用户主动调用gc.collect(),二是对象数量超过阈值。

所以正是GC拖慢了程序的性能,所以我们可以考虑在处理的时候禁止垃圾回收。

通过这样的改进之后速度确度会有很大的提升。但是又有也会另外的一个问题,内存溢出,由于运行的过程中生成大量的对象,一次使用后就没有了引用,由于关闭了垃圾回收机制,一直存在内存中得不到清理,然后程序的内存使用量越来越大。解决的方法就是定期打开gc.enable()再关配州闭或者主动调用gc.collect(),这样就可以了。

通过上述的改进后程序确实了很多,可是我的程序还是运行的越来越慢,我都怀疑人生了,然后分别测试了各个步骤所花费的时间才知道了原因,我使用了pandas创建一个DataFrame,然后每次迭代得到的结果都添加新的数据到DataFrame中,随着里边的数据越来越多,添加的速度也就越来越慢了,严重的拖累的运行速度。这里的解决方法有两个:

1 分段保存结果,间隔一段时间就保存一次结果,最后再将多次的结果合并。

2 换一个数据存储方法,我是直接使用了python的没和字典进行保存结果,它随着数据的增多添加的速度也会变慢,但是差别不是很大,在可接受的范围内,可以使用;或者再加上方法1,分段进行保存再合并也是可以的。

阅读全文

与大数据阈值相关的资料

热点内容
ciscoccna教程 浏览:363
ps直线工具变成箭头 浏览:572
微信丽人贷款申请条件 浏览:290
ps预设色调放在哪个文件夹 浏览:991
女生不干编程干什么 浏览:314
数据安全测评的方法有哪些 浏览:754
交友约会APP哪个好 浏览:899
js修改css字体颜色 浏览:51
gotoxy是哪个编程语言 浏览:893
win10手机链接上网好慢 浏览:542
电脑怎么向魅族mx4传输文件 浏览:534
多少条数据的表属于大表 浏览:348
三星s7edge悬浮窗教程 浏览:523
网监半小时可传多少数据 浏览:871
求隐藏手机文件的软件 浏览:487
网站下载东西怎么选储存位置 浏览:999
java时间相差多少年 浏览:623
什么是移动网络指标提升 浏览:190
打马是什么意思网络用语 浏览:764
药膳app 浏览:545

友情链接