导航:首页 > 网络数据 > 厦门大数据战略

厦门大数据战略

发布时间:2024-04-19 17:55:43

Ⅰ 厦门信息集团大数据运营有限公司怎么样

简介:厦门信息集团大数据运营有限公司,成立于2018年4月。是为了承担厦门内市的大数据开放和运容营任务新创的公司。大数据公司是厦门信息集团的全资子公司。大数据公司主足于厦门,基于最新的大数据技术,深耕厦门本地市场。目前已经发布了“白鹭分”的数据产品。用大数据助力信用厦门的建设。
法定代表人:黄中祥
成立时间:2018-04-23
注册资本:2000万人民币
企业类型:有限责任公司(非自然人投资或控股的法人独资)
公司地址:厦门市软件园三期诚毅大街366号0375单元

Ⅱ 大数据与中国的战略选择

大数据与中国的战略选择

今天,大数据(bigdata)一词正越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据。随着经济社会的发展,大数据可能带来的深刻影响和巨大价值日益被认识,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为我们提供了一种全新的看待世界的方法,其带来的信息风暴正全方位地改变着我们的生活、工作和思维。面对这样一种情势,我们应当以什么态度来迎接大数据时代的到来?如何使大数据为我所用?这些问题亟须我们从学理上作出科学回答。

人类社会的每一次进步,都是由新技术引发新一轮产业革命、进而引发政府管理和社会治理模式的重大变革而推动的。科技革命不断推动着产业的发展,只有那些抓住技术革命的战略机遇并迅速作出适应性调整的国家或民族才能不断生存发展,无视变化或拒绝变化的国家或民族将面临停滞和衰落。现在又到了必须选择的时刻。同以往不同,发生在大数据时代的技术革命是基于纳米技术、生物技术、信息技术和认知科学多学科联动的,这必将引发井喷式的产业创新。

大数据支撑新时代

大数据,或称巨量资料,是指所涉及的资料量规模巨大,以致无法通过目前主流软件工具在合理时间内撷取、管理、处理并整理成为帮助企业达致经营决策目的的资讯。大数据技术不仅能够提高人们利用数据的效率,而且能够实现数据的再利用和重复利用,进而大大降低交易成本,提升人们开发自我潜能的空间。人们可以低成本或零成本进行事物信息全息式的纵向历史比对和横向现实比对。大数据技术自身不仅能够迅速衍生为新兴信息产业,还可以同云计算、物联网和智慧工程技术联动,支撑一个信息技术的新时代。

云计算、物联网、大数据、智慧工程都是新一代信息技术。云计算技术是一种按使用量付费的模式,这种模式可以提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络、服务器、存储、应用软件、服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云计算技术可以使人们及时利用各类大数据。物联网技术的实质就是物物相连的互联网,物联网的核心和基础仍然是互联网,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。物联网技术可以溯源大数据和保证信息的真实性。智慧工程就是把感应器嵌入和装备到电网、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,并且进行普遍连接,与现有的互联网整合起来,实现人类社会与物理系统的整合。智慧工程可以激活沉寂的大数据。

可见,云计算、物联网、大数据、智慧工程四者之间有着紧密的联系。云计算是互联网的广泛普及和深度应用,实现了从芯片操作系统、应用软件到服务产业链的垂直整合。物联网突破了机器到机器的连接,是感知、传输、处理等技术高速发展的产物。大数据是大量数据的处理技术,实现了从数据到知识的飞跃。智慧工程基于云计算、物联网和大数据技术,实现完美结合,将数据、知识、设备、网络转换成为智慧。

大数据引领新发展

资源配置实现灵动化。物联网通过智能感知、识别技术与普适计算、泛在网络的融合应用,实现全球资源的网联。在此基础上,云计算使全球资源实现了从“端”到“云”的重新分布,给全球资源配置方式带来全局性的颠覆、整合和创新。随着全球网联水平的不断提高,云计算、物联网、大数据、智慧工程在社会生活和经济各行业中将愈发起到基础性和工具性作用,并将带来全球经济乃至社会的变革,改变人们的生活、工作甚至思考的方式。在新技术支撑下,资源配置不再受制于地理位置、物理状态,而是能按需调配,呈现灵动化趋势。

国际竞争延伸至赛博空间(Cyberspace)。领土、领海、领空这三大领域是传统国际竞争的焦点。随着大数据时代的到来,更重要的竞争领域开始凸显——赛博空间(赛博空间是哲学和计算机领域中的一个抽象概念,指在计算机以及计算机网络里的虚拟现实,有的文献译作网络电磁空间,有的误译为网络空间)。美国2014财年预算提出增加赛博安全防御经费,奥巴马政府希望通过给予研究人员更多资金和资源,使美国能够在当前的全球赛博军备竞赛中开展竞争。

大数据成为关键生产要素。随着大数据时代的到来,数据将如能源、材料一样,成为战略性资源。2012年3月,奥巴马政府在白宫网站发布了《大数据研究和发展倡议》,将其视为“未来的新石油”,提出通过大数据加速在科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式。如何利用数据资源发掘知识、提升效益、促进创新,使其服务于国家治理、企业决策乃至个人生活服务,是大数据时代的重要战略课题。

中国的战略选择

扩大人才供给。政府应采取多种措施,扩大大数据相关人才供给。实施教育培养计划,在大学相应阶段有针对性地增加相关课程,增加学生在感知技术、数据仓库、数据搜索、数据挖掘与可视化等领域的知识积累,扩大人才储备规模。加大从其他国家、地区引进人才的力度,实施各项优惠政策、营造良好发展环境以吸引国外优秀的技术人员,增强我国相应研发实力。采取相应激励措施,鼓励企业对管理者普及数据分析技术培训,推动企业使用相关技术明确消费需求、创新产品及服务。

支持企业研发。产业安全是国家安全的基石,产业安全依赖企业实力,尤其是企业的研发能力。在明确关键技术的基础上,确定重点支持领域,加大研发支持力度,整合云计算专项、物联网专项等项目,支持大数据技术的开发、研究和应用示范,引导企业加大研发力度,实现关键技术突破。在政府部门和公用事业的信息化应用中采购大数据技术,以政府采购引导国内大数据发展。优先支持大数据技术在诸如疾病防治、灾害预测与控制、食品安全与群体事件等民生领域的应用。

加快标准建设。完善知识产权保护体系,促进数据共享和整合,推动数据价值创造。加快制定相关标准和指南,鼓励存在缺口的重要领域推进关键技术研发,推动行业标准制定机构出台各类型的标准,并给予资金支持、税收减免、费用补贴、金融支持等激励措施。

开放政府信息资源。尽快建设信息资源开放平台,促进信息共享与业务协同,努力为群众提供更方便快捷、更优质高效的公共服务,以满足各级政务部门经济调节、市场监管、社会管理、公共服务等方面的需要。根据跨部门协同办公的需要,以部门业务信息为基础,从标准、流程、数据三个方面来设计,形成“物理分散、逻辑集中”的公共数据中心,通过数据集中挖掘,提高数据利用率,提高各级政府行政管理效率和公共服务水平。出台一些配套制度,例如公开数据集的目录,强制要求进行数据公开和共享;设立奖惩制度,对于公开信息及时、可靠的予以奖励,不符合规定的予以惩处;建立预算制度,从预算角度控制各部门经费使用方向,推动数据共享,防止“信息孤岛”现象的出现。

以上是小编为大家分享的关于大数据与中国的战略选择的相关内容,更多信息可以关注环球青藤分享更多干货

Ⅲ 企业实施大数据的路径

企业实施大数据的路径

企业实施大数据的具体的建设路径有两个方面,一方面是自下而上,另一方面是自上而下。
自上而下
自上而下的路径,首先是有序地在管理层建立数据的决策文化,在企业文化层面建设起数据的使用意识,然后建立对应的组织架构、对应的部门和团队,确定需要招聘什么样的人进来、需要多少人、具体职责怎么划分,最后建立起对应的技术平台。
自下而上
自下而上第一是让员工学习和掌握相关技术技能,可以通过内部培训,也可以通过外部招聘。第二,要有规划地设计,以后系统怎么走、怎么做, 要有一个长期的规划。第三,要有明确的绩效考核的指标,数据的管理、质量的管控、效益怎么保证。第四,在思维上要保持一个开放的态度,互联网时代大数据还在发展的初期,一般认为大数据在企业的应用还处于幼儿园阶段,这个时候还有很多东西要学习,必须保持一个开放的心态,不断地学习,才能真正把事情做好。
(一)建立企业的数据文化
文化是企业看待事物的价值观和执行行动的衡量标准。建立数据文化就是要在整个企业层面建立一种以客观的数据为决策依据和衡量标准的价值观和制度体系,为企业能够真正利用大数据产生价值提供基础。没有这个基础,企业即使拥有再好的技术和资源,也无法利用好它们来为企业服务。
什么叫企业数据文化?它包括六个方面的内容。
第一,数据文化主要体现在数据驱动决策,决策主要通过数据来说话。
第二,企业运行效率的分析。一方面,通过对数据进行深度分析,可以像望远镜一样了解企业各方面的运营情况,另一方面,数据可以像显微镜一样去观察企业运营的细节,找到以优化的地方。
第三,通过数据来分析营销规划的得失。通常企业做促销活动,销售量提升了就觉得是成功了,但是促销是有成本的,销量提升了,是不是真的就带来效益了呢?
第四,在以人为本的时代,企业对员工的人身安全和健康的责任越发重大了。如果能通过客观可衡量的数据,关注员工的工作环境和舒适性,对保障良好健康的工作环境、提升员工的满意度将起到非常重要的作用。
第五,员工绩效,必须要有一个数量化的指标。
第六,价值链中的数据管理。在纵向供应链中通过数据的分享和交换,可以更好地让供应链上下游的企业了解整个供应链上的需求、库存和供给,从而可以优化链条上的库存,主动发起供给的准备,更快地应对市场的变化。在横向生态链中,通过分享和交换数据,可以在全方位生活场景中对用户进行分析,从而打造出满足用户更广泛需求的一站式服务,不仅可以挖掘出更多的商业机会,而且增强了用户的粘性。
(二)建立企业的数据战略
建立企业的数据战略,需要建设三个方面的内容,如下图
数据模型
第一个方面是建立完整的数据模型。数据模型的目的是正确地定义数据,对数据进行分类和确定数据交互之间的标准。将对企业业务管理的理解,转化为数据的要求,从而理解到底什么样的数据需要管理。不同的系统产生不同的数据,各系统之间的数据和数据之间互相交互的内容是什么。企业内部有不同的系统,ERP 系统、供应链系统、CRP 系统等,用户信息放在哪,供应商信息、物联网信息、财务信息分别放在哪,他们之间怎么协调,怎么沟通?这些都是需要考虑的问题。
数据服务
第二个方面是建立数据服务体系,包括选用什么样的技术平台、采用什么样的数据技术,不同的系统如何使用这些不同技术,包括传统的数据库、数据仓库、商业智能、新型的 Hadoop 等。基于业务架构的设计,来设计数据应用的架构,然后通过数据交互接口来交换数据,从而避免出现数据孤岛,同时建立统一的数据规划,确保数据源的统一和一致性,为后期的数据分析提供支持。
数据管理
第三个方面是建立数据的治理体系。数据治理包括数据的管理制度和整体生命周期的管理。数据正在成为一种资产,与此相对应的,资产需要体系化的管理。数据的资产权利管理,包括确定数据的所有权、确定每个数据的所有者、谁是这个数据的管理者、谁来负责这个数据的准确性、谁来保障数据的质量,等等。数据的高质量是进行数据分析的基础,数据如果是错误的,怎么分析都不会有正确的结果。同时,数据的合规和安全的管理也是核心环节,比如谁可以操作数据、谁负责数据的安全、备份和服务等,一个严格的数据的合规和安全管控制度是必不可少的。
数据的生命周期管理,包括如何和何时建立数据、什么时候可以修改、谁批准修改、数据如何消除等。国内的企业这方面做得比较欠缺,不只是数据,还包括设备、电脑等,电脑报废了不能用了,就直接丢弃。在这方面,国外企业做得不错,国外信息安全的企业, 通常会花钱请第三方公司来进行专业的数据销毁的处理,甚至每台电脑花费几百块钱来进行环保型销毁。比如在一些数据消除案例中,数据要用各种方 法来确保被彻底擦除,比如有些企业要求对数据进行格式化七遍,以避免可 能的数据恢复。
(三)建立企业的数据组织能力
建立数据的组织能力,包括设立合适的组织角色的定位、招聘到合适的人员、设立合适的组织结构以及设计合适的责权利,等等。
第一,数据的组织能力,建议有条件的公司可以建立首席数据官(ChiefData Officer)岗位,这个岗位主要是设计整个数据的战略,领导数据战略的落地,以及通过数据和业务管理层进行沟通、对话,传递数据的价值。
第二,数据科学家的作用非常重要,数据科学家研究的是如何用最好、最科学的算法得出最好的结果。同样一堆数据在那儿,十个不同的人在看,十个人看的结果都不同。那么为什么科学家算得准呢?因为他的知识够深入,他了解哪个因素最重要,那么多因素里面他应该选哪部分来分析。数据科学家目前是整个市场上最欠缺的人才,因为同时兼具数据算法专业知识和业务知识的人才是极其难得的。数据科学家可以分为三种类型,第一种是技术型数据科学家,他们是计算算法方面的行家,对各种统计分析技术非常在行;第二种是应用数据科学家,他们对数据架构非常熟悉,熟悉数据在各个系统中的分布,能够很好地把各种数据进行集成管理;第三种是业务数据科学家,这些人对行业知识和企业业务非常熟悉,同时兼具一部分对数据处理技术的了解,能很好地把业务的需要和特征转换成数据的处理要求,同时可以很好地将数据处理结果转换成业务的视角和言语,来传递给业务管理者。
第三,对于一定规模的企业,我们通常建议,企业要建立一个集中式的数据管理运营中心。云计算服务就是集中化管理方式,成本最低、灵活性最高、扩展性最强。
第四,整个数据组织的架构标准不是以技术、产品来交付,而是以商业价值交付为衡量标准。考量数据分析的产出能力,不是数据分析的速度有多快,也不是数据量有多大,而是数据分析的结果对业务到底有没有帮助、是不是有指导意义。这也是所有数据分析的核心价值,也是对大数据中“大”的含义的最核心的衡量标准——“大”到产生业务价值。这个衡量标准对技术组织来说,执行起来有些困难,所以必须建立一个明确的绩效评估标准和价值评估标准,让技术人员能够更多地从业务角度来考虑所做的工作的价值,而不陷入技术优先论的境地。
第五,提升一线人员的业务决策权和数据决策权,建立一个扁平化管理的组织。通过系统化的培训来不断培养员工的数据分析能力。由专业数据分析人员和算法人员设计的数据分析解决方案或者产品,必须以简单易用的方式提供给一线员工,同时更为重要的是,加强相关的解决方案或者数据产品的系统化培训,让更多的员工意识到这些解决方案或者产品的价值,并乐于在日常工作中使用。我们建议数据建模 / 数据产品研发的费用和针对一线员工的使用培训的投入应该是对半分的。为了更好地推进培训,企业还可以考虑成立兴趣驱动的数据协会,让更多的员工加入到该协会中,定期举行培训课程、研讨沙龙以及聘请外部专家做相关分享以开拓视野。
建立了企业的数据组织能力后,企业使用数据的过程如下阐述。
首先搜集数据,从不同地方把数据找到,找到以后选择算法。其次进行业务关联的分析,确定哪些指标、哪些维度是有意义的,这就是数据科学干的事。业务科学家和数据科学家可以分离,也可以整合,大部分企业是一套人马来做,展示成一个业务的可以接受、可以理解的方法,如果单纯是数据展示,可能管理层、业务部门看不懂,这就需要转换成业务管理者可以理解的语言和信息。最后,提交给管理层或者是对应的部门作商业决策。这就 完成了一个完整的价值交付。
在上述的数据处理过程中,数据团队中有不同的岗位来执行对应的工作。在数据的采集和清理环节,主要是数据管理员,包括企业内部的数据抓取, 外部的微博、淘宝、第三方电信等的数据采集,数据很多,需要做清理,把一些没有用的数据处理掉,留下来有效的数据,这主要是数据管理员要做的事情。接下来是数据科学家,选择正确的算法,同时可以根据业务的维度制作各种不同的模型,来得出一个分析的结果。再接下来,还有一个团队是业务分析师,根据这些分析结果,将其转换成业务人员可以理解的语言和展示方法,交给 CDO 和核心管理层、决策层做沟通,帮助他们作决策。作为整个技术平台的提供者,还有一个技术团队做具体的平台搭建,可以自行开发基于 Hadoop 开源的大数据平台,或者购买第三方的系统做管理维护,也可以 直接使用大数据的 SaaS 服务平台来快速建立大数据技术能力。
(四)选择技术平台
企业以往使用传统数据进行复杂分析时,多使用数据仓库和商务智能系统,也就是所谓的 OLAP 系统,对传统数据比如财务数据、用户数据进行抓取、挖掘和分析,然后通过页面展示出来,这是非实时的分析系统。在互联网+时代,要将第三方的社交数据和电商数据,比如微博、电商数据等放进来分析是很难的,因为传统的架构是基于结构化的数据基础上的,而现在更大量的数据是非结构化的数据,传统方式很难支持。这样我们分析数据就碰到一些困难,大数据应运而生,Hadoop 是其中最重要的一个平台。
Hadoop 是一个生态系统,它里面包括了一些计算的系统、数据存储的系统、数据分析的系统,它是阿帕奇组织在 2004 年正式开展的一个项目。Hadoop 是一个非常重要的革命性的应用,因为它是免费发布,让很多人都有机会使用,现在很多企业都是以 Hadoop 开源平台为基础,再由内部技术人员做一些优化来使用。
传统数据和大数据的关系是一个发展和结合的关系。传统数据还是可以分析出对业务有价值的信息,也还是用以前仓库的方式分析,新型数据用大数据的方式分析,两个系统最后进行整合,形成一个后端的解决方案;现在也出现了一种完全集成式的方案,这是最近一两年出现的新的大数据平台,可以同时兼容新的大数据和传统的数据,这种集成式的应用将会越来越多。市场上很多公司的商业套件和 Hadoop 开源的方案有什么区别呢?它们的主要区别是商业套件在性能上做了优化、提 升,在安全上做了增强,它加入了针对对应行业的业务理解,帮助企业预置了建模的方法和工具,但问题是价格比较贵。所以,各种方案的选择是基于企业的实际情况,包括预算和团队能力等因素综合考虑的。
(五)数据的开放和共享
对于数据的来源,企业内部通常不具有大数据分析所需要的所有数据。 2014 年,我国的大数据市场规模 84 个亿,预计 2015 年达到 166 个亿,增长40%。相信随着大数据交易平台的建设,增长还会更多。根据中国信息通讯研究院的研究报告,企业对大数据的认同度,认为“比较重要”的达到 97%,这说明企业对大数据的重要性是有认识的,问题是怎么来落地。企业对待大数据往往关注的是安全性和稳定性。这说明虽然企业已经意识到大数据的重要性,但还是比较保守,对安全的顾虑影响了对数据商业价值的挖掘。随着安全技术的发展以及对商业价值的认识的提高,企业应用大数据、获取和交换数据将会越来越多。安全和商业价值永远是一对需要衡量的关系,它就像速度和成本、速度和质量一样是相辅相成、互相平衡的关系,要同时追求两方面是有困难的,不同时期要有不同的策略。
企业对政府公开数据的需求非常强烈。市场上有很多针对政府数据的创业公司,例如一家企业叫法海风控,他是从法律层面分析企业的信用状态,通过分析企业相关的法律文书,比如这家企业过去数年有没有相关的法律官司、胜诉还是败诉,也包括相关联企业涉及到的法律行为,从这些角度提供风控的判断,这是一个很好的应用案例,这取决于政府的数据公开程度。政府拥有海量的数据,如交通数据、社保数据等,一旦这些数据能够公开,将会带来大量的创业机会,也会给企业带来更多考虑问题的维度,所以企业都希望政府能够尽快地公开数据。
(六)找好切入点,小步快走
关于实施路径,企业或多或少已经有一些数据、有一些系统,这个时候是推倒重来,还是有一些别的方法?数据能够在哪些领域实现业绩的大幅提高?数据能在哪些领域实现企业运营效率的提升?这些问题很重要,一开始就必须提出来。每个重要业务部门和职能部门都需要考虑这个问题,并展开相关的研讨。企业高管实施大数据战略的时候,需要高度重视这一步,但在国内很多企业往往忽略这一方面,投入大数据往往不是以提升业绩为导向,而是以学术为导向,使得很多企业实施大数据战略后,看不到数据对企业绩效的提升,从而使得大数据战略流产。
(七)放眼未来,永远在路上
大数据是不是万能的?是不是永远有效的?大数据的使用有限制吗?正确地认识这些问题,有助于企业更好地利用大数据,更客观地看待大数据。
第一,大数据不是万能的,大数据的使用是有限制的。大数据的使用,首先是在讨论相关性的时候,而在判断、解决一个具体问题的时候,大数据不是最好的方法。
第二,大数据即使大,也不能囊括所有的数据,大数据终究有成本的问题,准确性还不会达到百分之百。虽然它足够可以做预测,但是不是绝对正确的东西。
第三,我们不能过于相信数据,因为有时候数据会解读得不对,所以还要尝试做一个验证,如果这明显和常识相反,你要验证一下你的分析方法否正确。
还有一个问题是数据的安全,数据这么重要,能不能保护好数据,数据使用过程中有一些问题和潜在的风险。
最后的寄语:大数据是文化和技术的结合,最终的目的是产生业务价值。
第一,大数据技术是 IT 驱动业务变革的一个机会,不管从IT 部门本身的定位、IT 对企业产生的作用来说,还是企业能够增强核心竞争力的角度来说,大数据都是一个非常重要的推动力。
第二,应用大数据技术的前提是要有一个数据驱动决策的企业文化,如果用大数据形成了一个报表,企业管理者作决策时根本不看,这就没有意义了。只有当企业建立了数据驱动决策的文化,并真实地执行后,数据的价值才能够充分实现。所以大数据使用的重要前提是企业有数据驱动决策的文化。
第三,数据本身只是一些信息,大数据的价值不在于数据本身,而在于如何通过数据做分析整理,最后产生分析和预测,传递业务价值,这才是使用大数据的目的和核心。

Ⅳ 大数据思维下的统计新变革

大数据思维下的统计新变革
日前,谷歌宣布其云计算平台通过大数据分析准确地预测了巴西世界杯8强。据了解,谷歌云计算平台使用了英国体育数据提供商Opta Sports的数据,评估了全球每个职业足球联盟过去多个赛季的情况,以及巴西世界杯小组赛期间的统计数据。于是乎,大数据再度成为舆论关注的焦点,对于其应用价值的讨论更加热烈。
然而,我们发现,即使以谷歌强大的技术实力,也不得不从英国体育数据提供商Opta Sports那里获取数据。也就是说,数据的采集并不是谷歌的优势,大数据产业走向商用和规模化发展,更多的要依赖Opta Sports这样的数据采集者。从这个角度看,作为最具权威性和采集能力的统计部门,无疑将是大数据产业发展壮大的基础。反过来看,从大数据发展的趋势看统计行业的发展方向,也必然全面应用大数据思维。我们注意到,从国家统计局局长马建堂在2012年年底提出“统计部门要拥抱大数据时代”,到不久前国家统计局在厦门建立首个大数据基地,可以断言,统计行业的大数据变革已经到来。
2013年11月,国家统计局与网络、阿里巴巴等11家企业签订了大数据战略合作框架协议。此举目的在于共同推进大数据在政府统计中的应用,不断增强政府统计的科学性和及时性。马建堂在协议签订时表示:“现在许多发达国家纷纷将大数据利用提升到国家战略层面,我们也要适应这一大势,将大数据视为国家战略资源,主动拥抱大数据时代,积极抢抓机遇、应对挑战。”数据与统计是一对共生词,而数据成为生产要素的前提条件也是有效的梳理与归类,这恰恰是统计的内容。马建堂说,大数据为政府统计提供了总体性、非结构化、丰富真实的原始资料,可以极大地缩短数据采集时间,减少报表填报任务,减轻调查对象负担,提高统计数据质量。
一场统计方式和方法的变革正在酝酿。企业既是大数据的主要生产者,也是经验丰富的使用者,还是大数据的直接受益者,有数据的资源、有应用的技术、有市场的机制。而国家统计局作为组织领导和协调全国统计工作的主管部门,具有统计制度和标准制定,统计数据搜集、发布、分析等方面的优势。
统计数据是各级领导作出科学决策的重要支撑。随着企业一套表建设的基本完成,各行各业的数据被采集上来,这只是第一步,用好这些数据是关键。企业一套表只是一个业务系统,更重要的是在这套系统上帮助统计部门搭建一套数据资源体系,通过这套体系来对数据进行规划、整理和加工,建设监测评价中心、辅助决策中心,这也是统计行业未来发展的必然趋势。
现在一些地方统计局已经开始做统计方面的规划和使用。例如原来的统计工作主要是查询,现在希望除了查询、检索、展示之外还具备监测、评价的功能。监测评价需要标准,在政府部门这个标准就是政策。监测是对企业、家庭等对象进行调查,数据上传之后经过计算、加工等与初定的指标相比较,并对监测结果进行评价,发现问题及时预警、报警。辅助决策则更需要智能化,当发现监测评价出的结果与初定指标存在较大差异时,就要追本溯源,为领导提供准确的问题分析报告,列出导致问题的主要原因,提出可行性建议,为领导提供辅助决策,为其做出下一个阶段的判断和调整提供帮助。例如,自去年以来,浙江温州市统计局建立了GDP联席会议制度,按季度召集30多个部门进行分析论证部门数据与GDP数据之间的关系,特别是充分运用电力、银行、交通、财政、外贸等部门数据,以及对GDP数据的影响,使GDP数据更加科学可靠。今年进一步扩大了GDP联席会议职能,把涉及部门的经济、社会、民生等监测评价数据进行综合审查分析,进一步提高统计数据质量。
与此同时,统计行业的大数据变革,也将为大数据产业的下一步发展打造坚实的基础。从企业一套表到电子终端采集数据,中国统计的技术和制度改革近两年不断深入,而与大数据概念的交汇与融合也将助推中国官方数据更加真实全面。统计部门在人口、农业、投资、交通等领域,大力研究利用遥感RS、地理信息系统GIS、全球定位系统GPS为代表的空间信息技术和物联网技术,既极大提升了统计信息化水平,也为进一步推进大数据的统计应用打下了较好的基础。

Ⅳ 国家大数据战略是什么

国家实施大数据战略,推进数据基础设施建设,鼓励和支持数据在各行业、各领域的创新应用。

大数据发展日新月异,我们应该审时度势、精心谋划、超前布局、力争主动,深入了解大数据发展现状和趋势及其对经济社会发展的影响,分析我国大数据发展取得的成绩和存在的问题,推动实施国家大数据战略,加快完善数字基础设施,推进数据资源整合和开放共享,保障数据安全,加快建设数字中国,更好服务我国经济社会发展和人民生活改善。

要求:

建设现代化经济体系离不开大数据发展和应用。我们要坚持以供给侧结构性改革为主线,加快发展数字经济,推动实体经济和数字经济融合发展,推动互联网、大数据、人工智能同实体经济深度融合,继续做好信息化和工业化深度融合这篇大文章,推动制造业加速向数字化、网络化、智能化发展。

要深入实施工业互联网创新发展战略,系统推进工业互联网基础设施和数据资源管理体系建设,发挥数据的基础资源作用和创新引擎作用,加快形成以创新为主要引领和支撑的数字经济。

阅读全文

与厦门大数据战略相关的资料

热点内容
如何下载看神片的狐狸视频app 浏览:579
怎样将木纹文件添加到cad 浏览:223
java中的hashset 浏览:70
mate8升级emui50吗 浏览:396
网络怎么校线 浏览:546
会玩app稀有宝箱里面有什么 浏览:718
打开icloud备份文件在哪里看 浏览:602
一个表格多个数据怎么样查找数据 浏览:466
qq飞车微信签到app有哪些 浏览:299
如何制作虚拟货币app 浏览:303
ug50能通过补丁升级到高版本吗 浏览:766
dxf文件cad打不开的原因 浏览:525
2012怎么改域用户密码 浏览:550
dtv网络电视手机版下载 浏览:954
mfc100u放在哪个文件夹 浏览:359
javaweb插件 浏览:58
pto密码忘记 浏览:567
logo竞赛教程 浏览:481
贵阳去哪里学编程比较好 浏览:132
java将string转为json 浏览:291

友情链接