导航:首页 > 网络数据 > 大数据软件工程师招聘

大数据软件工程师招聘

发布时间:2024-04-11 02:46:42

大数据都有哪些就业方向

大数据就业方向一、数据存储和管理

大数据都是从数据存储开始。这意味着从大数据框架Hadoop开始。它是由Apache Foundation开发的开源软件框架,用在计算机集群上分布式存储非常大的数据集。

显然,存储对于大数据所需的大量信息至关重要。但更重要的是,需要有一种方式来将所有这些数据集中到某种形成/管理结构中,以产生洞察力。因此,大数据存储和管理是真正的基础,而没有这样的分析平台是行不通的。在某些情况下,这些解决方案包括员工培训。

大数据就业方向二、数据清理

在企业真正处理大量数据以获取洞察信息之前,先需要对其进行清理、转换并将其转变为可远程检索的内容。大数据往往是非结构化和无组织的,因此需要进行某种清理或转换。

在这个时代,数据的清理变得更加必要,因为数据可以来自任何地方:移动网络、物联网、社交媒体。并不是所有这些数据都容易被“清理”,以产生其见解,因此一个良好的数据清理工具可以改变所有的差异。事实上,在未来的几年中,将有效清理的数据视为是一种可接受的大数据系统与真正出色的数据系统之间的竞争优势。

大数据就业方向三、数据挖掘

一旦数据被清理并准备好进行检查,就可以通过数据挖掘开始搜索过程。这就是企业进行实际发现、决策和预测的过程。

数据挖掘在很多方面都是大数据流程的真正核心。数据挖掘解决方案通常非常复杂,但力求提供一个令人关注和用户友好的用户界面,这说起来容易做起来难。数据挖掘工具面临的另一个挑战是:它们的确需要工作人员开发查询,所以数据挖掘工具的能力并不比使用它的专业人员强。

⑵ 软件工程师需要什么学历

软件工程师需要计算机、软件工程等相关专业,本科及以上学历。

软件工程师的工作职责是:

1、设计软件产品:按照产品需求文档进行产品软件设计,负责新产品项目的研发、制定并执行。

2、做好设计评审工作:设计阶段协同硬件工程师进行设计评审,及对评审问题点进行改善与记录。

3、做好电池管理工作:开发阶段根据不同电池电芯的特性,对电池充放电进行管理,并实时统计电池容量、电压、电流、温度等相关参数。

4、跟踪产品转产工作并解决问题:跟踪产品的测试及转产工作,解决测试及生产问题,保证转产顺利完成,遵从测试工作的流程与规范,及产品上线的质量标准,并喊带执行落地。

5、开展测试并关注产品品质:能开展测试用例输出、功能测试和各项专项测试,完成版本测试目标,并保证测试质量与效率能沉淀测试团队的能力、关注整体项目的产品品质。

⑶ 大数据时代,IT行业8大的热门岗位哪一个适合你

1、算法工程师
何万青博士曾经介绍把一件事做快做好的三种方法,其中就提到过“提高流水线效率、更好的算法和更短的代码关键路径。”可以看出算法在系统效率中的重要地位。算法是让机器按照人类设想的方式去解决问题,算法很大程度上取决于问题类型和工程师对机器编程的理解,其效率的高低与算法息息相关。
在数学和计算机科学之中,算法(Algorithm)为一个计算的具体步骤,常用于计算、数据处理和自动推理。在大数据时代,算法的功能和作用得到进一步凸显。比如针对公司搜索业务,开发搜索相关性算法、排序算法。对公司海量用户行为数据和用户意图,设计数据挖掘算法。
算法工程师,根据研究领域来分主要有音频/视频算法处理、图像技术方面的二维信息算法处理和通信物理层、雷达信号处理、生物医学信号处理等领域的一维信息算法处理。另外数据挖掘、互联网搜索算法这些体现大数据发展方向的算法,在近几年越来越流行,而且算法工程师也逐渐朝向人工智能的方向发展。
2、商业智能分析师
算法工程师延伸出来的商业智能,尤其是在大数据领域变得更加火热。IT职业与咨询服务公司Bluewolf曾经发布报告指出,IT职位需求增长最快的是移动、数据、云服务和面向用户的技术人员,其中具体的职位则包括有商业智能分析师一项。
商业智能分析师往往需要精通数据库知识和统计分析的能力,能够使用商业智能工具,识别或监控现有的和潜在的客户。收集商业情报数据,提供行业报告,分析技术的发展趋势,确定市场未来的产品开发策略或改进现有产品的销售。
商业智能和逻辑分析技能在大数据时代显得特别重要,拥有商业知识以及强大的数据和数学分析背景的IT人才,在将来的IT职场上更能获得大型企业的青睐。不过这些技能并不是一般人都能掌握的,一些公司目前正在招聘统计学家并教授他们有关技术和商业的知识。
3、数据挖掘工程师
数据挖掘工程师,也可以叫做“数据挖掘专家”。数据挖掘是通过分析每个数据,从大量数据中寻找其规律的技术。数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析企业的数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。
数据挖掘专家或者说数据挖掘工程师掌握的技能,能够为其快速创造财富。当年亚马逊的首位数据挖掘工程师大卫·赛林格(DavidSelinger)创办的数据挖掘公司,将类似于亚马逊的产品推荐引擎系统销售给在线零售和广告销售商,而这种产品推荐引擎系统,也成为亚马逊有史以来最赚钱的工具。数据挖掘的价值由此可见一斑。
4、咨询顾问
任何业务部门和任何行业企业,都有IT系统在背后默默无闻地支撑着。在云计算大数据时代,业务面临的挑战和机遇也会给IT系统带来更多要求。在这种情况下,IT系统的规划部署和运维,都要有更为精通的专业人士才能胜任,并满足面向未来大数据分析、云计算服务应用的需要。
纽约蒙特法沃医疗中心(montefioremedicalcenter)的副主席杰克-沃夫(JackWolf)曾经表示,他寻求不仅会建立和使用系统而且还会给予其他员工技术支持的新员工,他说:"新的系统意味着你必须有更多的咨询台来处理更多的咨询量。"当然,这里体现的主要是某个系统的技术支持的功能,但管中规豹我们不难发现,无论是部署初期的物料采购还是运维过程中的金玉良言,都凸显出这种技术咨询顾问的重要性。
5、网络工程师
网络工程师可以说是一个“绿色长青”的职业,网络技术一直以来就处于急需之中,美国人力资源公司罗勃海佛国际(RobertHalfInternational)第三季度IT招聘指数和技能报告指出,网络管理占总需求技能排名中的第二位。对于云计算时代来说,网络在云资源池中(计算、存储、网络)更是扮演着更为重要的作用。
另一方面,IPv6标准、物联网、移动互联等蓬勃发展,使得对于网络工程师尤其是新型网络工程师(移动、IPv6、云计算方向)的人才和技能要求也越来越多。网络工程师也因此而可以细分成多个发展方向,相应的技能要求其侧重也有所不同。比如网络安全、网络存储、架构设计、移动网络等等。
6、移动应用开发工程师
移动应用开发,会随着移动互联网时代的到来变得更受追捧。截至2012年底我国已经有10亿手机用户,移动智能终端用户超过4亿,在移动支付、移动购物、移动旅游、移动社交等方面涌现了大量的移动互联网游戏、应用和创业公司。
移动平台智能系统较多,但真正有影响力的也不外乎iOS、Android、WP、Blackberry等。大量原来PC和互联网上的信息化应用、互联网应用均已出现在手机平台上,一些前所未见的新奇应用也开始出现,并日渐增多。
移动应用开发,由于存有多个平台系统,因此不同的平台开发者其所面临的机遇和挑战也不尽相同。一个很明显的例子就是,当初由Google公司和开放手机联盟领导及开发的基于Linux的安卓系统,在开源之后就给广大开发者(商)带来巨大商机,而坚定选择iOS平台的的开发工程师,也通过苹果生态系统的不断扩建和智能设备的高市场占有,使得较早的一批开发者都赚得盆满钵满。不过在国内由于用户习惯、产业环境和版权保护的问题,移动应用开发者并没有因此而获得相应的收益。
7、软件工程设计师
近年IT业界逐渐涌现出一股软件定义网络(SDN)、软件定义数据中心、软件定义存储(SDS)和软件定义服务器(MoonShot)等浪潮,大有软件定义未来一切IT基础设施的趋势。
PaaS、SaaS、数据挖掘和分析、数据管理和监控、虚拟化、应用开发等等,都是软件工程师大展身手的好舞台。相应的,这些技术领域也对软件工程师的要求会更高,尤其是虚拟化和面向BYOD、云计算、大数据等应用的开发和管理,都需要有更高深的技术支撑。
和算法工程师有点类似的地方在于,软件工程师也需要注重设计模式的使用,一位优秀的工程师通常能识别并利用模式,而不是受制于模式。工程师不应让系统去适应某种模式,而是需要发现在系统中使用模式的时机。
8、数据库开发和管理
数据库开发和管理在大数据时代显得尤为重要,相关的数据库管理、运维和开发技术,将成为广大BI、大型企业和咨询分析机构特别看重的技能体现。代表着更多类型(尤其是非结构化类型)的海量数据的涌现,要求我们实时采集、分析、传输这些数据集,在对基础设施提出严峻挑战的同时,也特别强调了数据库开发和管理人员的挑战。

⑷ 大数据行业就业方向有哪些大数据技术就业岗位有哪些

方向:大数据开发方向,数据挖掘、数据分析和机器学习方向,大数据运维和云计算方向

就业岗位:

1、大数据工程师

大数据工程师的话其实包涵了很多,比如大数据开发,测试,运维,挖据等等,各个岗位不同薪资水平也不大相同。总的来说的话它共有6093个岗位在智联招聘上招聘,平均工资也在11643元。

2、Hadoop开发工程师

职位描述:参与优化改进新浪集团数据平台基础服务,参与日传输量超过百TB的数据传输体系优化,日处理量超过PB级别的数据处理平台改进,多维实时查询分析系统的构建优化。

3、大数据研发工程师

职位描述:

构建分布式大数据服务平台,参与和构建公司包括海量数据存储、离线/实时计算、实时查询,大数据系统运维等系统;服务各种业务需求,服务日益增长的业务和数据量。

4、大数据架构师

大数据架构师的招聘岗位有1446个,从招聘的薪资来看,大数据架构师基本薪资都是15K~60K,大数据架构师的薪资可以说是相当可观的,在大数据行业里,大数据架构师的酬劳可以说是领先与其他的,所以大数据架构师对于人才的要求也是比较严格的。

5、大数据分析师

工作职责:根据公司产品和业务需求,利用数据挖掘等工具对多种数据源进行诊断分析,建设征信分析模型并优化,为公司征信运营决策、产品设计等方面提供数据支持;负责项目的需求调研、数据分析、商业分析和数据挖掘模型等,通过对运行数据进行分析挖掘背后隐含的规律及对未来的预测。

⑸ 大数据工程师一个月多少钱

做大数据工程师真实月薪薪酬平均16500元/月,一年收入19.8万 做大数据工程师工作有前途吗:平均年薪19.8万元,最高36万-60万。

大数据工程师一个月多少钱
大数据开发工程师的薪资水平处于6000-50000元不等。3-5年工作经历的招聘需求最为旺盛,达到40%。应举者芹届毕业生的需求最少,仅有5%。最新调查显示,大数据工程师的薪资整体嫌雀仍处于上升水平。以北京地区为例,北京地区大数据相关工作的平均月薪为22050元,三正毕成以上的大数据从业者月薪位于30K-50K区间,将近20%的大数据从业者的月薪处于20K-30K区间,10K-20K的从业者人数占比达到了三成。

无论做什行业都是经验越多越吃香,大数据也是一样,大数据工程师随工作年限的增加,你的经历会为你的薪资赋值。

⑹ 大数据的就业岗位有哪些

大数据岗位高薪清单对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。
1 ETL研发企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL
2 Hadoop开发随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
3 可视化工具开发可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
4 信息架构开发大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
5 数据仓库研究为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
6 OLAP开发OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
7 数据科学研究数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
9 企业数据管理企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
10 数据安全研究数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

⑺ 大数据的就业方向

总的来说大数据领域有几大细分 1 数据清洗、收集、爬虫 //偏脚本、爬虫能力 2 数据回分析 //偏业务答,偏SQL,偏分析能力 3 数据开发 //偏平台,偏工程化、后端开发能力 4 数据挖掘 //偏算法,偏挖掘能力 一般来说,数据分析的门槛最低,其次数据开发和爬虫类,门槛最高的是挖掘,当然薪酬也是相对较高的。 从应用开发入手,你可以往两个方向房展: 1 进一步熟悉架构,提升开发能力,往数据架构师转; 2 从应用工程化往挖掘工程师转,需要自己多学算法相关的知识;

⑻ 大数据时代,IT行业的热门职位有哪些

1、大数据开发工程师
大数据开发工程师,很多公司都在招聘的热门技术人才,工资也是相对于其他方向更高一些。想要成为大数据开发工程师需要掌握计算机技术、hadoop 、spark、storm开发、hive 数据库、Linux 操作系统等知识,具备分布式存储、分布式计算框架等技术。
2、大数据分析师
大数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。

⑼ 大数据可视化工程师有哪些要求

数据可视化的本质就是视觉对话。数据可视化将技术与艺术完美结合,借助图形化的手段,清晰有效地传达与沟通信息。

可视化的意义是帮助人更好的分析数据,信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,使分析结果可视化。

数据可视化的主要作用,在于通过图形和色彩将关键数据和特征直观地传达出来,从而实现对于相当稀疏而又复杂的数据集的深入洞察。而单纯说"数据呈现"并不确切,因为数据可视化并非无差异地涵盖所有数据,可视化的过程本身就已经加入了制作人的对问题的思考、理解、甚至是一些假设,而数据可视化则是通过一目了然的方式,帮助制作人获得客观数据层面的引导或者验证。

大数据可视化工程师的岗位要求如下:

第一,需要是统计、应用数学、计算机科学等专业的本科及以上学历。

第二,需要有实习经验或者参加过大数据比赛者的经验。

第三,要熟练掌握至少一种大数据工具,PYTHON/R或其他数据挖掘和数据展示软件。

第四,要有良好的编写数据分析报告的能力,对图形效果的可视化,科学化,美观化的具备一定能力。

关于大数据可视化工程师有哪些要求,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑽ 2018中国农业银行软件开发中心社会招聘岗位要求

目前招聘环节的相关问题均已在官方网站上统一发布公告及信息,您可通过登录内农行官网自行查询。招聘信容息查询的具体操作步骤:

登录农行网站首页,在“关于农行”栏目下选择点击“人才招聘”,进入对应页面查询我行招聘信息。如有其他问题,请您将鼠标移至第一行“提问与回答”项目,注册后登录进行提问;或者点击第二行“常见问题”项目查看关于我行招聘的常见问题。

阅读全文

与大数据软件工程师招聘相关的资料

热点内容
ps入门必备文件 浏览:348
以前的相亲网站怎么没有了 浏览:15
苹果6耳机听歌有滋滋声 浏览:768
怎么彻底删除linux文件 浏览:379
编程中字体的颜色是什么意思 浏览:534
网站关键词多少个字符 浏览:917
汇川am系列用什么编程 浏览:41
笔记本win10我的电脑在哪里打开摄像头 浏览:827
医院单位基本工资去哪个app查询 浏览:18
css源码应该用什么文件 浏览:915
编程ts是什么意思呢 浏览:509
c盘cad占用空间的文件 浏览:89
不锈钢大小头模具如何编程 浏览:972
什么格式的配置文件比较主流 浏览:984
增加目录word 浏览:5
提取不相邻两列数据如何做图表 浏览:45
r9s支持的网络制式 浏览:633
什么是提交事务的编程 浏览:237
win10打字卡住 浏览:774
linux普通用户关机 浏览:114

友情链接