A. 大数据如何推动医疗行业的发展
区域医疗保健监控
可以将数据用于预测医学研究,从而有助于预防可能的疾病传播。例如,通过跟踪他们搜索的医疗问题来了解患者人群及其医疗保健需求以及跟踪他们在医疗站点上提供的信息,这些都是促进预防保健和研究的方法。
新型冠状病毒大数据搜索报告
该数据有可能更好地预测各种情况和当前公共卫生问题引起的区域性暴发疫情的情况。反过来,医疗服务提供者能够采取适当的预防措施,并分配必要的资源,以应对与健康有关的特定疾病的区域性升级。
打击性传播疾病
如果及时报告,则可以治疗性传播疾病(STD)和性传播感染(STI)。但是,诸如缺乏性教育等问题通常会导致症状不受控制。大数据可以利用本地经验,并帮助科技公司和医疗保健提供商填补信息空白并传播对性健康的认识。
改善医疗保健支持系统
医疗技术的主要进步之一是医疗保健机器人技术,预计到2021年其收入将增长到28亿美元。医疗保健机器人技术包括外科机器人培训,机器人护士,智能假肢和仿生学等专业,以及治疗,药丸,远程呈现和后勤方面的帮助。使用大数据驱动的机器人技术有可能极大地改善医疗保健支持的质量,这已经通过少数著名的机器人护士(如Robot Dinsow)看到,它可以监控患者并提醒他们用药;Paro机器人可以提醒护理人员。
机器人护士
如今,在医学研究和发展中使用大数据至关重要。人工智能和机器学习正在引领医学数据的收集,新药疗法的发现以及患者预后的改善。通过实时分析公共卫生问题,大数据可以促进多个领域的医学研究,改善患者护理并防止致命疾病的传播。
关于大数据如何推动医疗行业的发展,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
B. 大数据和人工智能技术在健康产业有哪些具体应用请举例说明,谢谢!
大健康产业顺应了中国经济转型升级、绿色发展的趋势,全球医疗健康产业投融资金额最多集中在2021年,全年达到6846.03亿元,投融资数量最多在2019年,达2044起。大数据和人工智能技术赋能多个大健康产业领域,包括公共卫生大数据、疾病快速诊断、远程医疗、识别诊断、药物研发、康复治疗等
在数字健康产业供应链,智慧眼一方面“深挖洞”,纵向深耕数字健康产业,形成自主可控、安全可靠的AI核心技术;另一方面是“广积粮”,横向扩展健康产业多元化市场应用场景,帮助政府、医院、群众乃至整个产业界激发数字化力量。
AI+社会保障
基于大数据+人脸识别技术的养老金待遇资格认证系统应用于全国社保二十余个省份的省级平台,解决了养老金防冒领的世界难题,保障社保基金安全,稳定社会大局。
AI+医疗保障
基于大数据+生物识别技术的医保智能场景监控系统已应用于全国近二十个省级医保平台,实现了门诊、住院、购药、血透、健康理疗等场景的智能监控,防范医保欺诈骗保行为,确保医保基金安全。
AI+血透管理
遵循医院血液透析中心临床业务流程,从患者管理、透析日程准备、患者治疗排班、临床辅助决策等不同环节对血液透析治疗进行智能管理和监控。以患者为核心,从根本上改变诊疗信息的采集处理、分析查询和传输方式,为医护人员提供智能化工作方式,辅助医生制定更加人性、优质的治疗决策,提高科室工作质量和院内服务水平,提升患者满意度,做到医疗行为溯源全记录,保障医疗质量和医疗安全。
AI+慢病管理
依托智慧眼云慢病管理系统,门诊慢病患者可在就诊医生处便捷化生成健康管理档案,通过机器学习和医学知识图谱数据库,智能化形成疾病管理目标,帮助医生快速掌握患者信息,指导开药和开展疾病管理,形成以患者为中心的数字化病程管理体系,实现诊前导诊、疾病预判,诊后用药提醒等闭环服务,助力医疗健康行业的持续发展。
AI+健康乡村
以健康乡村综合服务平台&智能终端为载体,将大医院的优质资源通过平台与基层卫生室进行互联,提高基层卫生室的首诊能力和水平,帮助基层的医生在诊断方面有更大的把握和信心,让村民“足不出村”就能享受到便捷的健康服务,助力国家乡村振兴战略落地。
C. 智云健康怎么帮助患者进行慢病管理的,有用吗
智云健康,他就是引导你怎样是健康的,让你吃膳食标准的食服务,让你每天坚持锻炼,从健康方面引导你去进行健康的活动
D. 大数据技术发展之下 医疗行业现状如何
【导读】大数据技术的使用最早是应用于互联网公司,随着社会的发展,大数据技术也已经应用到了医疗行业,虽然大数据都是孤立的数据,不能大规模应用,但是在医疗行业,我们能够通过大数据技术,进行患者的信息收集,建立详细就医档案,更好地帮助医生进行病情诊断,那么大数据技术发展之下,医疗行业现状如何呢?接下来就一起看看吧。
1、除了互联网公司是大数据的早期采用者之外,医疗保健行业也是最早推动大数据分析的传统行业之一。医疗行业有大量的病例、病理报告、治疗计划、药物报告等。如果这些大数据能够被整理和应用,将会对医生和病人有很大的帮助。我们所面临的细菌、病毒和肿瘤细胞的数量和类型都在进化。在疾病的发现和诊断中,疾病的诊断和治疗是最困难的。
2、未来,借助大数据平台,我们可以收集不同的病例和治疗方案,以及患者的基本特征,建立基于疾病特征的数据库。如果未来的基因技术成熟,可以根据患者的基因序列特征进行分类,建立医疗行业的患者分类数据库。在对患者进行诊断时,医生可以查阅患者的疾病特征、实验室报告和检测报告,查阅疾病数据库,帮助患者进行快速诊断,明确疾病定位。
3、大数据在医疗行业的应用一直在进行,但大数据尚未开放。这是孤立的数据,没有办法放大。未来,这些大数据应该统一收集,整合成统一的大数据平台,造福人类健康。政府和卫生保健是这一趋势的重要推动因素。
关于大数据技术发展之下医疗行业现状,就和大家分享到这里了,未来,大数据技术必将造福于社会,为了我们提供更多的可能性。
E. 大数据医疗行业发展的5大趋势
一、影像识别智能化
医疗数据中有超过90%来自于医学影像,但是影像诊断过于依赖人的主观意识,容易发生误判。AI可以通过大量学习医学影像,可以帮助医生进行病灶区域定位,减少漏诊误诊问题。
二、智能诊疗通用化
智能诊疗是人工智能在医疗领域最重要、也最核心的应用场景。
智能诊疗就是将人工智能技术应用于疾病诊疗中,计算机可以帮助医生进行病理,体检报告等的统计,通过大数据和深度挖掘等技术,对病人的医疗数据进行分析和挖掘,自动识别病人的临床变量和指标。计算机通过“学习”相关的专业知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。
三、药物研发提速
依托大数据,人工智能系统可以快速、准确的挖掘和筛选出适合的药物。通过计算机模拟,人工智能可以对药物活性、安全性和副作用进行预测,找出与疾病匹配的最佳药物。这一技术将会大大缩短药物研发周期、降低新药成本并且提高新药的研发成功率。
四、医疗机器人广泛应用
机器人在医疗领域的应用范围很广泛,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等。目前,关于机器人在医疗界中的应用的研究主要集中在外科手术机器人、康复机器人、护理机器人和服务机器人方面。国内医疗机器人领域也经历了快速发展,进入了市场应用。
五、健康管理实时追踪
根据人工智能而建造的智能设备可以监测到人们的一些基本身体特征,如饮食、身体健康指数、睡眠等。对身体素质进行简单的评估,提供个性的健康管理方案,及时识别疾病发生的风险,提醒用户注意自己的身体健康安全。目前人工智能在健康管理方面的应用主要在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。
关于大数据医疗的5大趋势的内容,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
F. 健康医疗大数据的安全与应用
健康医疗大数据的安全与应用
医疗健康大数据是覆盖自然人的全生命周期,既包括个人健康,又涉及医药服务、疾病防控、健康保障和食品安全、养生保健等多方面数据的汇聚和聚合。
简单讲就是涉及到健康的、医疗的跟个人相关的数据的合集,不仅在医院,在互联网,在企业、医院都存在。
同时会议上也提到要利用健康医疗大数据,创新业态,创新应用,促进医疗行业发展。
利用健康医疗大数据,不仅对改进健康医疗服务模式,而且对经济社会发展都有着重要的促进作用,是国家重要的基础性战略资源。
健康医疗数据从哪来?
我们可以大致分为五方面。
第一来自诊疗数据:
患者在医疗机构、体检机构等就医过程中产生并由信息系统记录的数据;
包括电子病历、检验检查、基因测序、用药、医学影像等;
第二来自研究数据:药品或器械研究机构,由研究机构录入或采集的个人健康数据,比如临床试验、生物样本库等;
第三是个人数据:个人在医疗机构外自行记录的健康数据,比如可穿戴设备采集的心率、脉搏、睡眠等数据;互联网行为记录的检索、问诊、查询、病患交流数据等;
第四是结算数据: 由商业保险公司、医保机构、物价管理机关存储的报销和流通数据;最后是公共医学:由临床指南、医疗健康期刊、医学文献,循证医学数据资源库等组成。这就是医疗大数据的来源。
健康医疗数据核心在医疗机构
因为医院的数据是真实的疾病数据,其他的社会药品采买数据等等跟真正核心医疗健康的核心还有些距离。
而在医院包括护理记录、电子病历、用药信息、疾病诊断等等,这些数据综合一个特点就是敏感度非常高。
第二就是真实,为什么真实?看病有医嘱、处方、病案等,这些医疗文书是可以作为法律证据的。
同时质量比较高,在医疗信息化20年时间的不断积累和持续改进,数据的完整度和质量也在不断地提高。
行业要求
医疗健康大数据据作为新生事物,在行业标准和行业规范上尚有欠缺。直至近一年,国家卫计委陆续出台的全国医院信息化"功能指引"和"建设标准和规范",其中提到大数据平台,就是希望医院须要建设大数据平台,执行国家十三五规划中大数据战略落地的内容和时间计划,要求三甲医院最终要建设面向大数据和人工智能技术的服务架构,高效高质组织数据资源,形成数据生产力。
行业现状
健康大医疗数据共享及应用不易。
针对于医院来说:客观存在"不敢、不愿、不会"三种形态。
不敢,因为数据共享、数据安全这些问题没有解决,所以不敢去做。
没有规定,或者不太明确,不敢做。不愿,因为医院权益、政府权益、社会权益,不清楚。还有医院内部科室的数据担心被拿走,不愿意。
不会,因为大数据必须要有大数据的技术支撑,没有技术支撑就没法儿对数据进行挖掘和利用,同样在数据共享开放过程中,技术、标准、机制、体制突破仍存在较大的障碍,造成各部门在推动过程当中不会做,这些现状造成了「不会」现象。
这些都是现状,但核心是数据安全和无法做到安全可控,让医院放心。
安全和隐私保护
数据安全挑战
数据安全没有解决,能不能用?怎么建立安全体系?
首先医院安全受到不断的挑战。
我在昨天看到一个新闻,我不知道大家看到没看到,就是新加坡的某医院集团,其医院数据被黑,包括他们总理在内的就诊数据都在里面,非常敏感。
黑客拿走了。
为什么大家盯到了医院?说明黑客对医疗数据还是感兴趣的。
比如勒索数据,过去病毒很少到医院,但去年勒索病毒刚爆发时就是针对医院,英国到中国都有中招,但是中国医院被曝光的很少。所以说安全形势比较严峻。
医院安全管理
第一是物理安全
医院的网络物理网是分内部网:挂号、结算、收费。一个是外网办公网,再往外才是英特网。
整个物理是隔离的,而且网络也是隔离的。
第二数据安全,主要是指医疗内部数据,数据保护采用了加密、数据库审计、防篡改等技术。
第三是网络安全,从网络角度讲,国家卫计委提出2015年全部三甲医院要建立信息安全三级等级保护,逐步实现了基本的安全。
第四隐私安全,这是新的命题,因为我们数据在内部用的话是不去隐私的明文。
那些是隐私数据?
国内还没明确法律规定细则。
我们可借鉴美国HIPPA法案,其明确规定了个人姓名、社保号、车牌号等18项隐私数据,或者说只要能指向患者个体的都算隐私。
那么数据如何去隐私?
现在通用的还是基本加密技术。
医院内部不需要加密,所谓外部就是科研研究、药物研究时需要大量统计分析时需要加密,我们现在用的是MD5加密等机密技术,有可逆的和不可逆的。
健康大数据应用
在安全前提下要放开应用。
借用国家卫计委规划信息司领导所言"一分部署、九分落地"。健康医疗大数据也需要一分建设,九分要应用。从产业应用现状看,公司多,投资多,期望大,产出还未确定。
从应用方向上,我们可以分为:临床决策支持(AI),医保控费和险种开发,医院管理,医疗器械和新药研发,慢病和健康管理等多个方向。
G. 大数据能给医疗带来哪些改变_大数据在医疗方面的作用
如慧迟今是大数据时代,前景自然好了,据前瞻产业研究院《2016-2021年中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,总的来说,医疗大数据应用主要体现在临床操作、研发、新的商业模式、付款/定价、公众健康五大领域,在这孙碧基些场景中,大数据的分析和应用都将发挥巨大的作用。
医疗大数据的应用对于临床医学研究、科学管理和医疗服务模式转型发展都具有重要意义,而大数据技术的运用前景是十分光明的。
医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。
国人已经把健康大数据上升为国家战略,而面对“大数据”的挑战,医院必须考虑三大主要问题。
(1)数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。
(2)如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。
(3)如何控制大数据的成本?存储架构是否合理,不仅影响医院IT系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。
未来,大数据必将影响医疗行业,未来医疗行业的大数据将会具体应用在:临床辅助决策,则谨医疗质量监管,疾病预测模型,临床实验分析。其发展空间有:个人健康门户,慢病管理和健康管理,电子病历和临床质量监控,医学知识管理,临床路径和循证医学,远程医疗和移动医疗,医学研究数据仓库和共享平台,跨医疗机构协作平台。
H. 人工智能和大数据技术在医院慢病管理中起到了什么作用
在慢病领域,通过AI创新应用促进慢性病积极管理,用信息化的手段提高医疗服务的安全质量猛纤,缓解医疗资源的不平衡,更能够有效推动主动健康管理与服务的发展,实现医保治理效能的提升。
智慧眼围绕慢病管理的痛点,通过AI、大数据、智能设备手段的介入,为慢病管理带来了新的思路。
AI+大数埋数据能力,提高慢病服务效率。
将治疗服务延伸至院外,通过慢病管理平台提升医院的服务效率。通过打通院内外系统及物联网设备中的数据,汇总患者包括健康状况、病情发展、用药记录、治疗手段、过敏反应等信息,利用AI算法循证医学知识图谱,对数据进行智能化分析,形成慢病患者生理指标、代谢和行为关联的数据模型,为后续的诊疗提供依据和便利。
IoT感知,慢病管理更精准。
在医疗场景,IoT设备解决了数据持续监测的问题,可以让医生获取更完整的监测数据完成诊断和治疗,实现“院内+院外“的一体化服务。智慧眼结合智能物联设备,通过线上智能互动方式引导患者进行病情自测,枝毕仿健康数据上传,智能定制个性化健康管理方案,实现人机交互,精准追踪患者健康状态,提高医疗服务质量。