『壹』 如何用R读取数据
在R语言里面,有很多读取数据的方法。R能读文本文件,csv格式文件,通过RODBC包读取数据库数据等等。下面我介绍几种最基本的读取数据的方法!
工具/原料
RStudio
方法
不管是读取数据还是写入,R都是在工作路径中完成的。所以首先我们要知道我们的R所在的工作路径是在哪里。使用getwd()函数来获取我们的工作路径。
下面查看工作路径里面有哪些文件,使用dir()函数
如果你所想导入的数据并不在你当前的工作路径中,有两种方法可以解决。第一种就是把数据文件放到工作路径中,第二种方法就是更改工作路径。更改工作路径使用setwd()函数。比如你想要把工作路径设置成桌面
现在我读取我工作路径中,名字为hw1_data.csv的文件。使用read.csv()函数
也可以使用read.table()函数来读取csv格式的文件。由于csv文件的分隔符是“,”所以我们在用read.table()函数的时候,sep参数,我们要设定为sep=“,”
发现read.table()读出来的数据,列名并不是我们文件中的列名,而是V1,V2。。。我们需要加上header这个参数来修改这个问题
另外在read.table()函数族中还有很多参数,对我们读取数据都有帮助,大家可以去了解下。使用?read.table()进行了解
『贰』 R语言文件读取
参考文章地址(https://zhuanlan.hu.com/p/120422644)
逗号分隔文件 (.csv文件)、 制表符分隔文件 (.tsv文件)和 空格分隔文件 (.txt文件)
(一).csv文件的读取
mydata <- read.csv(file=" ", header=T, sep=",", quote="\", dec=".", fill=T, comment.char=" ")
comment.char用于设置需要跳过的内容,比如需要跳过的行前面有“#”,那么设置comment.char=“#”,当然你也可以设置从中间开始读,注意,这个函数是read.csv里面的哦!
file: 以csv结尾的文件名,由文件所在路径及其文件名构成
header:是否把第一行作为表头
sep:分隔方式,csv文件分隔读入参数设置为"."
tsv文件分隔读入参数设置为"\t"
txt文件分隔为空格,不需要设置sep参数
也可以通过mydata <- read.table("D:/mydata.csv", header=T, sep=",", row.names="id")读取
(二).tsv文件的读取
mydata <- read.table("D:/mydata.tsv", header=T, sep="\t", row.names="id")
除了分隔方式跟上面一样
(三).txt文件的读取
mydata <- read.table("c:/mydata.txt", header=TRUE, row.names="id")
除了分隔方式跟上面一样
(四)以.gz结尾的压缩文件的读取
1.在R中可以使用gzfile()的方式读取压缩文件
2.使用data.table包里的fread()函数
安装并加载data.table包
install.packages("data.table")
library(data.table)
使用fread()函数读取文件,这里参数和之前的一致,唯一的不同就是fread()可以直接读取压缩文件
mydata <- fread(‘c:/mydata.txt.gz’, header=T, row.names=’id’)
(五)读取.xlsx后缀文件,也就是excel文件
1. 安装并加载openxlsx包
install.packages("openxlsx")
library(openxlsx)
2.进行数据的导入
mydata <- read.xlsx( "mydata.xlsx",rowNames=T)
其他参数可以通过? read.xlsx在R中根据需要进行添加的。
『叁』 R语言读取大数据表格中有条件的子集
不知道你说的大表格有多大,但只要能加载到R语言的内存中运算就可以计算。使用subset函数内
假设数据集为x
java">a<-subset(x,A>30)
a<-subset(a,D>50)
subset第一容个参数是要筛选的数据集,第二个就是条件,像你说的问题,在第一步过滤的基础上再过滤一次就行,也可以合并到一起。
『肆』 在r语言中用什么命令读取全部数据
使用R语言的时候,如果是少量数据,不妨使用c()或其他函数进行创建;但是对于大量数据,最好还是先通过其他更方便的软件创建数据文件,然后使用R读入这个文件。
.csv是非常好的数据文件格式,跨平台支持非常好。我在Excel或者SPSS中创建的数据,只要存为csv格式,就可以使用几乎任何数据处理软件对这些数据进行处理了。使用通用格式在多人合作、不同版本兼容等常见行为中,优势十分明显。另外,之所以使用不同的数据处理软件,第一,可以取长补短。比如有些工作SPSS很复杂的,可以用R语言几行命令搞定。第二,可以进行软件间处理结果对照,发现问题。
R语言中读取外部文件的最基本函数是read.table(),还有用来读csv的read.csv(), .csv是非常好的数据文件格式,跨平台支持非常好。。
输入help(read.table)命令,就看到了关于数据输入函数的说明。
『伍』 r语言怎么读取txt文件
1、demo、txt用于测试: