导航:首页 > 网络数据 > 多大的数据是大数据

多大的数据是大数据

发布时间:2024-03-02 08:40:22

A. 什么是大数据,看完这篇就明白了

什么是大数据

如果从字面上解释的话,大家很容易想到的可能就是大量的数据,海量的数据。这样的解释确实通俗易懂,但如果用专业知识来描述的话,就是指数据集的大小远远超过了现有普通数据库软件和工具的处理能力的数据。

大数据的特点

海量化

这里指的数据量是从TB到PB级别。在这里顺带给大家科普一下这是什么概念。

MB,全称MByte,计算机中的一种储存单位,含义是“兆字节”。

1MB可储存1024×1024=1048576字节(Byte)。

字节(Byte)是存储容量基本单位,1字节(1Byte)由8个二进制位组成。

位(bit)是计算机存储信息的最小单位,二进制的一个“0”或一个“1”叫一位。

通俗来讲,1MB约等于一张网络通用图片(非高清)的大小。

1GB=1024MB,约等于下载一部电影(非高清)的大小。

1TB=1024GB,约等于一个固态硬盘的容量大小,能存放一个不间断的监控摄像头录像(200MB/个)长达半年左右。

1PB=1024TB,容量相当大,应用于大数据存储设备,如服务器等。

1EB=1024PB,目前还没有单个存储器达到这个容量。

多样化

大数据含有的数据类型复杂,超过80%的数据是非结构化的。而数据类型又分成结构化数据,非结构化数据,半结构化数据。这里再对三种数据类型做一个分类科普。

①结构化数据

结构化的数据是指可以使用关系型数据库(例如:MySQL,Oracle,DB2)表示和存储,表现为二维形式的数据。一般特点是:数据以行为单位,一行数据表示一个实体的信息,每一行数据的属性是相同的。所以,结构化的数据的存储和排列是很有规律的,这对查询和修改等操作很有帮助。

但是,它的扩展性不好。比如,如果字段不固定,利用关系型数据库也是比较困难的,有人会说,需要的时候加个字段就可以了,这样的方法也不是不可以,但在实际运用中每次都进行反复的表结构变更是非常痛苦的,这也容易导致后台接口从数据库取数据出错。你也可以预先设定大量的预备字段,但这样的话,时间一长很容易弄不清除字段和数据的对应状态,即哪个字段保存有哪些数据。

②半结构化数据

半结构化数据是结构化数据的一种形式,它并不符合关系型数据库或其他数据表的形式关联起来的数据模型结构,但包含相关标记,用来分隔语义元素以及对记录和字段进行分层。因此,它也被称为自描述的结构。半结构化数据,属于同一类实体可以有不同的属性,即使他们被组合在一起,这些属性的顺序并不重要。常见的半结构数据有XML和JSON。

③非结构化数据

非结构化数据是数据结构不规则或不完整,没有预定义的数据模型,不方便用数据库二维逻辑表来表现的数据。包括所有格式的办公文档、文本、图片、各类报表、图像和音频/视频信息等等。非结构化数据其格式非常多样,标准也是多样性的,而且在技术上非结构化信息比结构化信息更难标准化和理解。所以存储、检索、发布以及利用需要更加智能化的IT技术,比如海量存储、智能检索、知识挖掘、内容保护、信息的增值开发利用等。

快速化

随着物联网、电子商务、社会化网络的快速发展,全球大数据储量迅猛增长,成为大数据产业发展的基础。根据国际数据公司(IDC)的监测数据显示,2013年全球大数据储量为4.3ZB(相当于47.24亿个1TB容量的移动硬盘),2014年和2015年全球大数据储量分别为6.6ZB和8.6ZB。近几年全球大数据储量的增速每年都保持在40%,2016年甚至达到了87.21%的增长率。2016年和2017年全球大数据储量分别为16.1ZB和21.6ZB,2018年全球大数据储量达到33.0ZB。预测未来几年,全球大数据储量规模也都会保持40%左右的增长率。在数据储量不断增长和应用驱动创新的推动下,大数据产业将会不断丰富商业模式,构建出多层多样的市场格局,具有广阔的发展空间。

核心价值

大数据的核心价值,从业务角度出发,主要有如下的3点:

a.数据辅助决策:为企业提供基础的数据统计报表分析服务。分析师能够轻易获取数据产出分析报告指导产品和运营,产品经理能够通过统计数据完善产品功能和改善用户体验,运营人员可以通过数据发现运营问题并确定运营的策略和方向,管理层可以通过数据掌握公司业务运营状况,从而进行一些战略决策;

b.数据驱动业务:通过数据产品、数据挖掘模型实现企业产品和运营的智能化,从而极大的提高企业的整体效能产出。最常见的应用领域有基于个性化推荐技术的精准营销服务、广告服务、基于模型算法的风控反欺诈服务征信服务,等等。

c.数据对外变现:通过对数据进行精心的包装,对外提供数据服务,从而获得现金收入。市面上比较常见有各大数据公司利用自己掌握的大数据,提供风控查询、验证、反欺诈服务,提供导客、导流、精准营销服务,提供数据开放平台服务,等等。

大数据能做什么?

1、海量数据快速查询(离线)

能够在海量数据的基础上进行快速计算,这里的“快速”是与传统计算方案对比。海量数据背景下,使用传统方案计算可能需要一星期时间。使用大数据 技术计算只需要30分钟。

2.海量数据实时计算(实时)

在海量数据的背景下,对于实时生成的最新数据,需要立刻、马上传递到大数据环境,并立刻、马上进行相关业务指标的分析,并把分析完的结果立刻、马上展示给用户或者领导。

3.海量数据的存储(数据量大,单个大文件

大数据能够存储海量数据,大数据时代数据量巨大,1TB=1024*1G 约26万首歌(一首歌4M),1PB=1024 * 1024 * 1G约2.68亿首歌(一首歌4M)

大数据能够存储单个大文件。目前市面上最大的单个硬盘大小约为10T左右。若有一个文件20T,将 无法存储。大数据可以存储单个20T文件,甚至更大。

4.数据挖掘(挖掘以前没有发现的有价值的数据)

挖掘前所未有的新的价值点。原始企业内数据无法计算出的结果,使用大数据能够计算出。

挖掘(算法)有价值的数据。在海量数据背景下,使用数据挖掘算法,挖掘有价值的指标(不使用这些算法无法算出)

大数据行业的应用?

1.常见领域

2.智慧城市

3.电信大数据

4.电商大数据

大数据行业前景(国家政策)?

2014年7月23日,国务院常务会议审议通过《企业信息公示暂行条例(草案)》

2015年6月19日,国家主席、总理同时就“大数据”发表意见:《国务院办公厅关于运用大数据加强对市场主体服务和监管的若干意见》

2015年8月31日,国务院印发《促进大数据发展行动纲要》。国发〔2015〕50号

2016年12月18日,工业和信息化部关于印发《大数据产业发展规划》

2018年1月23日。中央全面深化改革领导小组会议审议通过了《科学数据管理办法》

2018年7月1日,国务院办公厅印发《关于运用大数据加强对市场主体服务和监管的若干意见》

2019年政府工作报告中总理指出“深化大数据、人工智能等研发应用,培育新一代信息技术、高端装备、生物医药、新能源汽车、新材料等新兴产业集群,壮大数字经济。”

总结

我国著名的电商之父,阿里巴巴创始人马云先生曾说过,未来10年,乃至20年,将是人工智能的时代,大数据的时代。对于现在正在学习大数据的我们来说,未来对于我们更是充满了各种机遇与挑战。

python学习网,大量的免费python视频教程,欢迎在线学习!

B. 大数据的大量指的是至少要有多大数据量A100K字节B100字节C100M字节D100T字节8

大数据的大量指的是至少要有 100T 字节。
在计算机领域中,数据量的单位通常使用字节(Byte)来表示。常用的数据量单位有 K、M、G、T 等。其中,K 表示千,M 表示百万,G 表示十亿,T 表示万亿。因此,100K 字节表示 100 * 1000 = 10^5 个字节,100M 字节表示 100 * 1000 * 1000 = 10^8 个字节,100T 字节表示 100 * 1000 * 1000 * 1000 = 10^12 个字节。
可以看出,100T 字节是一个很大的数据量,至少要有这么大的数据量,才能称之为大数据。
希望这对你有帮助!

C. 大数据的定义是什么

大数据首先是一个非常大的数据集,可以达到TB(万亿字节)甚至ZB(十万亿亿字节)。这里面的数据可能既有结构化的数据,也有半结构化和非结构化的数据,而且来自于不同的数据源。

结构化的数据是什么呢?对于接触过关系型数据库的小伙伴来说,应该一点都不陌生。对了,就是我们关系型数据库中的一张表,每行都具有相同的属性。如下面的一张表:

(子标签的次序和个数不一定完全一致)

那什么又是非结构化数据呢?这类数据没有预定义完整的数据结构,在我们日常工作生活中可能更多接触的就是这类数据,比如,图片、图像、音频、视频、办公文档等等。

知道了这三类结构的数据,我们再来看看大数据的数据源有哪些呢?归纳起来大致有五种数据源。

一是社交媒体平台。如有名气的Facebook、Twitter、YouTube和Instagram等。媒体是比较受欢迎的大数据来源之一,因为它提供了关于消费者偏好和变化趋势的宝贵依据。并且因为媒体是自我传播的,可以跨越物理和人口障碍,因此它是企业深入了解目标受众、得出模式和结论、增强决策能力的方式。

二是云平台。公有的、私有的和第三方的云平台。如今,越来越多的企业将数据转移到云上,超越了传统的数据源。云存储支持结构化和非结构化数据,并为业务提供实时信息和随需应变的依据。云计算的主要特性是灵活性和可伸缩性。由于大数据可以通过网络和服务器在公共或私有云上存储和获取,因此云是一种高效、经济的数据源。

三是Web资源。公共网络构成了广泛且易于访问的大数据,个人和公司都可以从网上或“互联网”上获得数据。此外,国内的大型购物网站,淘宝、京东、阿里巴巴,更是云集了海量的用户数据。

四是IoT(Internet of Things)物联网数据源。物联网目前正处于迅猛发展势头。有了物联网,我们不仅可以从电脑和智能手机获取数据,还可以从医疗设备、车辆流程、视频游戏、仪表、相机、家用电器等方面获取数据。这些都构成了大数据宝贵的数据来源。

五是来自于数据库的数据源。现今的企业都喜欢融合使用传统和现代数据库来获取相关的大数据。这些数据都是企业驱动业务利润的宝贵资源。常见的数据库有MS Access、DB2、Oracle、MySQL以及大数据的数据库Hbase、MongoDB等。

我们再来总结一下,什么样的数据就属于大数据呢?通常来大数据有4个特点,这就是业内人士常说的4V,volume容量、 variety多样性、velocity速度和veracity准确性。

D. 大数据是什么多大的数据叫大数据

多大的数据才算“大数据”
什么是大数据有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。

E. 多大的数据才算“大数据”

多大的数据才算“大数据”
什么是大数据有一个故事,说的是一位顾客订购披萨时,披萨店可以立即调出这位顾客的许多信息,比如送披萨上门必有的家庭、单位等地址和电话,顾客的消费习惯从而推荐适合他的披萨种类,顾客名下的银行卡透支情况从而确定他的支付方式,甚至顾客要自取披萨时,还能根据顾客名下车辆的停放位置预估他的到店时间等等。
从这个故事,我们可以看出大数据的一些关键特征,比如容量大、类型多、关联性强、有价值等等。“大数据是以高容量、多样性、存取速度快、应用价值高为主要特征的数据集合,正快速发展为对数量巨大、来源分散、格式多样的数据进行采集、存储和关联分析,从中发现新知识、创造新价值、提升新能力的新一代信息技术和服务业态。”工信部信息化和软件服务业司副司长李冠宇接受经济日报·中国经济网记者采访时说。
仅仅规模大不是大数据
大数据,顾名思义,“大”该是应有之义。“大数据的定义最初与容量有关系。”李冠宇分析说,业界有几种对大数据的定义,其中一个共同点就是数据的容量超出了原有的存储、管理和处理能力。
正如中国电子信息产业发展研究院副院长樊会文接受记者采访时指出的,大数据概念产生就是因为数据量和数据类型急剧增加,以至于原有的数据存储、传输、处理以及管理技术不能胜任,需要全新的技术工具和手段。
信息技术日新月异,大数据的定义也在发生变化。工信部赛迪研究院软件所所长潘文说,数据即时处理的速度(Velocity)、数据格式的多样化(Variety)与数据量的规模(Volume)被称为大数据“3V”。但随着近几年数据的复杂程度越来越高,“3V”已不足以定义新时代的大数据,准确性(Veracity)、可视性(Visualization)、合法性(Validity)等特性又被加入大数据的新解,从“3V”变成了“6V”。
对于“多大容量的数据才算大数据”,潘文说,大数据的规模并没有具体的标准,仅仅规模大也不能算作大数据。规模大本身也要从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
李冠宇说,比如一份现在看起来很小的数据,但是纵向积累久了也可以变成大数据,横向与其他数据关联起来也可能形成大数据。而一份很大的数据如果没有关联性、没有价值也不是大数据。
运满满研究院院长徐强认为,“大”是必要条件,但非充分条件。基于移动互联网用户规模红利,国内平台型企业比较容易获取大量数据,但数据不是越多越好,无用数据就像噪音,会给数据分析、清洗、脱敏和可视化带来负担。
这也正如阿里巴巴集团董事局主席马云在某次演讲中说的:“很多人以为大数据就是数据量很大,其实大数据的大是大计算的大,大计算+数据,称之为大数据。”
“水涨船高”的大数据
今年麦收时节,在雷沃重工的全国“三夏”跨区作业信息服务中心,显示屏的全国电子地图上有许多大小不一、颜色不同的圆圈,这是每个区域正在作业的收割机。智能化的收割机会自动获得许多数据,包括机器运行情况、收割量、小麦含水量等,数据传回后台汇总后,总体收割情况一目了然。
“大数据概念正是来自信息技术的飞速发展和应用,特别是随着云计算、物联网、移动互联网的应用,数据量迅猛增长。数据来源有两种,一种与人有关,比如政府、企业等为人们服务时产生的数据;另一种与物有关,在移动泛在、万物互联时代,物联网应用的浪潮将带动数据量爆发式增长。”李冠宇说。
这也就不难理解,为何当下数据产生的速度如此之快。正如樊会文所分析的,一方面,信息终端大面积普及,信息源大量增加;另一方面,基于云计算的互联网信息平台快速增长,数据向平台大规模集中。
大数据与云计算、物联网、人工智能等新一代信息技术之间相互影响、相互促进、相互融合。徐强说,运满满通过车联网设备和信息平台,每天获取3TB至4TB的数据,运用先进的大数据算法模型,实现了智能车货匹配、智能实时调度等。
樊会文认为,云计算是硬件资源的虚拟化,而大数据是海量数据的高效处理。简单来说,云计算是大数据的基础,有了云计算才能大量集中数据从而产生大数据。同时,大数据也支撑了云计算应用创新,带动云计算发展。
人工智能的核心在于大数据支撑。围棋人工智能程序“阿尔法狗”打败柯洁,离不开大数据的支持。“大数据技术能够通过数据采集、分析等方式,从海量数据中快速获得有价值的信息,为深度学习等人工智能算法提供坚实的素材基础。反过来,人工智能技术也促进了大数据技术的进步。两者相辅相成,任何一方技术的突破都会促进另外一方的发展。”潘文说。
核心价值在于应用
刚刚过去的“6·18”再次掀起网购热潮。网购消费者基本都被精准推送过广告信息,如曾浏览过电饭煲的消费者,很长一段时间内会在登录页面后看到各品牌电饭煲信息。
阿里、京东、360等互联网平台接触消费者众多,也因此获得了很多数据。但是正如精准推送一样,不对这些数据进行处理、挖掘就没法产生价值。比如雷沃收割机传回的数据进行汇总后还要分析处理,从而得出对收割作业乃至整个农业都有意义的结论才是这些数据的价值所在。
“大数据作为重要的基础性战略资源,核心价值在于应用,在于其赋值和赋能作用,在于对大量数据的分析和挖掘后所带来的决策支撑,能够为我们的生产生活、经营管理、社会治理、民生服务等各方面带来高效、便捷、精准的服务。”李冠宇强调。
我们正在步入万物互联时代。华为预测,到2025年,物联网设备的数量将接近1000亿个。工信部统计数据显示,目前我国网民数量超过7亿,移动电话用户规模已经突破13亿,均居世界第一。
“全球数据总量呈现指数级增长,企业级用户拥有的数据量在快速增加。互联网的社会化生产出巨量数据。”

F. 大数据究竟多大才算是,该如何学习大数据

大数据本身是基于数据价值化而构建出来的新概念,虽然概念比较新,但是数据却一直都在,所以大数据的核心并不在“大”上,而是基于大数据所构建出的一个新的价值空间。

在理解大数据概念的时候,通常都有几个较为明显的误区,其一是只有足够大的数据才能算是大数据范畴;其二是大数据和互联网是隔离的;其三是大数据就是统计学;其四是大数据会“杀熟”,应该尽量远离大数据等等。

在大数据时代,任何体量的数据都可以采用大数据技术进行处理,传统的结构化数据处理方式也已经并入到了大数据的技术体系,所以大数据技术本身对于数据量的大小并没有绝对的要求,并不是说数据量小就不能采用大数据技术。

大数据本身是互联网、物联网和传统信息系统共同发展所导致的结果,所以大数据与互联网存在紧密的联系,事实上目前互联网领域是推动大数据发展的重要力量,所以大数据与互联网本身就密不可分。从互联网发展的前景来看,大数据是互联网价值的重要体现,所以未来大数据的价值必然会不断得到提升。

由于目前大数据分析技术往往会采用统计学的方式,这导致不少人认为大数据就是统计学,实际上大数据在进行数据分析的过程中,不仅需要统计学技术,也需要机器学习相关技术。当然,统计学作为大数据的三大基础学科,在大数据技术体系中占有重要的地位。

目前大数据人才的培养既包括研究生教育(培养创新型人才),也包括专科教育和本科教育,随着大数据技术体系的逐渐成熟,学习大数据的过程也会更为顺利。

如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!

大数据并非是大的数据,而是将数据价值化的新概念,可以说任何体量的数据都可以使用大数据技术来处理。在大数据时代,企业中有很多商业数据需要大数据开发工程师来采集、储存、处理,所以逐渐的大数据岗位越来越多。

目前是大数据开发落地应用的初级阶段,市场需要更多的大数据开发人才,面对偌大的市场需求,有越来越多的小伙伴想学习大数据开发技术,但是并不是每个人都可以学习的,学习大数据对编程基础和逻辑思维能力有一定的需求,因为大数据是比较复杂且综合性比较强的编程语言。

由于大数据的复杂性,对于小伙伴学习大数据的难易程度来讲,不同基础的小伙伴,难易程度不同,那小伙伴该如何去学习大数据开发技术呢?

1.注重编程基础知识的积累

上面我也说过了,大数据是比较复杂的编程语言,想要学习大数据开发技术是需要有一定的编程基础的,但是有些零基础学习大数据的小伙伴,还是需要学习java、Python、web等编程基础。

2.确定发展方向,以用为学

小伙伴可以事先了解一下企业对大数据开发技术的需求是什么,确定自己的发展方向,根据企业所需要的大数据开发技术需求,制定适合自己的学习路线,针对性学习,才能提高学习效率。

3.多练习项目案例

在平时,小伙伴在积累基础知识的过程中,不要忘了多加练习项目案例,多敲代码,培养自己的编程思维。

最后,小伙伴想要学习大数据开发技术,还需要不断的 探索 适合自己的学习方法。尚硅谷大数据培训班是一家比较靠谱的IT教育培训机构,以理论实践相结合的教学方式传授更多的大数据开发技术知识,让小伙伴在学习大数据开发技术知识的同时,积累更多的项目实战经验。

http://www.atguigu.com/bigdata_video.shtml

大数据,什么是大数据呢?多大的数据叫大数据?红火一时的数据分析走向了我们,纷纷称不分析数据企业将长久不了,可是究竟什么样的数据才是大数据呢,什么样的数据才是最大的呢?

如果你没有接触过大数据,那么你就不知道大数据究竟有多大,大到什么样的数据才能称之为大数据。那么,根据数据收集的端口,企业端与个人端之间,大数据的数量级别是不同的。

大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,一般而言,Java学习SE、EE,需要约3个月的时间;然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。

什么是大数据 究竟多大才算是大数据

大数据是什么?

多大的数据叫大数据?

很多没有接触过大数据的人,都很难清楚地知道,究竟多大的数据量才可以称之为大数据。那么,根据数据收集的端口,企业端与个人端之间,大数据的数量级别是不同的。

企业端(B端)数据近十万的级别,就可以称为大数据;个人端(C端)的大数据要达到千万级别。收集渠道没有特定要求,PC端、移动端或传统渠道都可以,重点要达到这样数量级的有效数据,形成数据服务即可。很有趣,大家可以看到2B和2C,两类大数据差了两个数量级。

有些小公司,数据只有千到万级的规模,但经过收集分析,也能从中有针对性的总结出这一群体的原则,同样能指导企业进行一定程度的用户分析、获取或者是服务工作,但这并不是大数据,而是一般性的数据挖掘。

大数据的产业链是怎样的?

我在接受采访的时候,依照大数据公司在产业链的上下游关系,提出把它们分成三种不同类别:

大数据采集公司

所谓“找数据”,内部可以再分两种:

在自身正常运营的过程中就能产生大量数据源;

通过跟电信运营商、金融企业合作,获取数据源。

大数据分析公司

这一类公司,基本上都有自己的套模型,但大部分数据库模型源于相同的几个机理,包括统计学模型、深度学习算法等等。也基于美国IBM、cloudera公司开发的应用型分析模块等等。

大数据销售公司

虽然说是卖数据,但出售的并不是单一数据,而是基于数据的全套解决方案,比如精准营销等等。

这三类公司是如何协作,并把大数据作用于我们的生活呢?最容易理解的就是现在在微信朋友圈上投放的广告。

腾讯在把广告推广给每个用户的时候,都已经对用户做过精准的分析。通过收集人们在微信上使用习惯,进而分析用户的消费能力、消费习惯,形成一套精准营销方案后,给广告商生成一些定向的广告。

比如说,兰蔻的广告就从来不会推广给男性用户、豪车广告也不会推给应届毕业生。整个的微信广告体系都用到了大数据的分析模式,大家普遍反馈,在腾讯上投放的广告比网易、新浪等平台上投放的广告转化率高,正是得益于腾讯的大数据基础。

大数据本身是基于数据价值化而构建出来的新概念,虽然概念比较新,但是数据却一直都在,所以大数据的核心并不在“大”上,而是基于大数据所构建出的一个新的价值空间。

大数据开发学习有一定难度,零基础入门首先要学习Java语言打基础,一般而言,Java学习SE、EE,需要约3个月的时间;然后进入大数据技术体系的学习,主要学习Hadoop、Spark、Storm等。

企业端(B端)数据近十万的级别,就可以称为大数据;个人端(C端)的大数据要达到千万级别。收集渠道没有特定要求,PC端、移动端或传统渠道都可以,重点要达到这样数量级的有效数据,形成数据服务即可。很有趣,大家可以看到2B和2C,两类大数据差了两个数量级。

有些小公司,数据只有千到万级的规模,但经过收集分析,也能从中有针对性的总结出这一群体的原则,同样能指导企业进行一定程度的用户分析、获取或者是服务工作,但这并不是大数据,而是一般性的数据挖掘。

大数据面向的是更海量的一个数据,借助了更广义的知识数据库的分析方法。大部分的数据公司的数据来源是海量的,它的收集和分析,并不是局限于个体,而是以一个非常非常广泛的群体为对象展开的。

要兑现大数据的商业价值,第一个要求,就是达到大数据的数据量级。那么目前,在数据量上最有优势是BAT三家。在PC时代,网络在数据上的优势非常强,但到移动时代,腾讯和阿里实现了反超。

腾讯有微信、QQ,拿到了移动端数据生成量的九成;阿里利用它的消费数据资源,更有垂直性。那么对于中小企业、创业企业而言,兑现商业价值的重点就变成了,如何在自身规模较小的时候,利用别人的大数据资源为自己的创业更好的服务。这是需要深层次判断和挖掘的。

所以,对于数据相关的公司,在投资判断的时候,不单是看现有业务的发展,更重要的是在他不断的发展的过程中,能不能积累有效数据、积累高准确性的数据,实现数据的实时更新性。这样的企业才能够更好地建立起竞争壁垒。

什么是大数据

大数据指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

为什么大数据很重要?

大数据的重要性不在于您拥有多少数据,而在于您使用它做了多少。您可以从任何来源获取数据并进行分析,以找到能够降低成本,减少时间,新产品开发和优化产品,以及智能决策的答案。将大数据与高性能分析结合使用时,您可以完成与业务相关的任务,例如:

1.近乎实时地确定故障,问题和缺陷的根本原因;

2.根据客户的购买习惯在销售点生成优惠券;

3.在几分钟内重新计算整个风险组合;

4.在欺诈行为影响您的组织之前检测它。

从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。

众所周知,IT 行业是个高薪行业,也是很多人的梦想职业,在全球最缺人的十大行业中IT行业居首位。而事实证明,IT行业不失为一个好的职业方向。

中公优就业可以为您规划学习过程以及后期就业方向,为您的未来保驾护航

在大数据时代,任何体量的数据都可以采用大数据技术进行处理,传统的结构化数据处理方式也已经并入到了大数据的技术体系,所以大数据技术本身对于数据量的大小并没有绝对的要求,并不是说数据量小就不能采用大数据技术。

数据收集不分大小,用到大数据这个词汇!

是统计学中一个概念,数据信息越大越全!误差越小,也就越准确!

建议先从统计学入手,理论性知识先了解!再针对行业情况实战做有效数据收集,达到基数后去证实数据的有效性和真实性!

这些都是基础!

G. “大数据” 到底有多大

截止到2012年,数据量已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。

内国际数据公司(IDC)的研容究结果表明,2008年全球产生的数据量为0.49ZB,2009年的数据量为0.8ZB,2010年增长为
1.2ZB,2011年的数量更是高达1.82ZB,相当于全球每人产生200GB以上的数据。而到2012年为止,人类生产的所有印刷材料的数据量是
200PB,全人类历史上说过的所有话的数据量大约是5EB。

IBM的研究称,整个人类文明所获得的全部数据中,有90%是过去两年内产生的。而到了2020年,全世界所产生的数据规模将达到今天的44
倍。每一天,全世界会上传超过5亿张图片,每分钟就有20小时时长的视频被分享。然而,即使是人们每天创造的全部信息——包括语音通话、电子邮件和信息在
内的各种通信,以及上传的全部图片、视频与音乐,其信息量也无法匹及每一天所创造出的关于人们自身的数字信息量。这样的趋势会持续下去。

H. 多大的数据,才能称为大数据呢

5. Veracity(真实性)

大数据就一定真实么?并没有。为什么这么说呢,想象一下当下泛滥的作弊流量吧,你还敢确保你的用户数据并没有虚假的吗?所以,大数据也是可以造假的,我们一定要有一双智慧的眼睛却辨别大数据的好坏。

阅读全文

与多大的数据是大数据相关的资料

热点内容
网络安全创业 浏览:787
修改linux 浏览:464
如何编程计算机cpu高占用程序 浏览:808
程序员活动策划方案 浏览:130
数据漫游什么意思需不需要开启 浏览:804
qq图片刷新很慢 浏览:40
数据的采集方法都有什么 浏览:401
pps影音iphone版282 浏览:214
影梭安卓客户端341 浏览:636
有网络为什么qq登不上去 浏览:87
视频插上不显示视频文件 浏览:665
投标制作软件生成文件失败 浏览:756
什么是数据指标 浏览:243
三菱plc编程用什么语言比较好 浏览:496
路虎找不到配置文件怎么办 浏览:447
linux打包jar 浏览:556
好看的word文档排版样式 浏览:331
英朗gt高德导航升级 浏览:910
居民用电一户一表是哪个文件规定 浏览:529
pos文件什么格式 浏览:141

友情链接