⑴ 大数据和智慧交通有哪些应用的案例
大数据方面的应用案例
在医疗方面,纽约的mountsinai医院利用数千名患者的数据、历年汇报的流感爆发数据等数据与病毒的变异过程做交叉比对。通过这种工作,科学家和医生可以预测病毒如何传播,以及对抗这些病毒的最佳途径;甚至有可能使用预测分析来判断病毒的传播方式,然后采取行动来限制这一传播。据说这家医院有望在未来阻止流感的发生。
在交通方面,浙江某城市与英特尔合作,安装了1000个数字监控设备,100个智能监测点系统,超过300个检查点的电子警察,和500多个视频监控系统。通过更有效地监测交通和拥堵数据,改善交通流量,减少道路交通事故。
在废物处理方面, 英国曼彻斯特垃圾处理局有一套系统,能够利用数据使得产生的垃圾被尽可能多的再次利用。通过对来自不同地区的卡车进出加工厂时进行称重,能够了解每个地区所产生的垃圾数量。这些数据帮助当局出台了相应的政策,鼓励那些特定的社区更好的垃圾回收和垃圾减量。
在建筑方面, 住房慈善机构hact从400,000座住房中持续不断地收集数据,并进行了各种数据分析。通过数据来发现设计、建造、布局中存在的潜在问题,进而在建造新的楼宇时优化相关的参数,避免这些问题,改进政府保障房的的维修,规划空间合理使用。
智能应用服务,Google提供的大数据分析智能应用包括客户情绪分析、交易风险(欺诈分析)、产品推荐、消息路由、诊断、客户流失预测、法律文案分类、电子邮件内容过滤、政治倾向预测、物种鉴定等多个方面。据称,大数据已经给Google每天带来2300万美元的收入。例如,一些典型应用如下:
(1)基于Map Rece,Google的传统应用包括数据存储、数据分析、日志分析、搜索质量以及其他数据分析应用。
(2)基于Dremel系统, Google推出其强大的数据分析软件和服务 — BigQuery,它也是Google自己使用的互联网检索服务的一部分。Google已经开始销售在线数据分析服务,试图与市场上类似亚马逊网络服务(Amazon Web Services)这样的企业云计算服务竞争。这个服务,能帮助企业用户在数秒内完成万亿字节的扫描。
(3)基于搜索统计算法,Google推出搜索引擎的输写纠错、统计型机器翻译等服务。
(4)Google的趋势图应用。通过用户对于搜索词的关注度,很快的理解社会上的热点是什么。对广告主来说,它的商业价值就是很快的知道现在用户在关心什么,他们应该在什么地方投入一个广告。据此,Google公司也开发了一些大数据产品,如“Brand Lift in Adwords”、“Active GRP”等,以帮助广告客户分析和评估其广告活动的效率。
(5)Google Instant。输入关键词的过程,Google
Instant 会边打边预测可能的搜索结果。
谷歌的大数据平台架构仍在演进中,追去的目标是更大数据集、更快、更准确的分析和计算。这将进一步引领大数据技术发展的方向。
在竞选方面,直到2012年,奥巴马的数据团队对数以千万计的选民邮件进行了大数据挖掘,精确预测出了更可能拥护奥巴马的选民类型,并进行了有针对性的宣传,从而帮助奥巴马成为了美国历史上唯一一位在竞选经费处于劣势下实现连任的总统。只要数据量够大,够及时,挖掘够深刻,就可以洞悉每个选民的投票几率。
在教育方面,"以物联网、云计算等综合技术的成熟为基础,在学生管理数据库中挖掘出有价值的数据,经过过程性和综合性的考虑,找到学生各种行为之间的内在联系,考量背后的逻辑关系,并作出恰当的教学决策。以某集团最新出版的全球少儿美语旗舰课程为例,引入了首款应用于少儿英语学习领域的MyEnglishLab在线学习辅导系统(以下简称MEL),应用大数据技术全程实时分析学生个体和班级整体的学习进度、学情反馈和阶段性成果,从而及时找到问题所在对症下药,实现对学习过程和结果的动态管理。
智慧交通的应用案例
根据ITS114的不完全统计,截至2015年12月31日,包括城市智慧交通和高速公路机电市场的全年千万项目统计规模为182.5亿,其中主要分为四大市场1.交通管控市场千万项目规模为84.24亿。2.智慧交通/智能运输市场千万项目规模为20.33亿。3.高速公路机电市场千万项目规模为75.8亿。4.平安城市千万项目规模为56.6亿。以上四个市场都有着很多的智慧交通方面的应用案例。
具体的在交通管控市场方面, 当前各个省积极构建的交通运行监测与应急指挥系统,还有围绕着视频、图像分析,从而实现在治安、交通、工业制造、汽车、人工智能等等诸多领域的应用亦是智慧交通的典型案例。如深圳榕享的"交通仿真与智能管控机器人"可实时采集视频检测数据与线圈检测数据,将采集的交通流数据、信号配时等数据输入到建立的仿真路网模型中,进行实时的交通系统仿真。通过一体化交通仿真模型,机器人能快速找出路网拥堵点以及分析路网的常发性拥堵点,并对交通流运营状况的演变进行预测和分析。在交通仿真与智能管控机器人平台上,还可对城市的任意交叉口的交通环境进行设置,周边居民可将相关建议"告知"机器人,实时模拟交叉口改良效果,实现全民参与、全民实践、全民创新的交通管理新模式。
智慧交通/运输方面各种“专车”“快车”“拼车”“代驾”平台类和软件数据类的实例比比皆是,如我们都熟知的“滴滴快递”“uber"“e代驾”等app应用。
交通工具新型技术案例方面:如无人驾驶、自动驾驶、智能车等等;在2015年12月互联网大会上李彦宏展示的无人车,李书福展现的自动驾驶技术都体现了当前智能交通工具的发展。 更近一点的是,汽车电子标识、ETC、车路协同。2015年的新能源客车市场呈爆发性增长,新能源客车销量达到37363辆,同比增长213.19%,同时2015年国务院印发《新能源公交车推广应用考核办法(试行)》、《电动汽车充电基础设施发展指南》等等政策文件,可预见的是新能源汽车将会造就一个巨大的市场,建立在新能源汽车之上的车联网也将搭上顺风车。
平安城市也有很多已经成型的智慧交通案例。平安城市是基于GIS数字地图技术,高度整合治安监控、智能交通、数字城管、应急指挥等子系统,改变传统的静态管理和单点管理,实现实时、动态的联动管理新模式,实现了整个城市的治安、交通、城管、应急联动等各个职能部门的联动,建立了高效的城市部门联动机制,提高了城市的集成化、智慧化管理水平。根据高清视频监控系统的特点和应用需求,结合当前与今后一定时期内图像监控系统与图像应用系统的发展需要,建设一套先进的平安城市综合应用平台,为指挥调度、调查取证、应急处置、交通管理等多种后台应用提供及时、可靠的视频图像信息,服务于实战。市面上常见的平安城市系统具备的主要功能大部分都有:人脸卡口功能;交通事件检测功能;智能检索功能;道路违法抓拍功能;车辆稽查布控功能;非现场执法;分析研判功能;交通事态监控功能;视频质量检测功能;智能应用管理功能;数据格式及通信功能;远程控制功能;指挥调度功能;勤务管理功能; 设备运行状态监测功能。
⑵ 大数据,数据挖掘在交通领域有哪些应用
交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
⑶ 大数据应用案例有哪些
案例如下:
1、交通大数据畅通出行
交通作为人类行为的重要组成和重要条件之一,对于大数据的感知也是最急迫的。近年来,我国的智能交通已实现了快速发展,许多技术手段都达到了国际领先水平。交通的大数据应用主要在两个方面,一方面可以利用大数据传感器数据来了解车辆通行密度,合理进行道路规划包括单行线路规划。另一方面可以利用大活数据来实现即时信号灯调度,提高已有线路运行能力。
2、教育大数据因材施教
在课堂上,数据不仅可以帮助改善教育教学,在重大教育决策制定和教育改革方面,大数据更有用武之地。利用数据来诊断处在辍学危险期的学生、探索教育开支与学生学习成绩提升的关系、探索学生缺课与成绩的关系。
3、环保大数据对抗PM2.5
在美国NOAA(国家海洋暨大气总署)其实早就在使用大数据业务。每天通过卫星、船只、飞机、浮标、传感器等收集超过35亿份观察数据。收集完毕后,NOAA会汇总大气数据,海洋数据,以及地质数据,进行直接测定,绘制出复杂的高保真预测模型,将其提供给NWS(国家气象局)做出气象预报的参考数据。
大数据特点
1、大容量
例如,IDC最近的报告预测到2020年,世界数据量将扩大50倍.目前,大数据的规模仍然是不断变化的指标,单一数据集的规模范围从数十TB到数PB不同.简单来说,存储1PB数据需要2万台配备50GB硬盘的PC.此外,各种意想不到的来源可以产生数据。
2、多样性
数据多样性的增加主要是由于网络日志、社交媒体、网络检索、手机通话记录、传感器网络等数据类型。
3、高速
高速描述的是数据创建和移动的速度.在高速网络时代,通过实现软件性能优化的高速计算机处理器和服务器,创建实时数据流已成为流行趋势.企业不仅要知道如何快速创建数据,还要知道如何快速处理、分析和返回用户,以满足他们的实时需求。
⑷ 智能交通五大特征大数据平台应用功能强
智能交通五大特征大数据平台应用功能强
大数据、云计算,已逐渐为互联网企业广泛应用,而将这种理念应用在交通管理服务中的,并不多见。烟台市交警支队从2010年开始建设大数据、云计算平台,到2013年底基本建成,在不断完善中,大数据、云计算的智能交通系统在交管中发挥了越来越重要的作用。
智能交通有以下五个基本特征
分析当前我国交通发展现状和技术生产力发展情况,可以认为应具有以下几点特征。
特征一:交通要素泛在互联
包括道路、桥梁、附属设施等交通基础设施,车辆、船舶等运输装备,以及人和货物在内的所有交通要素,在新的传感、自组网、自动控制技术环境下,能够实现彼此间的信息互联互通和自动控制,交通基础设施、运输装备将具备多维感知、智慧决策、远程控制、自动导航等功能,实现主动预测、自动处置。
特征二:虚拟与现实相结合,线上与线下相配合
未来的交通运输系统将由用户在网络上提出客货运输需求,运输系统在接收网上运输需求以后,利用大数据、云计算、人工智能等技术手段在网络上解析运输需求,提出运输策略,制定运输计划,然后再交由线下的交通运输设备设施去完成实际的运输生产。
特征三:门到门一体化综合运输
对用户而言,未来的交通运输系统就是一个整体的运输服务提供商。用户无需了解交通运输系统内部的构造与运作方式,只需要提供从a到b的运输需求,系统自然会提供一整套的解决方案,包括票务的“一票制”,运输组织的多式联运、无缝衔接、连续性和全程性。
特征四:应需而变为用户提供适应性服务
在全面感知、实时通信、海量数据分析能力不断提升的前提下,用户与系统平台交互更加频繁密切,使交通运输系统更加具有类人的智慧,可以根据实际情况的变化,应需而变,为各类用户提供个性化的、多样化的、以人为本的运输服务。
特征五:运输生产组织和管理高可靠性和高效能
智慧交通包含智能化的交通基础设施、智能化的交通运输装备、智能化的运输组织服务等。生产组织和管理者对各种运输要素的掌握更加详细、及时、准确,对各种风险能够更加有效地控制和应对,并能够通过智能技术使得运输生产的策略更加科学,运输生产组织和管理可靠性更高、效能更高。
智能交通综合平台应用效果
大数据平台试运行收获多
10月15日,从承德交警支队视频综合应用警务平台新闻发布会上获悉,市区一天就出现违反交通规则行驶734起,市交警部门根据以上状况,迅速做出反应,将当前工作重点及时调整,开展了机动车违规行驶专项整治。这种针对问题做出的快速反应得益于市交警目前引入实施的“大数据”平台建设。
以往交警使用的系统设备全部为模拟产品,大部分工作环节需人工操作,工作效率低、重要线索无法及时发现,无法实现精细化管理和应用。为改变这种状况,我市交警部门实施了“大数据”建设,引入实时指挥、违法状况分析、布控报警联动、套牌检测、轨迹分析等功能。平台试运行一个月,通过技术手段,分析判断出500多辆套牌嫌疑车辆,其中近20辆为出租车。
交通信号智能管控
烟台市2011年引入智能交通管理系统,包括“一个管控平台,十二大集成系统”建设,共增设高清监控328处、电子警察103个路口、卡口23处,智能诱导系统41处、流量采集点49处、智能信号控制300处。系统投入使用后,城区闯红灯、不按导向车道行驶等违法率降低50%;早晚高峰主干道同行速度提高14.6%和12.1%,道路通行能力提高13.5%,城区拥堵程度有“中度拥堵”下降为“轻度拥堵”。
除去交通信号系统的智能管控,烟台市率先实现了市区主干道的公交车交通信号优先。烟台市1路公交行驶路线贯穿烟台市最繁华的南大街全线,全长近20公里。烟台市交警支队交警王健对记者说:“1路公交全部车辆安装了信号发射器,要通过的25个路口也全部安装了信号接收装置,当1路公交接近路口时,信号灯会根据1路公交的车速和距离,适时调整信号灯时长。1路公交全程运行时间缩短5—10分钟。”但是牵一发而动全身,1路公交得到了信号优先,就将影响周边交通流量,而智能交通系统就需要找到其中的平衡点,“这些都是通过大量数据的计算得到的结果。”
除去缓解城市交通拥堵,大数据、云计算的智能管控系统还能实现更多更强大的功能。比如,乘客打车时物品遗落,但无法说清车牌号。交警接到报警后,根据乘客乘车行驶的线路和时间,用时不到5分钟,就检索到了乘客所乘车辆;凌晨时间通行的车辆,除去出租车外,一般情况都会单向行驶,不会在市区内乱转。一旦凌晨时段一辆汽车反复通过某几个路口,就可能存在违法行为嫌疑,系统会自动报警。而对于可能存在的假牌、套牌车,智能管控系统会自动甄别车牌号并报警。特别是套牌车,同一时间不同路段出现2个同样号牌,系统同样自动报警。系统启用以来,共查处假套牌车276辆,协助侦破刑事治安案件40起,涉嫌金额达2000万元。在刑事案件中,很多会跟踪受害人。通过系统,很迅速就可以得到跟踪车辆的信息。智能平台可以为公安各警种提供服务。
沿着智能交通发展的前沿技术,在大数据和物联网等环境的支持下,未来的智能交通,车辆开始成为道路交通信息源,高速行驶的汽车上可以随时接入宽带互联网,手机可与汽车对话,驾驶员的血压和心跳等身体状况在线监控、一旦需要可通过车路交互发给有关单位,大型货车和客车的自动编队运行已经在公路上试验,自动行驶从实验室走向应用的步伐在加快……
以上是小编为大家分享的关于智能交通五大特征大数据平台应用功能强的相关内容,更多信息可以关注环球青藤分享更多干货
⑸ 大数据在交通领域的应用
大数据在交通领域的应用可以改善城市交通拥堵情况、提高道路通行能力、降低交通事故发生率等,具体应用如下:
1. 交通流量预测:通过分析历史车流量数据和实时车辆位置等信息,可以预测未来的交通流量,进而实现交通信号灯控制优化或者路况导航提示。
总之,大数据在交通领域的应用为城市交通运输管理提供了更加准确、高效和科学的手段,从而有效解决了城市交通问题。
⑹ 互联网 大数据在智能交通上有哪些应用
之前有看过一篇有关商业智能在公交领域的文章,主要体现在公交的智能化信息管内理方面
具体的应用容如下:
(1)应用功能不能实现完全自动化。
(2)网络负载大,应用开发和维护繁琐。
(3)由于系统存在功能不足,需要大量人手进行分析报表工作。
(4)系统本身的技术架构己经落后,不能满足用户不断提出的对数据应用的要求。
(5)近十年累积的改动和扩展,使到系统过于庞大,接口很多,多种技术和平台混合使用,应用和维护成本高。
(6)信息系统间共享数据的需求客观存在,但由于各系统的开发时间、开发工具、部门要求以及在数据库的选择等不同原因,分布在网络中的不同系统中的数据相互独立,无法实现真正的信息资源共享。
(7)每个信息系统都有私有的数据库,对于同一事物,可能在不同的系统中被赋予不同的意义,带来语义混乱。不同系统中存储格式存在差异,这些在综合处理时都会带来很大的麻烦同时,跨系统调用数据也会严重影响性能。
这是有关FineBI的应用,具体的你可以查一下
⑺ 大数据和智慧交通有哪些应用的案例
智能交通成抄为改善城市交袭通的关键所在。为此,及时、准确获取交通数据并构建交通数据处理模型是建设智能交通的前提,而这一难题可以通过大数据技术得到解决。
智能交通整体框架主要包括物理感知层、软件应用平台及分析预测及优化管理的应用。其中物理感知层主要是对交通状况和交通数据的感知采集;软件应用平台是将各感知终端的信息进行整合、转换处理,以支撑分析预警与优化管理的应用系统建设;分析预测及优化管理应用主要包括交通规划、交通监控、智能诱导、智能停车等应用系统。
系统利用先进的视频监控、智能识别和信息技术手段,增加可管理空间、时间和范围,不断提升管理广度、深度和精细度。整个系统由信息综合应用平台、信号控制系统、视频监控系统、智能卡口系统、电子警察系统、信息采集系统、信息发布系统等组成。以达到四方面的目标:提高通行能力、减少交通事故、打击违章事件、出行信息服务。
在各城市建设智慧交通的过程中,将产生越来越多的视频监控、卡口电警、路况信息、管控信息、营运信息、GPS定位信息、RFID识别信息等数据,每天产生的数据量可以达到PB级别,并且呈现指数级增长。