1. 健康大数据管理与服务专业学什么
健康大数据管理与服务专业是教育部2021年高等职业教育目录中新增加的专科专业,通过专业学习,要求学生掌握公共卫生基本理论、大数据平台运维、数据采集与预处理、数据分析及可视化等专业知识和技术技能,有效实现对个人健康的全面监护。
核心课程有基础医学概论、Python语言程序设计、预防医学、临床医学概论、健康管理、健康大数据挖掘与分析、慢病健康管理、医学统计学、社区卫生服务管理学、流行病学、实时大数据分析等。
2. 大数据分析平台哪个好
大数据分析平台比较好的有:Cloudera、星环Transwarp、阿里数加、华为FusionInsight、Smartbi。
1、Cloudera
Cloudera提供一个可扩展、灵活、集成的平台,可拿喊此用来方便的管理您的企业中快速增长的多种多样的数据,从而部署和管理Hadoop和相关项目、操作和分析您的数据以及保护数据的安全。
3. 大数据服务平台是什么有什么用
现今社会每来时每刻都在源产生数据,企业内部的经营交易信息、物联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,我们身边处处都有大数据。而大数据服务平台则是一个集数据接入、数据处理、数据存储、查询检索、分析挖掘等、应用接口等为一体的平台,然后通过在线的方式来提供数据资源、数据能力等来驱动业务发展的服务,国外如Amazon ,Oracle,IBM,Microsoft...国内如华为,商理事等公司都是该服务的践行者。
4. 大数据十大商业应用场景
大数据十大商业应用场景
大数据时代,在未来的几十年里,大数据都将会是一个重要都话题。大数据影响着每一个人,并在可以预见的未来继续影响着。大数据冲击着许多主要行业,包括零售业、金融行业、医疗行业等等,大数据也在彻底地改变着我们的生活。现在我们就来看看大数据给中国带来的十商业应用场景,未来大数据产业将会是一个万亿市场。
1、智慧城市
如今,世界超过一半的人口生活在城市里,到2050年这一数字会增长到75%。政府需要利用一些技术手段来管理好城市,使城市里的资源得到良好配置。既不出现由于资源配置不平衡而导致的效率低下以及骚乱,又要避免不必要的资源浪费而导致的财政支出过大。大数据作为其中的一项技术可以有效帮助政府实现资源科学配置,精细化运营城市,打造智慧城市。
城市的道路交通,完全可以利用GPS数据和摄像头数据来进行规划,包括道路红绿灯时间间隔和关联控制,包括直行和左右转弯车道的规划、单行道的设置。利用大数据技术实施的城市交通智能规划,至少能够提高30%左右的道路运输能力,并能够降低交通事故率。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。
城市公共交通规划、教育资源配置、医疗资源配置、商业中心建设、房地产规划、产业规划、城市建设等都可以借助于大数据技术进行良好规划和动态调整。
大数据技术可以了解经济发展情况,各产业发展情况,消费支出和产品销售情况,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理,具有极大的想象空间。
2、金融行业
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。中国金融行业大数据应用开展得较早,但都是以解决大数据效率问题为主,很多金融行业建立了大数据平台,对金融行业的交易数据进行采集和处理。
金融行业过去的大数据应用以分析自身财务数据为主,以提供动态财务报表为主,以风险管理为主。在大数据价值变现方面,开展的不够深入,这同金融行业每年上万亿的净利润相比是不匹配的。现在已经有一些银行和证券开始和移动互联网公司合作,一起进行大数据价值变现,其中招商银行、平安集团、兴业银行、国信证券、海通证券和Talking Data在移动大数据精准营销、获客、用户体验等方面进行了不少的尝试,大数据价值变现效果还不错,大数据正在帮助金融行业进行价值变现。大数据在金融行业的应用可以总结为以下五个方面:
(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐
(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈
(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制
(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度
(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品
3、医疗行业
医疗行业拥有大量病例、病理报告、医疗方案、药物报告等。如果这些数据进行整理和分析,将会极大地帮助医生和病人。在未来,借助于大数据平台我们可以收集疾病的基本特征、病例和治疗方案,建立针对疾病的数据库,帮助医生进行疾病诊断。
如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。
医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法起大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府是推动这一趋势的重要动力,未来市场将会超过几千亿元。
4、农牧业
农产品不容易保存,合理种植和养殖农产品对农民非常重要。借助于大数据提供的消费能力和趋势报告,政府将为农牧业生产进行合理引导,依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。
农业生产面临的危险因素很多,但这些危险因素很大程度上可以通过除草剂、杀菌剂、杀虫剂等技术产品进行消除。天气成了影响农业非常大的决定因素。过去的天气预报仅仅能提供当地的降雨量,但农民更关心有多少水分可以留在他们的土地上,这些是受降雨量和土质来决定的。Climate公司利用政府开放的气象站的数据和土地数据建立了模型,他们可以告诉农民可以在哪些土地上耕种,哪些土地今天需要喷雾并完成耕种,哪些正处于生长期的土地需要施肥,哪些土地需要5天后才可以耕种,大数据技术可以帮助农业创造巨大的商业价值。
5、零售行业
零售行业比较有名气的大数据案例就是沃尔玛的啤酒和尿布的故事,以及Target通过向年轻女孩寄送尿布广告而告知其父亲,女孩怀孕的故事。
零售行业可以通过客户购买记录,了解客户关联产品购买喜好,将相关的产品放到一起增加来增加产品销售额,例如将洗衣服相关的化工产品例如洗衣粉、消毒液、衣领净等放到一起进行销售。根据客户相关产品购买记录而重新摆放的货物将会给零售企业增加30%以上的产品销售额。
零售行业还可以记录客户购买习惯,将一些日常需要的必备生活用品,在客户即将用完之前,通过精准广告的方式提醒客户进行购买。或者定期通过网上商城进行送货,既帮助客户解决了问题,又提高了客户体验。
电商行业的巨头天猫和京东,已经通过客户的购买习惯,将客户日常需要的商品例如尿不湿,卫生纸,衣服等商品依据客户购买习惯事先进行准备。当客户刚刚下单,商品就会在24小时内或者30分钟内送到客户门口,提高了客户体验,让客户连后悔等时间都没有。
利用大数据的技术,零售行业将至少会提高30%左右的销售额,并提高客户购买体验。
6、大数据技术产业
进入移动互联网之后,非结构化数据和结构化数据呈指数方式增长。现在人类社会每两年产生的数据将超过人类历史过去所有数据之和。进入到2015年,人类社会所有的数据之和有望突破5泽B(5ZB),这些数据如何存储和处理将会成为很大的问题。
这些大数据为大数据技术产业提供了巨大的商业机会。据估计全世界在大数据采集、存储、处理、清晰、分析所产生的商业机会将会超过2000亿美金,包括政府和企业在大数据计算和存储,数据挖掘和处理等方面等投资。中国2014年大数据产业产值已经超过了千亿人民币,本届贵阳大数据博览会就吸引了400多家厂商来参展,充分说明大数据产业的未来的商业价值巨大。
未来中国的大数据产业将会呈几何级数增长,在5年之内,中国的大数据产业将会形成万亿规模的市场。不仅仅是大数据技术产品的市场,也将是大数据商业价值变现的市场。大数据将会在企业的精准营销、决策分析、风险管理、产品设计、运营优化等领域发挥重大的作用。
大数据技术产业将会解决大数据存储和处理的问题,大数据服务公司将利用自身的数据将解决大数据价值变现问题,其所带来的市场规模将会超过千亿人民币。中国目前拥有大数据,并提供大数据价值变现服务的公司除了我们众所周知的BAT和移动运营商之外,360、小米、京东、Talking Data、九次方等都会成为大数据价值变现市场的有力参与者,市场足够大,期望他们将市场做大,帮助所有企业实现大数据价值变现。
7、物流行业
中国的物流产业规模大概有5万亿左右,其中公里物流市场大概有3万亿左右。物流行业的整体净利润从过去的30%以上降低到了20%左右,并且下降的趋势明显。物流行业很多的运力浪费在返程空载、重复运输、小规模运输等方面。中国市场最大等物流公司所占的市场份额不到1%。因此资源需要整合,运送效率需要提高。
物流行业借助于大数据,可以建立全国物流网络,了解各个节点的运货需求和运力,合理配置资源,降低货车的返程空载率,降低超载率,减少重复路线运输,降低小规模运输比例。通过大数据技术,及时了解各个路线货物运送需求,同时建立基于地理位置和产业链的物流港口,实现货物和运力的实时配比,提高物流行业的运输效率。借助于大数据技术对物流行业进行的优化资源配置,至少可以增加物流行业10%左右的收入,其市场价值将在5000亿左右。
8、房地产业
中国房地产业发展的高峰已经过去,其面临的挑战逐渐增加,房地产业正从过去的粗放发展方式转向精细运营方式,房地产企业在拍卖土地、住房地产开发规划、商业地产规划方面也将会谨慎进行。
借助于大数据,特别是移动大数据技术。房地产业可以了解开发土地所在范围常驻人口数量、流动人口数量、消费能力、消费特点、年龄阶段、人口特征等重要信息。这些信息将会帮助房地商在商业地产开发、商户招商、房屋类型、小区规模进行科学规划。利用大数据技术,房地产行业将会降低房地产开发前的规划风险,合理制定房价,合理制定开发规模,合理进行商业规划。大数据技术可以降低土地价格过高,实际购房需求过低的风险。已经有房地产公司将大数据技术应用于用户画像、土地规划、商业地产开发等领域,并取得了良好的效果。
9、制造业
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,合理规划产品生产,避免生产过剩。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥。
大数据技术还可以根据社交数据和购买数据来了解客户需求,帮助厂商进行产品开发,设计和生产出满足客户需要的产品。
10、互联网广告业
2014年中国互联网广告市场迎来发展高峰,市场规模预计达到1500亿元左右,较2013年增长56.5%。数字广告越来越受到广告主的重视,其未来市场规模越来越大。2014年美国的互联网广告市场规模接近500亿美元,参考中国的人口消费能力,其市场规模会很快达到2000亿人民币左右。
过去到广告投放都是以好的广告渠道+广播式投放为主,广告主将广告交给广告公司,由广告公司安排投放,其中SEM广告市场最大,其他的广告投放方式也是以页面展示为主,大多是广播式广告投放。广播式投放的弊端是投入资金大,没有针对目标客户,面对所有客户进行展示,广告的转化率较低,并存在数字广告营销陷阱等问题。
大数据技术可以将客户在互联网上的行为记录下来,对客户的行为进行分析,打上标签并进行用户画像。特别是进入移动互联网时代之后,客户主要的访问方式转向了智能手机和平台电脑,移动互联网的数据包含了个人的位置信息,其360度用户画像更加接近真实人群。360度用户画像可以帮助广告主进行精准营销,广告公司可以依据用户画像的信息,将广告直接投放到用户的移动设备,通过用户经常使用的APP进行广告投放,其广告的转化可以大幅度提高。利用移动互联网大数据技术进行的精准营销将会提高十倍以上的客户转化率,广告行业的程序化购买正在逐步替代广播式广告投放。大数据技术将帮助广告主和广告公司直接将广告投放给目标用户,其将会降低广告投入,提高广告的转化率。
目前,影响大数据产业发展主要有两个大问题,一个是大数据应用场景,一个是大数据隐私保护问题。
大数据商业价值的应用场景,大数据公司和企业正在寻找,目前在移动互联网的精准营销和获客、360度用户画像、房地产开发和规划、互联网金融的风险管理、金融行业的供应链金融,个人征信等方面已经取得了进步,拥有了很多经典案例。
但在有关大数据隐私保护以及大数据应用过程中个人信息保护方面还停滞不前,大家都在摸石头过河,不知道哪些事情可以做,哪些事情不可以做。国家在大数据隐私保护方面正在进行立法,估计不久的将来,大数据服务公司和企业将会了解大数据隐私保护方面的具体要求。在没有明确有关大数据隐私保护法规前,我们可以参考国外的隐私法,严格遵守国际上通用的个人隐私保护法,在实施大数据价值变现的过程中,充分保护所有相关方的个人利益。
最后纵观人类历史,在任何领域,如果我们可以拿到数据进行分析,我们就会取得进步。如果我们拿不到数据,无法进行分析,我们注定要落后。我们过去因数据不足导致的错误远远好过那些根本不用数据的错误,因此我们需要掌握大数据这个武器,利用好它,帮助人类社会加速进化,帮助企业实现大数据的价值变现。
以上是小编为大家分享的关于大数据十大商业应用场景的相关内容,更多信息可以关注环球青藤分享更多干货
5. 云南十次方大数据技术服务有限公司怎么样
云南十次方大数据技术服务有限公司是2018-06-04在云南省昆明市官渡区注册成立的有限回责任公司(自然人投资或答控股),注册地址位于云南省昆明市官渡区春城路62号证券大厦主楼5层。
云南十次方大数据技术服务有限公司的统一社会信用代码/注册号是91530111MA6N7THB40,企业法人朱红波,目前企业处于开业状态。
云南十次方大数据技术服务有限公司,本省范围内,当前企业的注册资本属于一般。
通过网络企业信用查看云南十次方大数据技术服务有限公司更多信息和资讯。
6. 大数据是做什么的
问题一:大数据能做什么 如果说砍树是一个职业,那你手中的斧头就是大数据。大数据是一种覆盖政商等领域的超大型平台,你可以用大数据来瞄准你所关心领域的长短点并很快很准地得出预判,升华概念,你能通过数据预测未来,行业的未来你能掌握了,就能赚钱。
问题二:大数据可以做什么 用处太多了
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提 *** 品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,网络的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的氏闹大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
问题三:什么是大数据,大数据可以做什么 大数据,指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** ,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
大数据可以对;数据进行收集和存储,在这基础上,再进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。
当这整个循环体系成为一个智能化的体系,通过机器可以实现自动化,那也许就会成为一种新的模式,不管是商业的,或者是其他。
问题四:大数据是做什么的 大数据(Big Data)是指“无法用现有的软件工具提取、存储、搜索、共享、分析和处理的海量的、复杂的数据 *** 。”帆配业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。
数据体量巨大(Volume)。截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类说过的所有的话的数据量大约是5EB(1EB=210PB)。
数据类型繁多(Variety)。相对于以往便于存储的以文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
价值密度低(Value)。价值密度的高低与数据总量的大小成反比。如何通过强大的机器算法更迅速地完成数据的价值“提纯”成为目前大数据背景下亟待解决的难题。
处理速度快(Velocity)。大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。
-------------------------------------------
社交网络,让我们越来越多地从数据中观察到人类社会的复杂行为模式。社交网络,为大数据提供了信息汇集、分析的第一手资料。从庞杂的数据背后挖掘、分析用户的行为习惯和喜好,找出更符合用户“口味”的产品和服务,并结合用户需求有针对性地调整和优化自身,就是大数据的价值。
所以,建立在上述的概念上我们可以看到大数据的产业变化:
1 大数据飞轮效应所带来的产业融合和新产业驱动
2 信息获取方式的完全变化带来的新式信息聚合
3 信息推送方式的完全变化带来的新式信息推广
4 精准营销
5 第三方支付 ―― 小微信贷,线上众筹为代表的互联网金融带歼轿罩来的全面互联网金融改革
6 产业垂直整合趋势以及随之带来的产业生态重构
7 企业改革以及企业内部价值链重塑,扩大的产业外部边界
8 *** 及各级机构开放,透明化,以及随之带来的集中管控和内部机制调整
9 数据创新带来的新服务
问题五:大数据是什么?大数据可以做什么?大数据实际做了什么?大数据要怎么做 大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 大数据分析的标配是商业智能(BI)软件,传统数据分析的繁杂之处主要体现在两个方面,一是技术人员需要花费大量时间准备数据;二是业务人员基于数据偶得的一些分析需求实现过程复杂。 FineBI的Data Service模块,特有的分析设计模式和指标影响因素智能分析模块,能够帮助用户解决传统BI数据准备时间长,偶得数据分析过程复杂等问题,让技术人员准备数据时无需任何代码和复杂的设置过程,让非IT人员能够轻松自在得进行分析。
问题六:大数据可以做什么 可以用几个关键词对大数据做一个界定。
首先,“规模大”,这种规模可以从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
其次,“多样化”,可以是不同的数据格式,如文字、图片、视频等,可以是不同的数据类别,如人口数据,经济数据等,还可以有不同的数据来源,如互联网、传感器等。
第三,“动态化”。数据是不停地变化的,可以随着时间快速增加大量数据,也可以是在空间上不断移动变化的数据。
这三个关键词对大数据从形象上做了界定。
但还需要一个关键能力,就是“处理速度快”。如果这么大规模、多样化又动态变化的数据有了,但需要很长的时间去处理分析,那不叫大数据。从另一个角度,要实现这些数据快速处理,靠人工肯定是没办法实现的,因此,需要借助于机器实现。
最终,我们借助机器,通过对这些数据进行快速的处理分析,获取想要的信息或者应用的整套体系,才能称为大数据。
问题七:大数据公司具体做什么? 主要业务包括数据采集,数据存储,数据分析,数据可视化以及数据安全等,这些是依托已有数据的基础上展开的业务模式,其他大数据公司是依靠大数据工具,对市场需求,为市场带来创新方案并推动技 术发展。这类公司里天云大数据在市场应用里更加广泛
问题八:大数据应用到底是做什么的? 对于“大数据”,研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。 *** 的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。随着云时代的来临,大数据也吸引了越来越多的关注。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
问题九:在未来大数据能做什么? 是的,通过网络进行收集数据,将采集到的数据进行加工处理、分析,前提是 要通信的,大数据是指 一个 当今现代化的一个流行化概念名词,二三十年前就有人提出来了,特指 海量信息,可以永久性存储在服务器中,谁采集到的数据,谁管理,数据是在变化的,随着人类的活动,国内 掀起一场互联网金融,每个行业 都有自己 独特的 数据 分类信息,进行数据挖掘,有用的数据 捞取出来 ,那么它就是有意义 的
问题十:大数据营销具体是什么呢? 大数据营销是基于多平台的大量数据,依托大数据技术的基础上,应用于互联网广告行业的营销方式。阳众互动认为大数据营销真正的核心在于让网络广告在合适的时间,通过合适的载体,以合适的方式,投给合适的人,说到底就是以自身掌握的数据或者说信息对客户进行精准的定位,以最好、最快的满足目标群体的需求。
7. 如何利用大数据来改善医疗服务质量
近年来,大数据不断向世界的各行各业渗透,影响着我们的衣食住行。例如,网上购物时,经常会发现电子商务门户网站向我们推荐商品,往往这类商品都是我们最近需要的。这是因为用户上网行为轨迹的相关数据都会被搜集记录,并通过大数据分析,使用推荐系统将用户可能需要的物品进行推荐,从而达到精准营销的目的。下面简单介绍几种大数据的应用场景。
大数据让就医看病更简单。过去,对于患者的治疗方案,大多数都是通过医师的经验来进行,优秀的医师固然能够为患者提供好的治疗方案,但由于医师的水平不相同,所以很难保证患者都能够接受最佳的治疗方案。
而随着大数据在医疗行业的深度融合,大数据平台积累了海量的病例、病例报告、治愈方案、药物报告等信息资源.所有常见的病例、既往病例等都记录在案,医生通过有效、连续的诊疗记录,能够给病人优质、合理的诊疗方案。这样不仅提高医生的看病效率,而且能够降低误诊率,从而让患者在最短的时间接受最好的治疗。下面列举大数据在医疗行业的应用,具体如下。
(1) 优化医疗方案,提供最佳治疗方法。
面对数目及种类众多的病菌、病毒,以及肿瘤细胞时,疾病的确诊和治疗方案的确定也是很困难的。借助于大数据平台,可以搜集不同病人的疾病特征、病例和治疗方案,从而建立医疗行业的病人分类数据库。如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊,明确地定位疾病。在制订治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制订出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业研发出更加有效的药物和医疗器械。
(2)有效预防预测疾病。
解决患者的疾病,最为简单的方式就是防患于未然。通过大数据对于群众的人体数据监控,将各自的健康数据、生命体征指标都集合在数据库和健康档案中。通过大数据分析应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化健康服务,这是未来卖耐健康服务管理的新趋势。当然,这一点不仅需 要医疗机构加快大数据的建设,还需要群众定期去做检查,及时更新数据,以便通过大数据来预防和预测疾病的发生,做到早治疗、早康复。当然,随着大数据的不断发展,以及在各个领域的应用,一些大规模的流感也能够通过大数据实现预测。
随着大数据技术的应用,越来越多的金融企业也开始投身到大数据应用实践中。麦肯锡的一份研究显示,金融业在大数据价值潜力指数中排名第一。下面列举若干大数据在金融行业的典型应用,具体如下。
(1) 精准营销。
银行在纯配迟互联网的冲击下,迫切需要掌握更多用户信息,继而构建用户360立体画像,即可对细分的客户进行精准营销、实时营销等个性化智慧营销。
(2) 风险管控。
应用大数据平台,可以统一管理金融企业内部多源异构数据和外部征信数据,更好地完善风控体系。内部可保证数据的完整性与安全性,外部可控制用户风险。
(3) 决策支持。
通过大数据分析方法改善经营决策,为管理层提供可靠的数据支撑,从而使经营决策更高效、敏捷、精准。
(4) 服务创新。
通过对大数据的应用,改善与客户之间的交互、增加用户黏性,为个人与政府提供增值服务,不断增强金融企业业务核心竞争力。
(5) 产品创新。
通过高端数据分析和综合化数据分享,有效对接银行、保险、信托、基金等各类金融产品,使金融做李企业能够从其他领域借鉴并创造出新的金融产品。
美国零售业曾经有这样一个传奇故事,某家商店将纸尿裤和啤酒并排放在一起销售,结果纸尿裤和啤酒的销量双双增长!为什么看起来风马牛不相及的两种商品搭配在一起,能取到如此惊人的效果呢?后来经过分析发现,这些购买者多数是已婚男士,这些男士在为小孩购买尿不湿的同时,会同时为自己购买一些啤酒。发现这个秘密后,沃尔玛超市就大胆地将啤酒摆放在尿不湿旁边,这样顾客购买的时候更方便,销量自然也会大幅上升。
之所以讲“啤酒-尿布”这个例子,其实是想告诉大家,挖掘大数据潜在的价值,是零售业竞争的核心竞争力,下面列举若干大数据在零售业的创新应用,具体如下。
(1) 精准定位零售行业市场。
企业想进人或开拓某一区域零售行业市场,首先要进行项目评估和可行性分析,只有通过项目评估和可行性分析才能最终决定是否适合进人或者开拓这块市场。通常需要分析这个区域流动人口是多少?消费水平怎么样?客户的消费习惯是什么?市场对产品的认知度怎么样?当前的市场供需情况怎么样等等,这些问题背后包含的海量信息构成了零售行业市场调研的大数据,对这些大数据的分析就是市场定位过程。
(2) 支撑行业收益管理。
大数据时代的来临,为企业收益管理工作的开展提供了更加广阔的空间。需求预测、细分市场和敏感度分析对数据需求量很大,而传统的数据分析大多采集的是企业自身的历史数据来进行预测和分析,容易忽视整个零售行业信息数据,因此难免使预测结果存在偏差。企业在实施收益管理过程中如果能在自有数据的基础上,依靠一些自动化信息采集软件来收集更多的零售行业数据,了解更多的零售行业市场信息,这将会对制订准确的收益策略,赢得更高的收益起到推进作用。
(3) 挖掘零售行业新需求。
作为零售行业企业,如果能对网上零售行业的评论数据进行收集,建立网评大数据库,然后再利用分词、聚类、情感分析了解消费者的消费行为、价值取向、评论中体现的新消费需求和企业产品质量问题,以此来改进和创新产品,量化产品价值,制定合理的价格及提高服务质量,从中获取更大的收益。