① 大数据开发工程师以后可以从事哪些岗位
首先大数据开发工程师有两个方面,一个是工作内容,一个是岗位要求
工作内容:主要是基于Hadoop、Spark等平台上面进行开发,各种开源技术框架平台很多,需要看企业实际的选择是什么,但目前Hadoop、Spark仍然占据广大市场。
岗位要求:精通Java技术知识,熟悉Spark、kafka、Hive、HBase、zookeeper、HDFS、MR等应用设计及开发。
大数据开发工程师能够从事的岗位有很多,这里做一个简单的列举,他们都可以算作大数据开发里面的岗位:包括:大数据开发工程师、大数据架构工程师、大数据运维工程师、数据可视化工程师、数据采集工程师、数据挖掘工程师、机器学习工程师、深度学习工程师、算法工程师等等,都可以算是大数据开发工程师的范畴。
目前从大数据开发岗来讲,能够拿到10K—15K在行业里已经算是比较普遍与正常的事情了,所以大数据开发这个岗位薪资高、回报高发展前景也很好。
② 大数据工程师职业前景到底有多好
2016年,我国大数据产业保持高速发展态势,各级政府和企业大力推进,技术创新取得明显突破,大数据应用推进势头良好,产业体系初具雏形,支撑能力日益增强。2017年,大数据产业发展迎来“黄金期”,产业集聚将进一步特色化发展,大数据融合应用进程加速,为做大做强数字经济、带动传统产业转型升级提供新动力。
趋势一:政策环境持续优化,产业发展将迎来“黄金期”
随着国家大数据战略推进实施以及配套政策的贯彻落实,大数据产业发展环境将进一步优化,社会经济各领域对大数据服务需求将进一步增强,大数据的新技术、新业态、新模式将不断涌现,产业规模将继续保持30%以上的高速增长态势。
趋势二:大数据产业集聚,将呈现特色化发展
大数据综合试验区建设是国家统筹推进大数据产业发展的重要举措。2016年,国家对大数据产业区域发展进行整体规划布局,共计批复了8个国家大数据综合试验区建设。2017年,随着8大国家大数据综合实验区建设不断加快,产业发展将推动形成特色领域。围绕京津冀和珠三角跨区域类综合试验区,将更加注重数据要素流通,以数据流引领技术流、物质流、资金流、人才流,支撑跨区域公共服务、社会治理和产业转移,促进区域一体化发展。结合地方产业发展和应用特色,大数据产业集聚区和大数据新型工业化产业示范基地建设也将持续推进。
趋势三:大数据与人工智能、云计算、物联网,等技术的融合创新将更加深入
网络信息技术领域是全球研发投入最集中、创新最活跃、应用最广泛、辐射带动作用最大的技术创新领域,是全球技术创新的竞争高地。大数据、云计算、物联网、人工智能等新一代信息技术是最典型的网络信息技术,创新驱动是其发展的原动力,新兴技术间的融合创新更是产业发展的主基调。2017年,大数据的技术发展与物联网、云计算、人工智能等新技术领域的联系将更加紧密,物联网的发展将极大提高数据的获取能力,云计算与人工智能将深刻地融入数据分析体系,融合创新将会不断地涌现和持续深入。
趋势四:工业大数据对智能制造的,赋能效应将进一步释放
在《大数据产业发展规划2016-2020年》中,提出了深化工业大数据创新应用的重点任务和实施工业大数据创新发展工程,加快工业大数据基础设施建设,推进工业大数据全流程应用,培育数据驱动的制造业新模式。2017年,随着《国务院关于深化制造业与互联网融合发展的指导意见》、《大数据产业发展规划2016-2020年》等政策规划的落地实施,我国将进一步深化工业云、大数据等技术在工业领域的集成应用,探索建立工业大数据中心,实施工业大数据应用示范工程,工业大数据对智能制造的赋能效应将进一步释放。
趋势五:大数据安全和数据跨境流动,将成为国家和社会关注的焦点
数据资源作为信息社会的重要生产要素、无形资产和社会财富,成为一个国家的基础性战略资源。近年来,由于数据在网络空间传播迅速,且当前技术手段和行政手段都无法对其实施有效监管,使得大数据安全问题和数据跨境流动安全风险日益加剧。2016年,国家和地方大力推动大数据安全创新发展。2017年,随着《中华人民共和国网络安全法》及相关配套细则的正式实施,大数据安全的市场空间将进一步释放,政府和企业在大数据安全技术、产品和服务创新方面的投入进一步加大;国家大力推进双边区域性跨境数据流动合作,建立国家间数据流通保护的协调机制,参与数据跨境流动国际标准和规则制定的积极性将不断提高。
③ 大数据开发的就业怎么样
一.大数据人才需求及现状分析
从目前来看,随着我们国家渐渐的开始对大数据进行重视,我国政府也开始对大数据进行大力扶持,大数据技术开始在我们的企业中生根发芽,以及开花结果。从数据统计中来看,我国未来的三至五年内,中国真正需要的大数据人才上百万万,而就目前来说则只有大约30万人左右。
注:招聘网站的岗位需求
通过在各大招聘网站进行岗位需求的搜索,例如前程无忧大数据搜索,一共有大约两万多个职位是满足岗位条件;而智联招聘大数据岗位搜索,接近三万个职位也是满足此条件的;在猎聘网上进行大数据的岗位搜索,大约有1000多个职位满足条件;所以,从各大数据来看,高薪工作其实是只要你敢想,并且敢付出,你就已经胜利了一大半,这样的话你还会害怕高薪的人不是你自己吗?
二.大数据开发就业方向
大数据作为一门比较基础型的学科,无论是从数据开发及分析、还是从物联网一级人工智能算法训练领域来看,它都有着非常核心的技术以及职位需求,那么接下来可以来具体分析一下关于大数据开发方向都会哪些对口的工作职位
①:大数据工程师,大数据开发工程师,大数据维护工程师,大数据研发工程师,等;
②:大数据分析师,大数据高级工程师,大数据分析师专家,大数据挖掘师,大数据算法师等;
③:大数据运维工程师等等......
④ 大数据从事于什么工作
大数据从事的是开源工作,更倾向于“研发”,由于大数据属新兴领域,专业人才专比较缺属乏,高端人才更是企业争抢的对象。薪资上升容易,职业发展潜力巨大。
大数据职业发展的方向:大数据开发、数据分析挖掘
大数据开发
主要负责大数据的大数据挖掘,数据清洗的发展,数据建模工作。大数据数据开发工程师偏重建设和优化系统。
大数据分析师
一种偏向产品和运营,更加注重业务,主要工作包括日常业务的异常监控、客户和市场研究、参与产品开发、建立数据模型提升运营效率等;
另一种则更注重数据挖掘技术,门槛较高,需要扎实的算法能力和代码能力。同时薪资待遇也更好。
⑤ 大数据开发工程师(北京)有前途吗
北京的大数据开发工程师薪资很高:
⑥ 大数据行业就业三大方向和十大职位介绍
大数据行业就业三大方向和十大职位介绍
当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。
思数云计算和大数据服务中心,简称思数云(隶属于北京思数科技有限公司),是国内专业大数据分析培训、咨询机构。中国云计算大数据处理委员会、与中科院软件所、清华大学以及Google、Yahoo、腾讯、阿里、移动研究院等大数据技术人员一起合作,在2012年组建了”NewBI-思数云服务”大数据服务中心。
思数云从长期实践总结出大数据主要的三大就业方向: 大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。 在此三大方向中,各自的基础岗位一般为大数据系统研发工程师、大数据应用开发工程师和数据分析师。
从企业方面来说,大数据人才大致可以分为产品和市场分析、安全和风险分析以及商业智能三大领域。产品分析是指通过算法来测试新产品的有效性,是一个相对较 新的领域。在安全和风险分析方面,数据科学家们知道需要收集哪些数据、如何进行快速分析,并最终通过分析信息来有效遏制网络入侵或抓住网络罪犯。
一、ETL研发
随着数据种类的不断增加,企业对数据整合专业人才的需求越来越旺盛。ETL开发者与不同的数据来源和组织打交道,从不同的源头抽取数据,转换并导入数据仓库以满足企业的需要。
ETL研发,主要负责将分散的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。
目前,ETL行业相对成熟,相关岗位的工作生命周期比较长,通常由内部员工和外包合同商之间通力完成。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
二、Hadoop开发
Hadoop的核心是HDFS和MapRece.HDFS提供了海量数据的'存储,MapRece提供了对数据的计算。随着数据集规模不断增大,而传统BI的数据处理成本过高,企业对Hadoop及相关的廉价数据处理技术如Hive、HBase、MapRece、Pig等的需求将持续增长。如今具备Hadoop框架经验的技术人员是最抢手的大数据人才。
三、可视化(前端展现)工具开发
海量数据的分析是个大挑战,而新型数据可视化工具如Spotifre,Qlikview和Tableau可以直观高效地展示数据。
可视化开发就是在可视开发工具提供的图形用户界面上,通过操作界面元素,由可视开发工具自动生成应用软件。还可轻松跨越多个资源和层次连接您的所有数据,经过时间考验,完全可扩展的,功能丰富全面的可视化组件库为开发人员提供了功能完整并且简单易用的组件集合,以用来构建极其丰富的用户界面。
过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
四、信息架构开发
大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
五、数据仓库研究
数据仓库是为企业所有级别的决策制定过程提供支持的所有类型数据的战略集合。它是单个数据存储,出于分析性报告和决策支持的目的而创建。为企业提供需要业务智能来指导业务流程改进和监视时间、成本、质量和控制。
数据仓库的专家熟悉Teradata、Neteeza和Exadata等公司的大数据一体机。能够在这些一体机上完成数据集成、管理和性能优化等工作。
六、OLAP开发
随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合。联机分析处理(OLAP)系统就负责解决此类海量数据处理的问题。
OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
七、数据科学研究
这一职位过去也被称为数据架构研究,数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。因此,数据科学家首先应当具备优秀的沟通技能,能够同时将数据分析结果解释给IT部门和业务部门领导。
总的来说,数据科学家是分析师、艺术家的合体,需要具备多种交叉科学和商业技能。
八、数据预测(数据挖掘)分析
营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
九、企业数据管理
企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。然后,通过报表和分析技术,数据被切片、切块,并交付给成千上万的人。担当数据管家的人,需要保证市场数据的完整性,准确性,唯一性,真实性和不冗余。
十、数据安全研究
数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。数据安全研究员还需要具有较强的管理经验,具备运维管理方面的知识和能力,对企业传统业务有较深刻的理解,才能确保企业数据安全做到一丝不漏。
⑦ 大数据工程师职业到底有多吃香
众所周知,当下大数据开发工程师是一个很吃香的职业,现在大数据技术人才短缺,在互联网圈里越久,资历越老,就越受欢迎。
但最近小骇发现了一个“大数据工程师干不过35岁”的话题引人注目。大数据工程师真的这么神奇吗?听起来这么恐怖的大数据工程师究竟是个啥职位??
谈大数据工程师职位之前我们先来聊聊互联网的职位发展,2018年是互联网低迷成为大数据开发工程师,别墅靠大海的一年。
近来阿里巴巴、陌陌、知乎等大厂都纷纷传来裁员的消息,有的人前一天还在通宵忙着新品上线,第二天就被裁员了,有人早上还写着、改着BUG,下午就被人事约谈。
而与之相对的,是19届毕业生已经开始走上舞台。据某招聘网站调查显示北京地区应届生期望薪资更是达到12992元。
“一代新人换旧人”,大数据是眼下非常时髦的技术名词,与此同时自然也催生出了一些与大数据处理相关的职业。
通过对数据的挖掘分析来影响企业的商业决策。毫无疑问,对于未来,大数据必定会带来崭新的格局。
从移动支付到共享经济,从万物互联到智慧城市,从大数据这一概念被初步接受,到刷屏的年度账单、听歌报告,大数据所创造的价值正在一步一步体现。
互联网、金融、电信、医疗、交通、民生,各行业都开始进行大数据应用,大数据的应用场景在未来更是有着无限可能。
大数据工程师究竟是个啥神仙职位呢?先让我们来了解一下大数据是什么。
大数据本质也是数据,但是又有了新的特征,包括数据来源广、数据格式多样化(结构化数据、非结构化数据、Excel文件、文本文件等)、
数据量大(最少也是TB级别的、甚至可能是PB级别)、数据增长速度快等。
在大数据行业中有很多领域;通常来说它们可以被分为两类:大数据工程,大数据分析。
这两个领域互相独立又互相关联。数据工程涉及平台和数据库的开发、部署和维护。
大数据工程师需要去设计和部署这样一个系统,使相关数据能面向不同的消费者及内部应用。对应的职位是大数据开发工程师、ETL工程师、算法工程师。
数据分析则是利用数据平台提供的数据进行知识提取;数据分析包括趋势、图样分析以及开发不同的分类、预测预报系统。
对应的职位是数据分析师、数据挖掘工程师和数据科学家。