❶ 城市交通大数据行业发展现状剖析
城市交通大数据行业发展现状剖析
人们在城市中生活每天产生大量的数据,有结构化的也有非结构化的,有一些与交通出行密切相关,而有一些又看似与交通出行没有什么关系,这些数据分布在不同的行政管理部门、互联网公司或者传统运营企业。举个例子来说,随着智慧城市建设热潮,很多城市中已经布满了传感设备(交叉口进口道地磁、电子警察、卡口等),通过地磁可以采集到一定时间间隔交叉口进口道交通流量、速度以及占有率;通过电子警察或卡口可以实时获取经过卡口的车辆车牌号、通过时间以及地点车速,这些数据基本都汇聚在地方交警部门。互联网公司通过为城市居民提供即时通信、导航以及共享服务,可以通过客户终端定位实时获取居民的位置。传统运营企业范围也很广泛,包括了公交公司客运企业、出租车公司、通信运营商等,公交公司和客运企业汇聚了客流数据(IC卡、第三方支付以及零票)、车辆定位数据等,出租车公司汇聚了出租车定位数据、而通信运营商则可以汇聚客户手机MAC地址。上述列举的数据,都可以为城市交通规划、政策制定、设计以及管理提供数据支持。后续笔者会结合自身十几年的理论研究以及交通工程经验,阐述每种数据未来的应用场景及潜在价值。
城市交通系统分析是一个复杂巨系统,尤其是在交通供需矛盾日益突出的当下,如何提高整个交通系统效率、提升居民出行品质是对每个交通管理者、研究者、工程师的挑战。交通科学自诞生之日起,就与数据结下不解之缘,这是一门基于统计学的工程科学。
互联网公司最早认识到了数据在交通领域的应用价值,也极大推动了云计算、大数据等新一代信息技术在交通领域的应用。高德、滴滴拥堵排名、阿里城市大脑就是互联网公司借助自身的数据资源开展交通领域大数据应用的探索。
互联网公司进军传统智能交通行业,一边是互联网公司频频发布基于大数据分析的各种报告,另一边也开始产生了各种质疑的声音。当前城市交通已经有一只脚迈入了大数据时代,而另外一只脚则需要传统交通理论与移动互联数据有效融合进行驱动。拨开当前交通大数据行业的繁华伪装,我们以冷静的眼光去审视,看到当前还存在很多问题,今天就略谈一二:
第一、所谓的交通大数据基本还是针对单一数据源开展分析,分析精度有待进一步提高,应用场景有待进一步丰富。大部分的研究集中在基于车载GPS数据以及视频数据提取车辆描述信息、交通流状态信息,研究拥堵的表征指标以及交警执法应用;
第二、城市交通传感设备布局并未从交通大数据的视角进行优化分析。城市智能交通系统规划一个重要的任务就是研究城市交通采集设备布局方案,目前,较少有人从城市交通规划与管理智库顶层设计的高度,对检测器的分布进行研究。此外,提高传感设备的适用性以及稳定性,也是有效提高当前数据质量的重要手段。
第三、城市交通大数据缺乏统一的数据标准。前面也论述了当前可以用于交通系统分析的数据,这些数据来源不同,要想未来能够将上述数据利用起来,打破数据壁垒,形成城市交通数据池,就需要共同探讨数据共享机制,并制定统一数据标准;此外,形成城市数据池后,城市交通数据治理将是一项复杂而艰巨的任务。
第四、大数据时代城市交通理论的创新面临巨大挑战。传统的交通理论基本都是基于统计学,也就是基于样本开展研究,而大数据时代的到来变革了交通理论数据来源,使得数据由抽样变为了全样,数据由有针对性的调查变为从大数据中抽取有用信息。因此,交通需求预测、交通通行能力分析、交通管控等基本理论将产生巨大变革,交通学者们应当既要仰望天空又要脚踏实地,在基础领域研究中投入更多的精力,不应被当前的浮云遮住望眼。
城市交通系统理论与大数据技术的融合发展任重而道远,也期望与广大交通工程师以及研究人员共同探讨、共同进步。
❷ 交通出行大数据到底要分析什么
相数科技表示,交通出行大数据信息包含如:结合城市地理信息数据、车辆信息、停放监测、地理围栏等各类与交通相关的数据信息,经数据挖掘和深度分析,可以为城市规划及管理提供科学、有价值的数据参考。
❸ 大数据在智慧交通中起了哪些作用
大数据用于智能交通的积极意义
第一,大数据的虚拟性可以解决跨越行政区域的限制。交通大数据的虚拟性,有利于其信息跨越区域管理,只要多方共同遵照相关的信息共享原则,就能在已有的行政区域下解决跨域管理问题。
第二,大数据具有信息集成优势和组合效率。大数据有助于建立综合性立体的交通信息体系,通过将不同范围、不同区域、不同领域的“数据仓库”加以综合,构建公共交通信息集成利用模式,发挥整体**通功能,这样才能发现新价值,带来新机会。例如气象、交通、保险部门的数据结合起来,可高效率地研究交通领域防灾减灾;IC卡数据结合抽样调查,能更快捷、更精确测得城市交通流分布状况。
第三,大数据的智能性能较好的配置交通资源。通过对大数据的分析处理,可以辅助交通管理制定出较好的统筹与协调解决方案。一方面减少各个交通部门运营的人力和物力,另一方面可有些提升道理交通资源的合理利用。如根据大数据结果确定多模式地面公交网络高效配置和客流组织方案,多层次地面公交主干网络绿波通行控制以及交通信号自适应控制。
第四,大数据的快速性和可预测性能提升交通预测的水平。在对各个部门的数据进行准确提炼和构建合适的交通预测模型后,可以有效模拟交通未来运行状态,验证技术方案的可行性。而在实时交通预测领域,大数据的快速信息处理能力,对于车辆碰撞、车辆换道、驾驶员行为状态检测等实时预测也有非常高的可靠性。
第五,提高交通运行效率。大数据技术能促进提高交通运营效率、道路网的通行能力、设施效率和调控交通需求分析。交通的改善所涉及工程量较大,而大数据的大体积特性有助于解决这种困境。
大数据的实时性,使处于静态闲置的数据被处理和需要利用时,即可被智能化利用,使交通运行的更加合理。大数据技术具有较高预测能力,可降低误报和漏报的概率,随时针对交通的动态性给予实时监控。因此,在驾驶者无法预知交通的拥堵可能性时,大数据亦可帮助用户预先了解。
第六,提高交通安全水平。主动安全和应急救援系统的广泛应用有效改善了交通安全状况,而大数据技术的实时性和可预测性则有助于提高交通安全系统的数据处理能力。在驾驶员自动检测方面,驾驶员疲劳视频检测、酒精检测器等车载装置将实时检测驾车者是否处于警觉状态,行为、身体与精神状态是否正常。同时,联合路边探测器检查车辆运行轨迹,大数据技术快速整合各个传感器数据,构建安全模型后综合分析车辆行驶安全性,从而可以有效降低交通事故的可能性。在应急救援方面,大数据以其快速的反应时间和综合的决策模型,为应急决策指挥提供辅助,提高应急救援能力,减少人员伤亡和财产损失。
第七,提供环境监测方式。大数据技术在减轻道路交通堵塞、降低汽车运输对环境的影响等方面有重要的作用。通过建立区域交通排放的监测及预测模型,共享交通运行与环境数据,建立交通运行与环境数据共享试验系统,大数据技术可有效分析交通对环境的影响。同时,分析历史数据,大数据技术能提供降低交通延误和减少排放的交通信号智能化控制的决策依据,建立低排放交通信号控制原型系统与车辆排放环境影响仿真系统。
❹ 如何运用交通大数据智慧出行
2015年两会上,“大数据(big data)”一词首次写入政府工作报告。在交通领域,大数据一直被视作缓解交通压力的技术利器。应用大数据有助于了解城市交通拥堵问题中人的出行规律和原因,实现交通和生活的和谐,提高城市的宜居性,为政府精准管理提供基于数据证据的综合决策。
随着手机网络、全球定位系统(global positioning system,GPS)/北斗车载导航、车联网、交通物联网的发展,交通要素的人、车、路等的信息都能够实时采集,城市交通大数据来源日益丰富。在日益成熟的物联网和云计算平台技术支持下,通过城市交通大数据的采集、传输、存储、挖掘和分析等,有望实现城市交通一体化,即在一个平台上实现交通行政监管、交通企业运营、交通市民服务的集成和优化。
❺ 交通事故大数据分析 哪些道路最危险,哪些时候易发生事故
12月2日是第九个122“全国交通安全日”,今年的主题是“知危险会避险安全文明出行”。省公安厅交通管理局对2020年前三季度全省道路交通事故进行了数据分析,请广大驾驶人从事故中吸取教训。
加大宣传引导力度,提醒佩戴头盔,减少事故伤亡
(一)什么时间容易发生交通事故:下午和前半夜的14-22时事故起数和死亡人数分别占总数的44.3%和41.3%,呈高位运行状态。其中,18至19时发生事故最多,19至20时死亡人数最多。
(二)什么道路上交通事故较多:在前三季度全省交通事故总数和死亡人数中,高速公路占总数1.45%、5.59%;国道占总数的9.3%、13.7%;省道占总数的16.6%、23.7%;城市区道路占35.1%、20.1%;农村地区道路(含县、乡和其他道路)占总数的37.6%、36.8%。农村地区事故情况同比去年有所下降,但事故占比仍为前三季度事故总量最高。
(三)哪些违法行为最易引发交通事故:驾驶车辆操作不规范妨碍安全的行为、未按规定让行、无证驾驶、酒后驾驶、逆行、超速行驶、违反交通信号是引发我省道路交通事故的主要原因。上述七项主要违法行为引发的事故和导致的死亡人数,分别占总数的72.9%、73.6%。其中,驾驶车辆操作不规范妨碍安全的行为占事故总数最大,占总数的31.2%、未按规定让行占总数的14.8%、酒后驾驶(含醉酒)占总数的6.8%、无证驾驶占总数的6.4%、逆行占总数的5.2%、超速行驶占总数的4.5%、违反交通信号占总数的4.1%。
(四)什么样的交通事故后果最严重:高速公路单起事故死亡率最高,是全省平均数的3.84倍。超速行驶致人死亡率最高,是全省平均数的1.85倍
(五)哪个驾龄段的驾驶人最易发生交通事故:6至10年驾龄驾驶人引发事故起数和死亡人数占比最大,其次是11至15年驾龄驾驶人、3年以下驾龄驾驶人。20年以上驾龄驾驶人最少。
(六)什么的车型发生交通事故最多:小型客车肇事起数和死亡人数占比最高。私用车辆事故起数和死亡人数占比最大,发生事故数量和死亡人数分别占总数的80.2%、64.68%。其次是驾驶重型货车、驾驶电动自行车、驾驶摩托车。重型货车单起事故死亡率最高。
(七)哪些道路今年发生交通事故多,需要避险绕行:京沪高速青县段159公里至178公里处、长深高速唐山西外环950公里至969公里处、大广高速威县段1683公里至1702公里处、国道京环线霸州境内58公里至67公里处、国道京广线任丘县境内151公里至160公里处、国道岐银线沧县境内61公里至70公里处、国道青石线宁晋境内595公里至604公里,国道京环线高碑店境内97公里至106公里、省道保沧线高阳境内54公里至63公里、省道晋州连接线8公里至17公里。
当前,交通安全形势十分严峻,随着冬季恶劣天气的到来,也将进入全年事故多发高发期。今年“全国交通安全日”的主题是“知危险会避险”,意在提醒所有交通参与者,主动了解不同的出行方式可能面临的安全风险,科学掌握防范事故的知识和技能,善于自我防护,有效规避危险。
本文来源于汽车之家车家号作者,不代表汽车之家的观点立场。
❻ 大数据在交通领域的应用
大数据在交通领域的应用可以改善城市交通拥堵情况、提高道路通行能力、降低交通事故发生率等,具体应用如下:
1. 交通流量预测:通过分析历史车流量数据和实时车辆位置等信息,可以预测未来的交通流量,进而实现交通信号灯控制优化或者路况导航提示。
总之,大数据在交通领域的应用为城市交通运输管理提供了更加准确、高效和科学的手段,从而有效解决了城市交通问题。
❼ 大数据,数据挖掘在交通领域有哪些应用
交通领域大数据分析和应用的场景会相当多,这里面要注意两点,一个是大数据本身的技术处理平台,一个是数据分析和挖掘算法。具体场景当时写过点内容,如下:
对于公交线路规划和设计是一个大数据潜在的应用场景,传统的公交线路规划往往需要在前期投入大量的人力进行OD调查和数据收集。特别是在公交卡普及后可以看到,对于OD流量数据完全可以从公交一卡通中采集到相关的交通流量和流向数据,包括同一张卡每天的行走路线和换乘次数等详细信息。对于一个上千万人口的大城市而言,每天的流量数据都会相当大,单一分析一天的数据可能没有相关的价值,而分析一个周期的数据趋势变化则会相当有价值。结合交通流量流向数据趋势变化,可以很好的帮助公交部门进行公交运营线路的调整,换乘站的设计等很多内容。这个方法可能很早就有人想到,但是在公交卡没有普及或海量数据处理和计算能力没有跟上的时候确实很难实际落地操作,而现在则是完全可以落地操作的时候了。
从单一的公交流量流向数据动态分析仅仅是一个方面,大数据往往更加强调相关性分析。比如对于在某一个时间段内公交流量和流向数据发生明细的趋势变化的时候,这个趋势变化的究竟和哪些潜在的大事件或其它影响因素的变化存在相关性,如何去分析这些相关性并做出正确的应对。举个简单的例子来说,当市中心区内的房屋租金持续增长的时候一定会影响到交通流的变化,很多人可能会搬离到更远的地方去居住,自然会形成更多的新增公交流量和流向信息。在《大数据时代》里面谈到更多的会关心相关性而不是因果只是一个方面的内容,实际上往往探索因果仍然很重要,就拿尿片和啤酒的例子来说看起来很简单,但是究竟是谁发现了这种相关性才更加重要,发现相关性的过程往往是从果寻因的过程,否则你也很难真正就确定是具备相关性。
其次就智能交通来说,现在的智慧交通应用往往已经能够很方面的进行整个大城市环境下的交通状况监控并发布相应的道路状况信息。在GPS导航中往往也可以实时的看到相应的拥堵路况等信息,而方便驾驶者选择新的路线。但是这仍然是一种事后分析和处理的机制,一个好的智能导航和交通流诱导系统一定是基于大量的实时数据分析为每个车辆给出最好的导航路线,而不是在事后进行处理。对于智能交通中的交通流分配和诱导等模型很复杂,而且面对大量的实时数据采集,根据模型进行实时分分析和计算,给出有价值的结果,这个在原有的信息技术下确实很难解决。随着物联网和车联网,分布式计算,基于大数据的实时流处理等各种技术的不断城市,智能的交通导航和趋势分析预测将逐步成为可能。
还有一个在国外大片中经常能够看到的就是实时的车辆追踪,随着智慧城市的建设,城市里面到处都是摄像头采集数据,当锁定一个车辆后如何根据车辆的特征或车牌号等信息,实时的追踪到车辆的行走路线和位置。这里面往往需要实时的视频数据采集,采集数据的实时分析和比对,给出相应的参考信息和数据。这个个人认为是具有相当大的难度,要知道对于视频流和图像信息的比对和分析往往更加耗费计算资源,需要更长的计算周期,要从城市成千上万个摄像头里面采集数据并进行实时分析完全满足大数据常说的海量数据,异构数据,速度和价值等四个维度的特征。基于车辆能够做到,基于人当然同样也可以做到,希望这类应用能够逐步的出现,至少现在从硬件水平能力和技术基础上已经具备这种大数据应用的能力。
❽ 交通拥堵数据分析作用
1. 城市交通系统大数据概述 1.1 交通大数据特征 交通大燃腊数据是智能交通系统基础,研究和分析交通大数据是实现智能交通系 统的重要环节。传统交通数据特征有瞎段拍 3V、4V、5V,
2. 城市交通拥堵成因分析 2.2 公共交通规划发展滞后,公共交通产品供给不足 我国大部分城市公共交通主要依靠公共汽车。例如目前,海口市有 2261 辆 公共汽车。根据国家
3. 大数据方法对于缓解城市交通磨羡拥堵的作用理论 首先,大数据技术可实现实时交通引导信息更改周期。更改路口导航信息的 时间间隔不能太长(通常为 20 分钟)。大数据技术使用