导航:首页 > 网络数据 > 电力大数据问题

电力大数据问题

发布时间:2024-02-02 10:31:13

❶ 专栏 | 电力大数据应用模式与前景分析

本期,C君非常荣幸地邀请到了国家电网能源研究所的孙艺新老师。能源行业作为国民经济与社会发展的基础,不可避免地正在受到大数据的深刻影响。在下文中,孙艺新老师结合案例,系统分析了国外几种电力大数据应用案例,并分析了未来的应用前景,可供读者参考借鉴。

本文原载于《中国电力企业管理》,转载请联系作者获得授权。

大数据对打通业务壁垒、发现商业价值具有重要支撑作用,已为互联网、金融等拥有海量数据的企业在市场开拓、产品研发、客户服务等方面发挥了重要作用。电力大数据则是从能源领域为人们重新开启了认识世界、改造世界的大门。

电力大数据
人类从远古进化到现代,能源的每一次进步都带来了生产力的巨大飞跃。如今,能源革命与信息技术革命发生交汇,智能电网、新能源的快速发展与移动终端、物联网、云计算的迅速普及,将为各个产业带来巨大的商业价值。电力大数据不仅是大数据技术在电力行业的深入应用,也是电力生产、消费及相关技术革命与大数据理念的深度融合,将加速推进电力及能源产业发展及商业模式创新。

从商业模式创新来看,电力大数据的内涵包括以下三个方面:一是打破电力发、输、配、售不同阶段的数据壁垒,数据范围涵盖电力生产运营全过程;二是注重电力领域综合分析预测,对不同类型能源消耗、用电行为特征、电力供需形势、用电企业经营趋势等问题进行综合预判,能够显著提高电力生产消费预测的准确性与及时性;三是注重能源领域商业模式创新,充分挖掘能源数据价值,从信息服务、数据分析等方面为智慧城市、智能电网、智能家居等领域提供新的盈利模式。

电力大数据拓宽了电力行业乃至能源产业的广度与深度,给传统企业带来机遇与挑战。一方面,电力大数据能够对电力供给侧、需求侧进行有机整合与“跨界”应用,为创新商业模式与管理模式提供了机遇;另一方面,电力大数据使传统电力行业的边界变得模糊,使其自然垄断地位与路径依赖优势受到不同程度的颠覆与挑战。

国外电力大数据应用模式
目前,电力大数据理念尚处于逐步发展过程。从国外主要实践案例来看,已初步形成了三类应用模式。

以电力为中心的能源数据综合服务平台

该模式通过建立一个分析与应用平台,集成能源供给、消费、相关技术的各类数据,为包括政府、企业、学校、居民等不同类型参与方提供大数据分析和信息服务。该模式中,电网企业具有资金、技术、数据资源等方面优势,具备成为综合服务平台提供方的条件。

典型案例是美国德克萨斯州奥斯丁市实施的以电力为核心的智慧城市项目(见图1)。该项目以智能电网设备为基础,采集了包括智能家电、电动汽车、太阳能光伏等类型详细用电数据以及燃气、供水数据,形成一个能源数据的综合服务平台。

图1奥斯丁智慧城市项目商业模式示意图
该项目已在节能环保、新技术推广、研发测试等方面发挥了重要的平台服务支撑作用。一是在消费者能源管理方面,为居民能源消费、住宅节能、交通出行等提供优化建议,促进节能环保。例如,识别环保住宅的能耗降低比例可达27%;对居民太阳能电池板安装朝向进行优化,可使发电量增加49%等。二是为企业提供电动汽车、智能家电等产品开发与技术测试服务。例如,将电力数据与汽车里程、分时电价、油价数据结合,可提供电动汽车性能分析、充电站布局优化,并根据用户习惯确定最佳充电时间等服务。

为智能化节能产品研发提供支撑
该模式主要将电力大数据、信息通信与工业制造技术结合,通过对能源供给、消费、移动终端等不同数据源的数据进行综合分析,设计开发出节能环保产品,为用户提供付费低、能效高的能源使用与生活方式方案。以智能家居产品为例,该模式既可为居民用户提供节能降费服务以及快捷便利的用户体验,也可对能源企业尤其是电力企业改善用户侧需求管理、减少发电装机等发挥作用。该模式中,电网企业不一定具备产品研发优势,但利用电力数据采集与分析方面的优势,既可通过与设备制造商合作改进用户需求侧管理,也可通过共同参与研发并在产品销售中获取收益。

该模式的典型案例是美国NEST公司研发的智能恒温器产品的商业模式(见图2)。该产品可以通过记录用户的室内温度数据、智能识别用户习惯,并将室温调整到最舒适状态。

图2NEST产品商业模式示意图
产品制造商、电力企业、用户三方形成共赢:作为产品制造商的NEST公司免费获得合作企业提供的部分电力数据,借此完善预测算法,并通过多种方式(恒温器设备、互联网、分析报告)展示分析结果;电力企业在智能恒温器支持下,改进需求侧管理,节约发电装机与调峰成本;用户使用产品自动控制房间温度,并节省用电费用。据报道,售价250美元的NEST恒温器每年可在电费和供热开支方面为家庭节省173美元,一年时间已节省了2.25亿千瓦时的能量,相当于2900万美元费用。

面向企业内部的管理决策支撑
电力大数据对能源企业自身同样具有重要价值。通过将能源生产、消费数据与内部智能设备、客户信息、电力运行等数据结合,可充分挖掘客户行为特征,提高能源需求预测准确性,发现电力消费规律,提升企业运营效率效益。对于电网企业,该模式能够提高企业经营决策中所需数据的广度与深度,增强对企业经营发展趋势的洞察力和前瞻性,有效支撑决策管理。

该模式的典型案例是法国电力公司智能电表大数据应用(见图3)。法国电力在筹建大数据研究团队初期,选择用户负荷曲线为突破口,将电网运行数据与气象、电力消费数据、用电合同信息等进行实时分析,以更为准确地预测电力需求侧变化,并识别不同客户群的特点,通过优化需求侧管理,改进投资管理与设备检修管理,提升运营效率效益。其中通过优化需求侧管理,使电网日负荷率提高至85%左右,相当于减少发电容量1900万千瓦。

图3 法国电力大数据支撑内部决策应用示意图
电力大数据应用前景
未来电力大数据的应用前景主要是在已有模式的基础上,进一步发挥“粘合剂”与“助推剂”作用,推动能源产业探索建立具有“平台”特征的完整能源生态系统。“粘合剂”主要是指对其他企业的吸引力以及形成平台模式后的协同效应,“助推剂”主要是指对能源产业生产、消费革命以及企业发展转型的推动作用。

参照电商领域中的阿里集团,该公司成立以来逐渐形成了“数据”与“平台”良性发展的商业模式,收入主要来源于向卖家提供的互联网营销服务和从交易额中抽取的佣金。一方面,阿里通过淘宝、支付宝、余额宝等产品构建了完整的商业生态系统,吸引用户参与到平台中,并采集整理用户大数据;另一方面,阿里通过用户大数据的分析与挖掘,在电子商务、金融、交通、娱乐等不同领域中建立竞争优势,不断巩固壮大其商业生态系统。2013年,阿里集团的中国零售平台交易额达2480亿美元,营业收入493亿元,利润率高达45%。

电力大数据下的能源生态系统将为能源企业及相关产业提供一个数据采集、整理、分析、应用、共享、交易等为一体的平台,为参与方提供信息咨询、节能环保、产品研发、管理支撑等服务,为消费者提供节能降费服务及相关产品。可应用的领域包括智慧城市、智能电网、新能源、电动汽车。智能楼宇、智能家电、智能家居、移动终端等一系列相关产业。

电力企业在以电力大数据为基础的生态系统中占据主导地位,具有十分重要的作用。一方面,新一轮电力市场改革下,电力企业可以摆脱传统的盈利模式,通过挖掘大数据资源增强企业竞争力;另一方面,电力企业通过吸引社会资本及不同主体的参与,共建互利合作的商业环境,发挥电力大数据在智慧城市、智能家居中的重要支撑作用,提升相关企业的科技创新与可持续发展能力。

积极布局推进电力大数据应用
电力大数据对电力工业优化内外部资源、发展智能电网与构建全球能源互联网具有重要支撑作用,对电网企业创新商业模式、主导建立能源生态系统具有重要意义。电网企业需持续关注其发展动态,积极谋划布局。未来智能电网采集的数据将全面覆盖从主干网到配电网、区域用户和大用户微网,乃至家庭小用户局域网。在此背景下,传统数据存储、计算能力将产生瓶颈,必须运用大数据的采集、处理技术对当前SCADA系统、数据中心、分析预测系统进行全面升级与改造。

一是开展大数据应用的顶层设计工作。在企业集团层面建立大数据应用的组织协调机构,研究能源领域大数据与公司、电网发展的协同关系,并对其盈利模式、应用领域、合作机制及分工等全局性问题开展专项研究,在未来竞争领域中占据主动。

二是做好信息与技术储备工作。探索建立稳定、可靠的公司内外部数据获取渠道,以及数据共享机制;超前研究制定适用于大数据环境的技术处理方案,提升信息系统处理能力。

三是积极培育人才队伍,开展前期应用试点工作。在电网、产业、科研单位中组建大数据研发攻关团队,在安全、生产、经营等业务中开展应用试点探索。

❷ 电力企业从大数据中得到了什么

1、线路优化,在没有大数据之前,某小区可能你们的设计容量非常庞大,但回事实上只是浪答费,这个小区没有预计的那么耗电,而在铺设地下电缆这些,如果有大数据,也可以做到更精准。

2、如果你有用户的用电数据,其实可以大概知道该用户的消费水平,未来或许能够提供一些精准服务,例如:某个用户常年电表不走,可能是房子空置,某一天开始,用电大增,可能是房子已经在装修了,后续是不是该买各种家电了?

3、电力的调配,把电力输送到真正需要的地方。

4、产能优化,是风电、核电、煤电、还是水电带来的效益更好?大数据或许可以帮你解答这个问题。

5、设备的维护,录入所有设备的数据信息,哪些设备该保养该更换一目了然。

说那么多,要达到那一天感觉还是很遥远,现在大数据大多还是停留在表面,与产业结合还不是很多。点我名字,扫我大头贴,发现更多大数据之美。

❸ 浅析电力行业如何拥抱大数据

浅析电力行业如何拥抱大数据

未来社会发展将会是大数据的时代,数据的意义已经不仅仅是记录,而是一种能源,一种潜力巨大、影响深远的能源。2015年8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,特别强调通过大数据的发展,提升创业创新活力和社会治理水平。大数据正在改变着各行各业,同样,大数据在电力行业也得到广泛的应用。
电力行业如何拥抱大数据 打破数据壁垒
近年来,在电力领域大数据已经得到了广泛关注,国内的一些专业机构和高校开展了电力大数据理论和技术研究,我国电力行业也在积极开展大数据研究的应用开发,电网企业、发电企业在电力系统各专业领域开展大数据应用实践,国家电网公司启动了多项智能电网大数据应用研究项目。
智能电网是解决能源安全和环境污染问题的根本途径,是电力系统的必然发展方向;全球能源互联网则是智能电网的高级阶段,“互联网+智慧能源”进一步丰富了智能电网的内涵;这些新概念均与大数据密切相关,大数据为智能电网的发展和运营提供了全景性视角和综合性分析方法。就物理性质而言,智能电网是能源电力系统与信息通信系统的高度融合;就其规划发展和运营而言,智能电网离不开人的参与,且受到社会环境的影响,所以智能电网也可被看作是一个由内、外部数据构成的大数据系统。内部数据由智能电网本身的系统产生,外部数据包括可反映经济、社会、政策、气候、用户特征、地理环境等影响电网规划和运行的数据。在智能电网的发展过程中,大数据必将发挥越来越重要的作用。
但是从目前来看,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。
业内称电力行业拥抱大数据,急需推动电力企业间的数据开放共享,建设电力行业统一的元数据和主数据管理平台,建立统一的电力数据模型和行业级电力数据中心,开发电力数据分析挖掘的模型库和规则库,挖掘电力大数据价值,面向行业内外提供内容增值服务。
协调发展智慧电力、智能电网和智慧城市。电力大数据是智慧城市的基石,紧密围绕智能电力系统的发展开展电力大数据的应用实践。以重塑电力核心价值、转变电力发展方式为主线,未来必将实现智能电网与互联网的深度融合:将与城市的电、热、气、水和交通系统实现交互,把电能与供热、供水、供气以及交通系统进行互联互通,形成城市互联网,通过城市互联网技术来进行整合,比如给家庭、社区、工业园区、企事业单位、医院、学校提供一揽子能源解决方案,解决它的水、电、气、油甚至包括污水处理、垃圾处理、暖气供应、冷气供应,整个能源资源的成套解决方案,是人性化、智能化甚至量身定制的解决方案。
案例分析:电力行业如何拥抱大数据
以电力大数据的先行者——AutoGrid为例
1、正确姿势
AutoGrid的核心为其能源数据云平台——EnergyDataPlatform(EDP),创造了电力系统全面的、动态的图景。
类似于高级搜索引擎或天气预报算法,AutoGrid的能源数据平台挖掘电网产生的结构化和非结构化数据的财富,进行数据集成,并建立其使用模式,建立定价和消费之间的相关性,并分析数以万计的变量之间的相互关系。通过该能源数据平台EDP,公共事业单位可以提前预测数周,或只是分,秒的电量消耗。大型工业电力用户可以优化他们的生产计划和作业,以避开用电高峰。同时,电力供应商可使用该能源数据平台EDP来决定可再生资源,如太阳能,风能的并网,最大限度地减少这些能源间歇性对电网的影响。
DROMS(,需求响应优化及管理系统)为AutoGrid的需求响应管理工具。DROMS从已存在的AMI系统、有线网关、建筑管理系统以及数据采集与监控(SCADA)系统获得实时数据,结合配电系统的物理特性,基于机器智能,分析产生对单一负载的精确预测,在需求响应要求产生之前介入,迅速生成针对某一需求响应的应对策略。除此之外,对甩负荷要求及价格信号亦能有及时准确的反应。
2、优化需求管理
当需求侧管理日益成为电力运营的一个重要部分时,电力大数据的应用也变得日益重要。通过电力大数据的采集、分析及应用,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。
AutoGrid的客户覆盖发电端、输电端、配电端、用户,可以帮助电网各端匹配电力供应和需求,降低电网各端的成本。AutoGrid的能源数据云平台EDP,收集并处理其客户接入智能电网的智能电表、建筑管理系统、电压调节器和温控器等设备的数据,面向其用电客户提供DROMS,获取能量消耗情况,预测用电量,结合电价信息实现需求侧响应,生成需求侧管理项目的分析报告,提升客户全生命周期的价值收益;面向电网运营者提供DROMS,可提供需求响应应对策略,预测发电情况和电网动态负荷,预测电网运行故障,改善客户平均停电时间和系统运营时间,从而实现电网优化调度,减少非技术性损失,降低运营成本。
来自于ARPA-E项目的支持,AutoGrid还开发了一套软件来监测电力在电网中的流动,帮助公用事业公司更好地满足实时电力需求。在需求高峰期,公共事业公司可以让精打细算的消费者知道他们在能源领域是如何花费的或要求具有环保意识的消费者主动减少自己的能源消耗。从而公共事业公司可以更好地快速有效地管理对电网的需求和供给的波动。
由于在需求响应的突出表现,AutoGrid被美国NavigantResearch列为2014年度需求响应领军企业。
3、建立能耗图景
基于EDP和DROMS,AutoGrid可以为客户提供一个大规模的、动态的、不间断的、供能范围内的整体能耗图景。利用该能耗图景,公共事业公司可以可以实时“看”到本地区的能耗,以更好的进行电力控制。当数据不断被累积,AutoGrid就能提供秒前、分钟前甚至周前的用电预测,可以帮助电力企业客户实现不影响舒适度和生产率情况下的优化排产计划。因此,AutoGrid提供的不仅是能量消耗动态图,它提供的还是需求侧响应的应对方案。

以上是小编为大家分享的关于浅析电力行业如何拥抱大数据的相关内容,更多信息可以关注环球青藤分享更多干货

❹ 电力行业如何应用大数据

挑战中见需求: 质量较低、共享不畅、防御脆弱、基础不牢,对于这些电力行业推进大数据的困扰,电信行业是不是也有似曾相识的感觉?这些问题中的一部分,电信业同样需要深思;还有一些问题,则恰恰是电信业的长处,是电信业推进电力行业信息化的机遇。 数据质量较低,数据管控能力不强。大数据时代,数据质量的高低、数据管控能力的强弱直接影响了数据分析的准确性和实时性。目前,电力行业数据在可获取的颗粒程度,数据获取的及时性、完整性、一致性等方面的表现均不尽如人意,数据源的唯一性、及时性和准确性急需提升,部分数据尚需手动输入,采集效率和准确度还有所欠缺,行业中企业缺乏完整的数据管控策略、组织以及管控流程。 如何从海量数据中提取有价值的信息?这也是电信业面临的问题。有观点认为,可以用智能信息基础设施替换复杂的孤立的数据库,让企业能够在需要时捕捉、存储信息。也有观点认为,可以倚靠软件的处理能力来甄别垃圾数据和有价值数据。究竟哪种方式更为有效,目前仍无定论。而无论哪种情况,都需要制定一个数据采集的标准,在时间、精度上进行规范,从而为后续的数据分析打好基础。 数据共享不畅,数据集成度不高。大数据技术的本质是从关联复杂的数据中挖掘知识,提升数据价值,单一业务、类型的数据即使体量再大,缺乏共享集成,其价值就会大打折扣。目前,电力行业缺乏行业层面的数据模型定义与主数据管理,各单位数据口径不一致。行业中存在较为严重的数据壁垒,业务链条间也尚未实现充分的数据共享,数据重复存储的现象较为突出。 打破企业的门户之见,在行业中建立一个资源池,让使用者可以按需获取数据资源。从电信业的角度来看,现在,电信运营商之间的合作在不断推进,例如,运营商开发了融合的手机游戏计费平台;在北京电信网上营业厅微信平台上,用户不仅可以自助查询电信业务,还能查询联通和移动业务的使用费,这样共享数据资源的经验也可在大数据的应用过程中加以推广。 防御能力不足,信息安全面临挑战。电力大数据由于涉及众多电力用户的隐私,对信息安全也提出了更高的要求。电力企业地域覆盖范围极广,各类防护体系建设不平衡,信息安全水平不一致,特别是偏远地区单位防护体系尚未全面建立,安全性有待提高。行业中企业的安全防护手段和关键防护措施也需要进一步加强,从目前的被动防御向多层次、主动防御转变。 建立与大数据相适应的安全和隐私保护机制,通过技术手段和加强企业自律来保证数据的安全。 承载能力不足,基础设施亟待完善。电力数据储存时间要求以及海量电力数据的爆发式增长对IT基础设施提出了更高的要求。目前,电力企业大多已建成一体化企业级信息集成平台,能够满足日常业务的处理要求,但其信息网络传输能力、数据存储能力、数据处理能力、数据交换能力、数据展现能力以及数据互动能力都无法满足电力大数据的要求,尚需进一步加强。 在这方面,电力行业和电信业各有优势。尽管电力行业也在进行宽带建设以及智慧社区的建设,但是,所谓术业有专攻,在IT基础设施尤其是网络基础设施上,电信业在运维、计费等方面有着得天独厚的优势。同时,在数据中心的建设上,电力行业对以电能为代表的能耗问题又有着丰富的经验。因此,两个行业不妨加强合作,实现共赢。 相关人才欠缺,专业人员供应不足。大数据是一个崭新的事业,电力大数据的发展需要新型的专业技术人员,例如大数据处理系统管理员、大数据处理平台开发人员、数据分析员和数据科学家等。而当前行业内外此类技术人员的缺乏将会成为影响电力大数据发展的一个重要因素。 加强大数据人才的培养,鼓励企业内部在大数据领域的创新。

❺ 怎样解决电力能源的大数据安全问题

我们单来位去年也为解决这个问题苦源恼,最后采用了锐捷的电力能源安全问题解决方案才一劳永逸的解决这个问题,这套方案精准定位全网核心风险,构建安全知识库降低运维技术门槛的同时开放兼容收集海量日志构建安全大数据仓库可以切实解决各种电力能源的大数据安全问题。

❻ 我国31省份电力大数据公布,数据中有哪些信息值得关注

随着社会的发展、电已经成功了千家万户必须的东西、没有电我们的生活可能会被打乱、甚至影响经济的发展、现如今我们所用的一切都需要电力的供应、前段时间我国31个省份电力大数据公布、 数据中的哪些信息值得关注?首先是用电量、这几年可以说是呈几何倍数增长、远远高出了所预期的、再者就是发电量跟不上用电的速度、导致很多地方突然停电、前段时间东北就是如此、这是我们必须关注的问题。

阅读全文

与电力大数据问题相关的资料

热点内容
excel批量保存pdf文件 浏览:963
win10文件夹死机动不了 浏览:411
ps打开多页pdf文件 浏览:901
数据库统计某一字段值出现次数 浏览:705
学编程需要哪些方面的能力 浏览:896
在word2003表格中插入一行 浏览:606
怎么把拍照取字的文件转成pdf 浏览:838
小米穿戴app哪里更换表盘 浏览:911
满足该条件更改文件内容的代码 浏览:503
xp系统怎么卸载win10系统文件 浏览:709
华为手机双系统app怎么转 浏览:317
u盘插上pc自动跳出文件夹 浏览:232
机密文件写在哪里 浏览:480
qq主题免费使用女孩 浏览:342
园林景观网站模板 浏览:717
五线谱入门基础视频教程下载 浏览:598
个人网站怎么盈利 浏览:618
怎么禁止程序启动程序运行 浏览:261
苹果平板的测距仪app有什么作用 浏览:229
乌云数据库酒店开房 浏览:674

友情链接