导航:首页 > 网络数据 > 商业银行大数据应用

商业银行大数据应用

发布时间:2024-02-01 17:45:26

大数据的应用领域有哪些

1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

㈡ 商业银行应用大数据之策

商业银行应用大数据之策

随着以社交网络为代表的web2.0 的兴起、智能手机的普及、各种监控系统及传感器的大量分布,人类正在进入一个数据大爆炸的时代,“大数据”的概念应运而生。大数据被誉为继云计算、物联网之后IT产业又一次颠覆性的技术变革,已经引起各方面的高度关注。大数据的意义在于从海量数据中及时识别和获取信息价值,金融业在IT基础设施、数据掌控力和人才富集度方面较之其他产业更具优势,具备了深度“掘金”的潜力。但是,大数据也给金融业带来剧烈的挑战与冲击,我国商业银行需要树立“数据治行”理念,明确大数据战略的顶层设计,加强大数据基础设施建设,实施稳妥的大数据安全策略,方能从容迎接大数据时代。

大数据带来的冲击与挑战

(一)传统发展战略面临冲击。传统银行发展战略,是在预计未来金融政策、经济环境的前提下,根据现有银行人员、网点、客户、资本、存贷款规模等资源占有状况,以及竞争对手、客户需求状况,来确定其战略目标及发展路径和方式的。步入大数据时代后, 对数据资源的占有及其整合应用能力是决定一家银行成功与否的关键因素,而传统的网点、人员、资本等因素则趋于淡化,未来商业银行的客户营销,将主要依靠对不同类型客户需求数据的掌握,并开发设计出安全、便捷、个性化的金融产品。因此,这就要求各商业银行在评判竞争对手实力与自身优势时,要注重考量IT能力与大数据实力;在制定战略目标时,必须兼顾财务承受能力来决定对大数据的投入,从而确保战略规划与大数据支撑相适应;在确定战略目标的实施路径时,必须将互联网金融、电子渠道、数据的收集与挖掘作为向客户提供服务的重要方式和手段。

(二)传统经营方式面临重大转变。在大数据时代, 金融业务与互联网深度融合, 商业银行的经营方式将会发生彻底改变。在产品开发、营销方面,通过对海量交易、行为数据的收集、分析和挖掘,科学构建数据模型, 分层客户的不同金融需求可以得到充分展示,进而针对客户需要、市场需求研发产品、开展营销,真正做到以客户为中心开发设计产品,并实现精准营销,而不是以银行为中心制造、推销产品。在风险防控方面,许多商业银行在风险分析和评估中,虽然已经引入了数量分析方式,但是因历史数据的积累不足,经验判断依然在风险管理、决策中起主导作用。依托大数据,对客户实施多维度评价,其风险模型将会更加贴近市场实际,对客户违约率的取值变得更加精准,长期以来银行凭经验办业务的经营范式将会得到根本改善。在绩效管理方面,可以通过对大数据的有效利用,并借助通讯、视频、移动终端等技术手段,对商业银行员工的工作方式、频率、业绩等做出更加准确的评价,有助于充分发挥绩效考核的正向激励作用。

(三)数据基础设施建设面临严峻考验。进入大数据时代,数据来源的多元化主要体现在两个层面:一是在金融业务链条之外。移动网络设备和网络社交媒体产生了极其丰富的实时化的客户行为数据,在这种环境下,客户行为偏好数据往往隐藏在社交网络之中。如果要实施“大数据工程”,商业银行必须搜集开放的网络数据,但现有的银行IT系统、技术手段还无力搜集、分析、利用大数据。二是在金融业务链条内部。随着专业细分与金融外包的趋势愈加明朗,由一家或少数几家银行掌控关键业务数据的时代已经走向终结,业务数据产生、流转于金融业务链条的各个结点,业务数据、客户行为数据不可能自动集成至某个机构,这对“大数据工程”的实施提出了严峻挑战。

商业银行的应对与谋变

(一)优先搞好大数据战略的顶层设计。大数据战略必须超越电子银行部或IT部门的狭隘视角,面向全局、面向未来,以客户需求、市场需求为导向,建立自身的大数据架构。完整的客户数据必须是多维度的,至少包含以下几个方面:一是客户的基本信息,譬如信用信息、社交关系信息等;二是客户的偏好信息,譬如金融产品偏好、金融服务偏好等;三是客户的行为信息,譬如银行范围内的行为数据、外部行为数据等;四是客户的分析数据,譬如客户风险度、客户价值度等。要想使这些不同维度的数据信息具有分析价值,首先必须具有合理的数据结构。但现实情况却不尽如人意,各银行的数据结构基本上是条块分割的。为此,各银行必须优先搞好顶层机制的设计与改革,逐步打破业务界限,重组业务流程,确保数据灵活性。

在总行层面上,需要抓紧制定大数据工作规划,建立大数据工作推进机制。主管数据部门负责组织协调,对大数据工作进行统筹规划、集中管理;业务部门负责大数据的搜集、整理、存储、分析和应用,全面采集、多方式整合商业银行内外部各类数据,形成数据管理、数据使用、数据推广的有效工作机制。

(二)科学谋划和打造大数据平台。一方面各银行要积极与社交网络、电商、电信等大数据平台开展战略合作,建立数据信息交流、共享机制,全面梳理、整合客户各类信息,将金融服务与社交网络、电子商务、移动网络等深度融合。另一方面各银行也可考虑自行打造大数据平台,以便牢牢掌握核心话语权。

(三)积极建设大数据仓库。着眼于大数据挖掘和分析,对海量数据的持续实时处理,建设数据仓库项目,为服务质量改善、经营效率提升、服务模式创新提供支撑,全面提升运营管理水平。在项目建设中,通过梳理整合经营管理关键数据,建立数据管控体系,搭建基础数据平台。通过数据仓库建设,运用数据挖掘和分析,全方位调整管理模式、产品结构、营销模式、信息战略,从根本上提高风险管理、成本绩效管理、资产负债管理和客户关系管理水平,实现多系统数据的业务逻辑整合,形成全行级客户、产品等主题数据。

(四)以大数据思维推进金融互联网化战略。进入大数据时代,金融产业与信息技术将实现深度融合, 金融电子化的深度、广度将日渐强化。各银行必须顺势而为, 紧紧追随迅猛发展的互联网、移动互联网浪潮, 积极实施金融互联化战略, 尝试构建电子化金融商业模式, 着力发展直销银行、社区智能银行、互联网金融、电子商务等业务。这就要求各银行应当从发展战略的高度,将金融互联网作为未来提供金融服务、提升核心竞争力的主渠道。

(五)依托大数据技术实现风险管理的精细化。大数据时代,商业银行可以消除信息孤岛,全面整合客户的多渠道交易数据,通过经营者个人金融、消费、行为等信息进行授信,有效破解传统信贷风险管理中的信息不对称难题,降低信贷风险。为此,各银行必须深化风险管理体制改革,运用大数据理念来构建以客户为中心的全面风险管理体系,理顺部门间的职责,淡化部门色彩,彻底打破以往小数据模式下形成的部门、机构、区域、产品间数据信息分隔管理以及由分支机构各自分散识别风险的做法,形成按客户集中统一管理数据信息和高效协调机制。

要积极推行把现场调查与非现场数据信息挖掘分析相结合、模型筛查与经验判断相结合,以定性信息与定量财务、经营等多重数据信息的勾稽核验等为重点内容的风险管理创新。总行要通过大量数据信息的挖掘分析,勾画出客户的全景视图,更加全面地评估客户风险状况,有效提升贷前风险判断和贷后风险预警能力。

要进一步完善基于大数据信息平台的集中式风险审查审批体制,采用大数据方式来验证借款人的数据信息,校正申报机构或部门对借款人的风险判断。运用合理的参数和模型,计量出可接受的最大风险敞口,精准识别和动态审查借款人的每一笔融资业务。再利用习惯性数据信息和常识性、逻辑性分析,作出更专业的判断,使风险识别、防范、决策更加可靠、更加贴近实际。

以上是小编为大家分享的关于商业银行应用大数据之策的相关内容,更多信息可以关注环球青藤分享更多干货

㈢ 大数据在银行业的应用与实践

大数据在银行业的应用

一、舆情分析

对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。

二、客户信用评级

银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。

三、客户与市场洞察

银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。

四、运营优化

银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。

五、风险与欺诈分析

主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。

银行数据架构规划

随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。

大数据为银行创造的价值

当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。

在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。

在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。

随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。

目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。

在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。

对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。

比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。

阅读全文

与商业银行大数据应用相关的资料

热点内容
dnf90版本剑魂钝器流 浏览:649
陌秀直播苹果怎么下载ipad 浏览:732
简述网络直接市场调查方式有哪些 浏览:683
怎么连接移动网络设置 浏览:781
电脑网卡怎么连接网络连接不上网吗 浏览:838
刷子公司网站怎么做 浏览:272
86版本艾尔文测试 浏览:714
深宫曲文件夹是哪个 浏览:618
苹果u盘修复工具哪个好用 浏览:124
微信动态表情包搞笑 浏览:436
可以去哪里找编程老师问问题 浏览:608
win10lol全屏 浏览:25
qq图片动态动漫少女 浏览:122
sai绘图教程视频 浏览:519
如何分析加载减速法数据 浏览:672
手机怎么免费转换pdf文件格式 浏览:668
在哪个网站可以驾照年检 浏览:89
iphone可以播放ape吗 浏览:991
matlabp文件能破解吗 浏览:817
四川省高三大数据考试是什么 浏览:457

友情链接