导航:首页 > 网络数据 > 银行大数据的应用

银行大数据的应用

发布时间:2024-02-01 06:24:00

1. 大数据的应用场景都有啥

大数据应用场景有城市管理,电信,金融

电视

数字化医疗,石油化工,农林水务,工业自动化,公共安全,侦查,定位,监控,评估,电子支付,风险控制,交易,订单,跟踪,识别,消防,定位,调度,设备,安全,节能。

物流行业 生物医学 体育 娱乐 城市管理 安全领域 智能家居 金融行业

2. 大数据分析技术在财经领域的应用

大数据分析技术在财经领域的应用如下:

1、银行大数据应用

国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。

财经领域的大数据应用依然有很多的问题需要克服,同时需要国家出台促进金融大数据发展的产业规划和扶持政策,也需要行业分阶段推动金融数据开放、共享和统一平台建设,强化行业标准和安全规范。

3. 科普文:银行业9大数据科学应用案例解析!

在银行业中使用数据科学不仅仅是一种趋势,它已成为保持竞争的必要条件。 银行必须认识到,大数据技术可以帮助他们有效地集中资源,做出更明智的决策并提高绩效。

以下我们罗列银行业使用的数据科学用例清单,让您了解如何处理大量数据以及如何有效使用数据。

(1)欺诈识别

(2)管理客户数据

(3)投资银行的风险建模

(4)个性化营销

(5)终身价值预测

(6)实时和预测分析

(7)客户细分

(8)推荐引擎

(9)客户支持

(10)结论

1、欺诈识别

机器学习对于有效检测和防范涉及信用卡,会计,保险等的欺诈行为至关重要。 银行业务中的主动欺诈检测对于为客户和员工提供安全性至关重要。 银行越早检测到欺诈行为,其越快可以限制帐户活动以减少损失。 通过实施一系列的欺诈检测方案,银行可以实现必要的保护并避免重大损失。

欺诈检测的关键步骤包括:

获取数据样本进行模型估计和初步测试 模型估计 测试阶段和部署。

由于每个数据集都不同,每个数据集都需要由数据科学家进行个别训练和微调。 将深厚的理论知识转化为实际应用需要数据挖掘技术方面的专业知识,如关联,聚类,预测和分类。

高效欺诈检测的一个例子是,当一些异常高的交易发生时,银行的欺诈预防系统被设置为暂停,直到账户持有人确认交易。对于新帐户,欺诈检测算法可以调查非常高的热门项目购买量,或者在短时间内使用类似数据打开多个帐户。

2、管理客户数据

银行有义务收集,分析和存储大量数据。但是,机器学习和数据科学工具不是将其视为合规性练习,而是将其转化为更多地了解其客户以推动新的收入机会的可能性。

如今,数字银行越来越受欢迎并被广泛使用。这创建了TB级的客户数据,因此数据科学家团队的第一步是分离真正相关的数据。之后,通过准确的机器学习模型帮助数据专家掌握有关客户行为,交互和偏好的信息,可以通过隔离和处理这些最相关的客户信息来改善商业决策,从而为银行创造新的收入机会。

3、投资银行的风险建模

风险建模对投资银行来说是一个高度优先考虑的问题,因为它有助于规范金融活动,并在定价金融工具时发挥最重要的作用。投资银行评估公司在企业融资中创造资本,促进兼并和收购,进行公司重组或重组以及用于投资目的的价值。

这就是为什么风险模型对于银行来说显得非常重要,最好是通过掌握更多信息和储备数据科学工具来评估。现在,通过大数据的力量,行业内的创新者正在利用新技术进行有效的风险建模,从而实现更好的数据驱动型决策。

4、个性化营销

市场营销成功的关键在于制定适合特定客户需求和偏好的定制化报价。数据分析使我们能够创建个性化营销,在适当的时间在正确的设备上为合适的人员提供合适的产品。数据挖掘广泛用于目标选择,以识别新产品的潜在客户。

数据科学家利用行为,人口统计和历史购买数据建立一个模型,预测客户对促销或优惠的反应概率。因此,银行可以进行高效,个性化的宣传并改善与客户的关系。

5、终身价值预测

客户生命周期价值(CLV)预测了企业从与客户的整个关系中获得的所有价值。 这项措施的重要性正在快速增长,因为它有助于创建和维持与特定客户的有利关系,从而创造更高的盈利能力和业务增长。

获得和维系有利可图的客户对银行来说是一个不断增长的挑战。 随着竞争越来越激烈,银行现在需要360度全方位了解每位客户,以便有效地集中资源。 这就是数据科学进入的地方。首先,必须考虑大量数据:如客户获得和流失的概念,各种银行产品和服务的使用,数量和盈利能力以及其他客户的特点 如地理,人口和市场数据。

这些数据通常需要大量清洗和操作才能变得可用和有意义。 银行客户的概况,产品或服务差异很大,他们的行为和期望也不尽相同。 数据科学家的工具中有许多工具和方法来开发CLV模型,如广义线性模型(GLM),逐步回归,分类和回归树(CART)。 建立一个预测模型,以确定基于CLV的未来营销策略,这对于在每个客户的一生中与该公司保持良好的客户关系,实现更高的盈利能力和增长是具有非常有价值的过程。

6、实时和预测分析

分析在银行业中的重要性不可低估。机器学习算法和数据科学技术可以显着改善银行的分析策略,因为银行业务的每个使用案例都与分析密切相关。随着信息的可用性和多样性迅速增加,分析变得更加复杂和准确。

可用信息的潜在价值非常惊人:指示实际信号的有意义的数据量(不仅仅是噪声)在过去几年呈指数级增长,而数据处理器的成本和规模一直在下降。区分真正相关的数据和噪音有助于有效解决问题和制定更明智的战略决策。实时分析有助于了解阻碍业务的问题,而预测分析有助于选择正确的技术来解决问题。通过将分析整合到银行工作流程中,可以实现更好的结果,以提前避免潜在的问题。

7、客户细分

客户细分意味着根据他们的行为(对于行为分割)或特定特征(例如区域,年龄,对于人口统计学分割的收入)挑选出一组客户。数据科学家的一系列技术如聚类,决策树,逻辑回归等等,因此它们有助于了解每个客户群的CLV并发现高价值和低价值的细分市场。

没有必要证明客户的这种细分允许有效地分配营销资源,并且为每个客户群提供基于点的方法的最大化以及销售机会。不要忘记,客户细分旨在改善客户服务,并帮助客户忠诚和留住客户,这对银行业是非常必要的。

8、推荐引擎

数据科学和机器学习工具可以创建简单的算法,分析和过滤用户的活动,以便向他建议最相关和准确的项目。这种推荐引擎即使在他自己搜索它之前也会显示可能感兴趣的项目。要构建推荐引擎,数据专家需要分析和处理大量信息,识别客户配置文件,并捕获显示其交互的数据以避免重复提供。

推荐引擎的类型取决于算法的过滤方法。协同过滤方法既可以是基于用户的,也可以是基于项目的,并且可以与用户行为一起分析其他用户的偏好,然后向新用户提出建议。

协同过滤方法面临的主要挑战是使用大量数据,导致计算问题和价格上涨。基于内容的过滤与更简单的算法一起工作,其推荐与用户参考先前活动的项目相似的项目。如果行为复杂或连接不清,这些方法可能会失败。还有一种混合类型的引擎,结合了协作和基于内容的过滤。

没有任何方法是普适的,它们每个都有一些优点和缺点,正确的选择取决于你的目标和情况。

9、客户支持

杰出的客户支持服务是保持与客户长期有效关系的关键。作为客户服务的一部分,客户支持是银行业中一个重要但广泛的概念。实质上,所有银行都是基于服务的业务,因此他们的大部分活动都涉及服务元素。它包括全面及时地回应客户的问题和投诉,并与客户互动。

数据科学使这一过程更好地实现了自动化,更准确,个性化,直接和高效,并且降低了员工时间成本。

结论

为了获得竞争优势,银行必须承认数据科学的重要性,将其融入决策过程,并根据客户数据中获得可操作的见解制定战略。 从小型可管理的步骤开始,将大数据分析整合到您的运营模式中,并领先于竞争对手。

由于这种快速发展的数据科学领域以及将机器学习模型应用于实际数据的能力,因此可以每天扩展此用例列表,从而获得更多更准确的结果。

4. 大数据的应用领域有哪些

1.了解和定位客户
这是大数据目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好。
利用大数据,美国零售商Target公司甚至能推测出客户何时会有Baby;电信公司可以更好地预测客户流失;沃尔玛可以更准确的预测产品销售情况;汽车保险公司能更真实的了解客户实际驾驶情况。
滑雪场利用大数据来追踪和锁定客户。如果你是一名狂热的滑雪者,想象一下,你会收到最喜欢的度假胜地的邀请;或者收到定制化服务的短信提醒;或者告知你最合适的滑行线路。。。。。。同时提供互动平台(网站、手机APP)记录每天的数据——多少次滑坡,多少次翻越等等,在社交媒体上分享这些信息,与家人和朋友相互评比和竞争。
除此之外,政府竞选活动也引入了大数据分析技术。一些人认为,奥巴马在2012年总统大选中获胜,归功于他们团队的大数据分析能力更加出众。
2.了解和优化业务流程
大数据也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
人力资源业务流程也在使用大数据进行优化。Sociometric Solutions公司通过在员工工牌里植入传感器,检测其工作场所及社交活动——员工在哪些工作场所走动,与谁交谈,甚至交流时的语气如何。美国银行在使用中发现呼叫中心表现最好的员工——他们制定了小组轮流休息制度,平均业绩提高了23%。
如果在手机、钥匙、眼镜等随身物品上粘贴RFID标签,万一不小心丢失就能迅速定位它们。假想一下未来可能创造出贴在任何东西上的智能标签。它们能告诉你的不仅是物体在哪里,还可以反馈温度,湿度,运动状态等等。这将打开一个全新的大数据时代,“大数据”领域寻求共性的信息和模式,那么孕育其中的“小数据”着重关注单个产品。
3.提供个性化服务
大数据不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。Jawbone的智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。Jawbone公司已经能够收集长达60年的睡眠数据,从中分析出一些独到的见解反馈给每个用户。从中受益的还有网络平台“寻找真爱”,大多数婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象。
4.改善医疗保健和公共卫生
大数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。试想一下,当来自所有智能手表等可穿戴设备的数据,都可以应用于数百万人及其各种疾病时,未来的临床试验将不再局限于小样本,而是包括所有人!
苹果公司的一款健康APP ResearchKit有效将手机变成医学研究设备。通过收集用户的相关数据,可以追踪你一天走了多少步,或者提示你化疗后感觉如何,帕金森病进展如何等问题。研究人员希望这一过程变得更容易、更自动化,吸引更多的参与者,并提高数据的准确度。
大数据技术也开始用于监测早产儿和患病婴儿的身体状况。通过记录和分析每个婴儿的每一次心跳和呼吸模式,提前24小时预测出身体感染的症状,从而及早干预,拯救那些脆弱的随时可能生命危险的婴儿。
更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。比如,谷歌基于搜索流量预测流感爆发,尽管该预测模型在2014年并未奏效——因为你搜索“流感症状”并不意味着真正生病了,但是这种大数据分析的影响力越来越为人所知。
5.提高体育运动技能
如今大多数顶尖的体育赛事都采用了大数据分析技术。用于网球比赛的IBM SlamTracker工具,通过视频分析跟踪足球落点或者棒球比赛中每个球员的表现。许多优秀的运动队也在训练之外跟踪运动员的营养和睡眠情况。NFL开发了专门的应用平台,帮助所有球队根据球场上的草地状况、天气状况、以及学习期间球员的个人表现做出最佳决策,以减少球员不必要的受伤。
还有一件非常酷的事情是智能瑜伽垫:嵌入在瑜伽垫中的传感器能对你的姿势进行反馈,为你的练习打分,甚至指导你在家如何练习。
6.提升科学研究
大数据带来的无限可能性正在改变科学研究。欧洲核子研究中心(CERN)在全球遍布了150个数据中心,有65,000个处理器,能同时分析30pb的数据量,这样的计算能力影响着很多领域的科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7.提升机械设备性能
大数据使机械设备更加智能化、自动化。例如,丰田普锐斯配备了摄像头、全球定位系统以及强大的计算机和传感器,在无人干预的条件下实现自动驾驶。Xcel Energy在科罗拉多州启动了“智能电网”的首批测试,在用户家中安装智能电表,然后登录网站就可实时查看用电情况。“智能电网”还能够预测使用情况,以便电力公司为未来的基础设施需求进行规划,并防止出现电力耗尽的情况。在爱尔兰,杂货连锁店Tescos的仓库员工佩戴专用臂带,追踪货架上的商品分配,甚至预测一项任务的完成时间。
8.强化安全和执法能力
大数据在改善安全和执法方面得到了广泛应用。美国国家安全局(NSA)利用大数据技术,检测和防止网络攻击(挫败恐怖分子的阴谋)。警察运用大数据来抓捕罪犯,预测犯罪活动。信用卡公司使用大数据来检测欺诈交易等等。
2014年2月,芝加哥警察局对大数据生成的“名单”——有可能犯罪的人员,进行通告和探访,目的是提前预防犯罪。
9.改善城市和国家建设
大数据被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
加州长滩市正在使用智能水表实时检测非法用水,帮助一些房主减少80%的用水量。洛杉矶利用磁性道路传感器和交通摄像头的数据来控制交通灯信号,从而优化城市的交通流量。据统计目前已经控制了全市4500个交通灯,将交通拥堵状况减少了约16%。
10.金融交易
大数据在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。

5. 大数据在银行业的应用与实践

大数据在银行业的应用

一、舆情分析

对于银行来说,舆情分析包括:银行的声誉分析、品牌分析和客户质量分析。它主要是通过分析网络社交媒体的评论,对于客户的流失情况进行预警,还可以通过对新闻热点的跟踪以及政府报道的分析,为银行提供个性化的分析场所。

二、客户信用评级

银行可以通过手机客户申请信用卡的数据,分析客户的信用程度,从而帮助业务人员做出相应的决策。

三、客户与市场洞察

银行可以通过跟踪社交媒体的评论信息,利用各种非结构化数据,对客户进行细分,改进客户的流失情况。这是银行对于市场的趋势分析。

四、运营优化

银行通过大数据平台对各种历史数据进行保存和管理,同时可以对系统日志进行维护、预测系统故障,从而提升系统的运营效率。

五、风险与欺诈分析

主要包括财务风险分析、贷款风险分析、各种反洗钱和欺诈调查和实时欺诈分析等内容。所谓财务风险分析是分析信用风险和市场风险产生的数据;贷款风险分析是从媒体或者社会公众信息中提取企业客户和潜在客户的信息。提高对于风险的预测能力和预警能力;反洗钱与欺诈调查是提取犯罪记录的信息;实时欺诈分析则是对大量的欺诈数据进行分析。

银行数据架构规划

随着银行业务的扩展,可以对数据进行架构规划。大数据的数据架构规划可以采用Hadoop技术,即通过与节后或数据进行关联,进一步拓展对非结构化数据的处理。其数据源包括结构化数据、半结构化数据和非结构化数据。半结构化数据和非结构化数据通过网络爬虫的方式来搜集,再经过内容管理处理,将数据进行结构化处理,然后可以将内容管理处理得出的数据信息存放到基础数据存储中。这是基于HDFS存放的非结构化数据。

大数据为银行创造的价值

当银行客户与银行产生交易,会产生大量的数据,这些数据具有大量的业务价值,为银行进行有针对性的营销创造了机会。

在大部分的应用中,随着数据量指数级的增长,特别是一些非结构化数据的快速增长,大量的数据导致分析时间增长,传统的商业智能已经无法满足需求,阻碍了业务的发展,以FineBI为代表的新型BI的涌现,无论在数据处理量和速度上都相比传统BI有突破性的进步。

在很长的一段时间内,银行的大部分业务是建立在客户和银行的交易过程中的,但是为了能更好地为客户服务,光靠依赖这些数据是不够的。随着技术的进步,银行可以通过很多途径来搜集客户的资料。从而进行有针对性的营销。

随着互联网技术的发展,客户可以通过电子渠道对银行业务发表看法或者购买银行产品。这些操作都是为增强对于客户的了解,降低信息的不对称性。

目前来说,在利率市场化的趋势下,存款的稳定性降低,存贷款的利差收窄,数据分析已经逐渐成为银行实现核心业务价值的重要手段。金融脱媒会导致大量客户的流失和客户忠诚度的降低。银行作为“支付中介”的地位开始动摇,客户对于银行服务的要求越来越高。

在这种情况下,银行需要通过大数据深入全名了解客户的基本信息,提升业务运行的效率,逐步提高客户的体验。通过对大数据的加工以及挖掘,可能为银行带来极大的效益,特别是商业银行。

对于银行来说,风险管控和用户营销是未来最重要的两个方向。而对客户的信用评分是实现这两个方向的重要条件之一。信用评分是根据申请人的申请信息和证明材料,帮助业务员作出决策,降低坏账率。

比如:我们可以根据大数据的分析和查询,有针对性地为客户提供理财产品建议和提醒,同时通过对大数据的分析和挖掘,来评估客户的信用风险和资金偿还能力,降低了银行的各种风险。

6. 大数据能为银行做什么

随着移动互联网、云计算、物联网和社交网络的广泛应用,人类社会已经迈入一个全新的“大数据”信息化时代。而银行信贷的未来,也离不开大数据。
国内不少银行已经开始尝试通过大数据来驱动业务运营,如中信银行信用卡中心使用大数据技术实现了实时营销,光大银行建立了社交网络信息数据库,招商银行则利用大数据发展小微贷款。从发展趋势来看,银行大数据应用总的可以分为四大方面:
第一方面:客户画像应用。
客户画像应用主要分为个人客户画像和企业客户画像。个人客户画像包括人口统计学特征、消费能力数据、兴趣数据、风险偏好等;企业客户画像包括企业的生产、流通、运营、财务、销售和客户数据、相关产业链上下游等数据。值得注意的是,银行拥有的客户信息并不全面,基于自身拥有的数据有时难以得出理想的结果甚至可能得出错误的结论。
比如,如果某位信用卡客户月均刷卡8次,平均每年打4次客服电话,从未有过投诉,按照传统的数据分析,该客户是一位满意度较高流失风险较低的客户。但如果看到该客户的微博,真实情况是:工资卡和信用卡不在同一家银行,还款不方便,好几次打客服电话没接通,客户多次在微博上抱怨,该客户流失风险较高。所以银行不仅仅要考虑银行自身业务所采集到的数据,更应考虑整合外部更多的数据,以扩展对客户的了解。包括:
(1)客户在社交媒体上的行为数据(如光大银行建立了社交网络信息数据库)。通过打通银行内部数据和外部社会化的数据可以获得更为完整的客户拼图,从而进行更为精准的营销和管理;
(2)客户在电商网站的交易数据,如建设银行则将自己的电子商务平台和信贷业务结合起来,阿里金融为阿里巴巴用户提供无抵押贷款,用户只需要凭借过去的信用即可;
(3)企业客户的产业链上下游数据。如果银行掌握了企业所在的产业链上下游的数据,可以更好掌握企业的外部环境发展情况,从而可以预测企业未来的状况;
(4)其他有利于扩展银行对客户兴趣爱好的数据,如网络广告界目前正在兴起的DMP数据平台的互联网用户行为数据。
第二方面:精准营销
在客户画像的基础上银行可以有效的开展精准营销,包括:
(1)实时营销。实时营销是根据客户的实时状态来进行营销,比如客户当时的所在地、客户最近一次消费等信息来有针对地进行营销(某客户采用信用卡采购孕妇用品,可以通过建模推测怀孕的概率并推荐孕妇类喜欢的业务);或者将改变生活状态的事件(换工作、改变婚姻状况、置居等)视为营销机会;
(2)交叉营销。即不同业务或产品的交叉推荐,如招商银行可以根据客户交易记录分析,有效地识别小微企业客户,然后用远程银行来实施交叉销售;
(3)个性化推荐。银行可以根据客户的喜欢进行服务或者银行产品的个性化推荐,如根据客户的年龄、资产规模、理财偏好等,对客户群进行精准定位,分析出其潜在金融服务需求,进而有针对性的营销推广;
(4)客户生命周期管理。客户生命周期管理包括新客户获取、客户防流失和客户赢回等。如招商银行通过构建客户流失预警模型,对流失率等级前20%的客户发售高收益理财产品予以挽留,使得金卡和金葵花卡客户流失率分别降低了15个和7个百分点。
第三方面:风险管控
包括中小企业贷款风险评估和欺诈交易识别等手段。
(1)中小企业贷款风险评估。银行可通过企业的产、流通、销售、财务等相关信息结合大数据挖掘方法进行贷款风险分析,量化企业的信用额度,更有效的开展中小企业贷款。
(2)实时欺诈交易识别和反洗钱分析。银行可以利用持卡人基本信息、卡基本信息、交易历史、客户历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎进行实时的交易反欺诈分析。如IBM金融犯罪管理解决方案帮助银行利用大数据有效地预防与管理金融犯罪,摩根大通银行则利用大数据技术追踪盗取客户账号或侵入自动柜员机(ATM)系统的罪犯。
第四方面:运营优化。
(1)市场和渠道分析优化。通过大数据,银行可以监控不同市场推广渠道尤其是网络渠道推广的质量,从而进行合作渠道的调整和优化。同时,也可以分析哪些渠道更适合推广哪类银行产品或者服务,从而进行渠道推广策略的优化。
(2)产品和服务优化:银行可以将客户行为转化为信息流,并从中分析客户的个性特征和风险偏好,更深层次地理解客户的习惯,智能化分析和预测客户需求,从而进行产品创新和服务优化。如兴业银行目前对大数据进行初步分析,通过对还款数据挖掘比较区分优质客户,根据客户还款数额的差别,提供差异化的金融产品和服务方式。
(3)舆情分析:银行可以通过爬虫技术,抓取社区、论坛和微博上关于银行以及银行产品和服务的相关信息,并通过自然语言处理技术进行正负面判断,尤其是及时掌握银行以及银行产品和服务的负面信息,及时发现和处理问题;对于正面信息,可以加以总结并继续强化。同时,银行也可以抓取同行业的银行正负面信息,及时了解同行做的好的方面,以作为自身业务优化的借鉴。
银行是经营信用的企业,数据的力量尤为关键和重要。在“大数据”时代,以互联网为代表的现代信息科技,特别是门户网站、社区论坛、微博、微信等新型传播方式的蓬勃发展,移动支付、搜索引擎和云计算的广泛应用,构建起了全新的虚拟客户信息体系,并将改变现代金融运营模式。
大数据海量化、多样化、传输快速化和价值化等特征,将给商业银行市场竞争带来全新的挑战和机遇。数据时代,智者生存,未来的银行信贷,是从数据中赢得未来,是从风控中获得安稳。

阅读全文

与银行大数据的应用相关的资料

热点内容
微信动态表情包搞笑 浏览:436
可以去哪里找编程老师问问题 浏览:608
win10lol全屏 浏览:25
qq图片动态动漫少女 浏览:122
sai绘图教程视频 浏览:519
如何分析加载减速法数据 浏览:672
手机怎么免费转换pdf文件格式 浏览:668
在哪个网站可以驾照年检 浏览:89
iphone可以播放ape吗 浏览:991
matlabp文件能破解吗 浏览:817
四川省高三大数据考试是什么 浏览:457
导出打开java文件 浏览:671
win10蓝屏是硬盘坏了么 浏览:46
沈阳哪里适合学编程 浏览:811
django19常用版本 浏览:521
三国志11保存在哪个文件夹 浏览:88
iphone4s加速 浏览:108
编程内存和显卡哪个重要 浏览:672
android连接网络打印机 浏览:195
linuxsftp如何上传文件 浏览:603

友情链接