A. 供应链大数据可以帮助企业实现哪些智能化应用
供应链大数据可以帮助企业实现以下智能化应用:
1. 预测需求:利用历史销售数据、市场趋势等信息进行分析和预测,帮助企业更准确地预测产品需求量,从而优化物流和库存管理。
2. 优化物流路线:通过对供应链中各种物流信息的收集和分析,可以建立物流网络模型,提高整个供应链的效率和响应速度。
3. 质量控制:通过监控供应链中的关键环节,如原材料采购、生产过程、质检等,及时发现问题并进行纠正,以保证产品质量。
4. 成本优化:通过分析供应链中的成本结构和资并纤握源配置,寻找成本节省的机会,并进行优化。
5. 供绝庆应商选择和管理:通过对供应商的评价和监控,帮助企业选择合适的供应商并进行管理,降低风险和成本。
6. 可追溯性:通过对竖岁供应链中各个环节的数据进行记录和追踪,帮助企业保证产品的可追溯性和安全性。
B. 大数据具体是做什么有哪些应用
大数据即海量的数据,一般至少要达到TB级别才能算得上大数据,相比于传统的企业内数据,大数据的内容和结构要更加多样化,数值、文本、视频、语音、图像、文档、XML、HTML等都可以作为大数据的内容。
2. 政府行业在大数据分析部分包括质检部门、公安部门、气象部门、医疗部门等,质检部门包括对商品生产、加工、物流、贸易、消费全过程的信息进行采集、验证、检查,保证食品物品安全;气象部门通过构建大气运动规律评估模型、气象变化关联性分析等路径,精准地预测气象变化,寻找最佳的解决方案,规划应急、救灾工作。
3. 金融行业的大数据分析多应用于银行、证券、保险等细分领域,在大数据分析方面结合多种渠道数据进行分析,客户在社交媒体上的行为数据、在网站上消费的交易数据、客户办理业务的预留数据,结合客户年龄、资产规模、消费偏好等对客户群进行精准定位,分析其在金融业的需求等。
C. 利用大数据分析语音质检的优势在哪
大数据分析语音质检可以提升质检分析的精准度,另外,当呼叫中心日电话呼出量和回呼入量达到上百答G甚至更大体量时,必将伴随一些技术问题的出现及人工无法解决的情况。呼叫中心不仅对大批量的语音进行检查,而且希望在最短时间内对导出结果进行二次分析统计,这就是由数据规模增大带来的技术问题。若没有依托于底层大数据平台,很难快速准确的对大体量数据进行运转处理,这也是中金数据语音分析云不同于行业内利用单机或集群的方式处理语音数据的优势所在。
D. 大数据时代的质量机遇
大数据时代的质量机遇
出差在外,想选择一家适合自己的酒店。只需在手机App上输入对酒店的个性化要求,手指轻轻一按,几十家甚至上百家酒店就立马一一呈现在眼前。卫生条件、服务态度、餐饮特色、地理位置……通过查看大量网友的点评和酒店分数排名,你可以在短短几分钟内方便快捷地寻找到自己心仪的酒店;出门办事,同样只需在App中下单,2~3分钟后一辆专属于你的专车就会到达指定地点。车上不仅提供了标配的矿泉水和充电器,还有司机发自内心的热情服务。
这只是我们身边依靠大数据改变生活方式的两个例子。在我们所享受到的方便快捷、优质服务的背后,就是大量以往消费者消费数据的支撑,而你对此次消费或服务的评价和反馈又将为这个大数据库增加新的信息。8月19日,国务院常务会议通过了《关于促进大数据发展的行动纲要》,提出要开发利用好大数据这一基础性战略资源。毫无疑问,我们已经进入了大数据时代。那么,大数据将给中国质量带来什么?
质量就是数据
武汉大学质量发展战略研究院早在几年前就开始了质量大数据的研究,取得了不少成果。几年来,他们对质量大数据的语义进行了分析,建立了食品、电器、通用产品三个语料库,建立了大数据监测网站和数据分析模型。
在谈到“质量”与“大数据”的关系时,院长程虹阐明了自己的观点:“质量离不开数据,质量的本质就是数据。”程虹说,无论在产品的生产环节还是在销售环节,都要依赖于大量的数据。在产品的检验检测中,离不开数据;在政府的质量监管中,同样离不开数据。
《关于促进大数据发展的行动纲要》中特别提到,要在城市建设、社会救助、质量安全、社区服务等方面开展大数据应用示范。大数据对质量的重要性已经成为很多质量人的共识。中国计量学院经管学院质量发展研究院教授周立军认为:“大数据是信息公开的基础,对于提高决策的科学性、有效性都有很大的帮助;大数据对开展质量预警的作用也很明显,可以让发出的质量预警更加精准;在建立企业信用系统过程中,大数据也被寄予厚望,能够发挥很大作用。”
缺乏消费领域的质量数据
山东大学质量管理研究中心主任温德成在谈到质量大数据时,首先讲到的是质检系统的质量大数据。“质检系统收集了很多质量数据,但这些数据还没有得到很好的整合、分析和应用。”温德成提到了质量监督抽查,“监督抽查中获得的产品质量数据很多,绝不仅仅是一个合格率、不合格率的问题。如何利用好这些数据,是大数据时代质检部门应该首先思考的问题。”温德成也介绍,在国外,掌握大量数据的其实并不是政府,而是一些社会机构。这些机构收集了大量来自市场、来自消费者的评价和反馈,这些数据正是目前我国所缺乏的。
缺乏消费领域的质量数据,这也是程虹从事质量大数据研究以来最深刻的感受。“以前,质量控制是基于生产过程的控制;但是现在,成功企业的质量控制恰恰不是基于生产导向,而是基于消费导向。也就是说,来自消费者、来自市场的数据比来自生产过程中的数据更有意义。遗憾的是,我们现在没有这部分数据,我认为这是我国质量大数据发展的一个瓶颈。如果一个企业不知道自己的客户需要什么、喜欢什么,不掌握这些质量大数据,要想做好产品,恐怕很难;同样地,如果一个政府不知道市场的真实情况到底是什么,不掌握这些质量大数据,要想做好质量监管,同样也很难。”
技术将发挥重要作用
选餐厅先看大众点评,选酒店先看酒店分数排名,选专车先看以往乘客评价……互联网上这些大量的数据就是来自消费者、来自市场。专家们认为,利用好质量大数据,不仅可以解决政府监管的很多难题,甚至可以迎来中国质量发展的一次革命性机遇。
作为一名普通消费者,程虹说自己最近喜欢上了一件事情,那就是坐Uber(优步)专车。在自己的一篇文章里,程虹详细分析了专车服务的质量大数据是如何颠覆传统的出租车运营监管机制。出租车最大的难题,无非就是信息不对称,也就是“人找不到车,车找不到人”。但是,互联网尤其是移动互联网,包括实时定位技术,使司机和乘客不用付出更多的搜索成本,就能找到彼此。因为大数据让双方之间信息透明、信息对称了。至于政府所关心的车辆服务质量问题,市场其实早就给出了答案,根本用不着政府操心,乘客的评价和结算的延迟支付,都会让专车司机不敢稍有懈怠地去提供高质量的服务。“以前让政府头疼的高峰时间打不着出租车、出租车服务质量不好等难题,在大数据时代,就这样轻松地被市场解决了。政府的角色应该从出租车的管制者变成大数据平台的提供者。”程虹认为,这是典型的质量大数据解决政府做不到的事情的应用案例。
程虹坦言,技术一小步,制度一大步。“大数据这个新技术已经来了,我们的监管制度也必须发生变化,甚至是革命性的变革与之配套,才能让新技术真正发挥出神奇的力量。”
以上是小编为大家分享的关于大数据时代的质量机遇的相关内容,更多信息可以关注环球青藤分享更多干货