导航:首页 > 网络数据 > 大数据apm

大数据apm

发布时间:2024-01-31 14:17:47

❶ 国内应用性能管理(APM)厂商哪家比较好主要考虑技术和服务层面

我在APM行业工作过,目前主流的APM厂商是博睿数据和听云,据我了解,两家的发展重点完全不同:首先,听云更多投入是在市场开拓,包括建立分支机构和大力发展渠道代理,博睿数据在市场策略上略显保守,更注重技术研发投入,据我所知他们的技术人员和技术专利是最多的,其次,在服务客户方面,从两家所展示的案例上来看,博睿数据更侧重大型企业,听云大企业也有,但中小占比较高,再次是产品线和能力,两家都具有端到端的能力,但博睿数据在数据采集和移动应用监控领域具有独家产品,大数据和人工智能投入也很早,现在都有相应产品输出,听云也形成了全套产品线,但这几年在研发产出上并没有太大的新动作。

我觉得IT运营是一个高风险的职业,尤其现在与数字化业务紧密结合,更是如履薄冰,APM对于IT运营来说是极好的工具,能让问题防患于未然,能让IT运营工作有理有据,不再背锅,对于供应商的选择当然要非常重视,除了对比产品的功能,有一个细节往往是大家忽略的,那就是APM探针对资源的占用情况,这决定各APM服务商在基本功能相当的基础上,判定谁更优质的重要因素,建议大家可以通过对比测试被监控应用在无探针和有探针下的性能损耗来判断,一切用数据说话。

❷ 大数据+分析学 数字油田的两把利剑

大数据+分析学 数字油田的两把利剑
在石油和天然气行业,数据都是以太字节(TB)和拍字节(PB)来表示的。这两个词语对于你来说或许有些陌生,下面我给你打个比方,一切就清晰明了了。
一个吉字节(GB)相当于七分钟的高清视频;一个太字节(TB)等于1024个吉字节(GB);而一个拍字节(PB)等于1024个太字节(TB),相当于13.3年同样的高清视频。
每天全球油气行业都会产生数百个太字节(TB)的数据,每年总计达一个拍字节(PB)数据,也就是13.3年的高清视频了。在这里举个例子,在北美1200英里的管道里每天都会产生大约1TB数据。
把这些数据转化为可用的信息的学科称为分析学,它将成为油气行业削减成本方面的新前沿学科。
2014年2月,美国通用电气公司(GE)软件研究院副总裁Bill Ruh在卡尔加里举行的“通用电气公司Mind + Machines”研讨会上说:“任何事情都可以进行分析”。
分析基本上是在大量的数据中寻找有意义的模型,它运用数学、统计学、计算机编程和操作等方面的知识将问题性能进行量化分析。
在分析数据时发现的模型可以用来预测未来的资产设备表现,以确定设备性能可以提高的范围,同时可以通过识别故障区域在故障发生前制定风险管理计划。
Ruh说:其他工业部门已经使用分析学方法来提高生产力从而降低成本。通用电气公司在电力行业中已经取得了成功,运用分析法来优化风力发电机的电力生产。通用电气公司改变了风力发电机组安装前使用计算机建模的传统方法。
“我们想,如果将历史数据进行优化会怎样?这意味着要对风力发电机产生的数据进行解析并应用这些信息。这一结果增加了5%的电力输出和20%的利润,而风力发电机组并没有发生任何物理变化。”
Ruh表示:作为快消品的手机产业压缩了数字传感器技术的成本,网络连接的低成本完全可以使所有油田设备联网,分析现成的数据流。通用电气公司认为通过数据分析油气行业可以提高设备的可靠性和利用率,从而提高运营效率。
Ruh 表示,“你可以从零停机、零差错中赚取很多钱,毕竟油气行业一旦发生维修状况造成的损失将是巨大的。”
通用电气公司油气软件服务部门总经理Ashley Haynes Gaspar说:“使用分析学方法最大的好处是优化处理了整个油气项目,而油气项目得到优化是最重要的,我们相信,利用分析学你能更有效率地从地球上采出更多的石油,在油气行业中将增长6%-8%的潜在产出。”
最近,信息技术供应商已经尝试对油气行业进行数据分析并找到解决方案,但目前还没有成功。目前的计算公式是在手机中常见的,基于应用系统进行模拟并将其分解成可管理的部分。
自通用电气公司在加拿大工业推动数字油田的六个月以来,出现了一系列成功基于app的方法。其中一个例子是Apache公司正努力提高电潜泵性能的操作。
Apache公司在北美和世界各地有成千上万的电潜泵。由于进行了实时监控,德克萨斯基地公司已经收集了大量的电潜泵性能数据、地下岩层特征和地质信息。
Apache公司与通用电气公司合作分析了这些数据,针对不同油井选择不同的电潜泵,然后提高泵的运行时间并成功预测这些泵的使用寿命。
这一系列工作有助于Apache公司避免重大的生产损失,其中最大的好处是可以将此成功经验快速复制至整个行业。
据该公司称,全球电潜泵性能提高1%后,将额外提供超过50万桶/天的原油。即使在油价如此低的今天,这也相当于每年会额外产生数十亿美元的效益。
Apache公司的成功来自于对硬件和软件的充分利用,一般被称为资产性能管理(APM)。实时监控器将一连串数据传输到中央设备,在那里他们被相应的大数据分析软件处理,然后找出最优方案。
通用电气公司油气测控加拿大区总经理Orvil Smith 说:“通过我们与客户所做的工作发现,大数据分析是有所作为的。在以往,当一个电潜泵失灵时,企业将花费很长时间才能使油井恢复生产。”
但如果你能在设备失灵前就预见到这个问题,就会知道什么时候该把它停下来并更换上提前准备好的新部件,这样就可以避免长时间停机带来的损失。

❸ 什么是APM应用性能管理有哪些服务商

Application Performance Management应用性能管理。是一个比较新的网络管理方向,主要指对企业的关键业务应用进行监测、优化,提高企业应用的可靠性和质量,保证用户得到良好的服务,降低IT总拥有成本(TCO)。使用全业务链的敏捷APM管理,可使一个企业的关键业务应用的性能更强大,可以提高竞争力,并取得商业成功,因此,加强应用性能管理(APM)可以产生巨大商业利益。国内外的APM有RichAPM、Newrelic等。Newrelic是外国的产品,要用还是选择RichAPM比较习惯。

❹ 大数据行业龙头股

大数据行业龙头股有博睿数据、京蓝科技、永鼎股份、万方发展、中科星图、金信诺、三人行、华胜天成、吉大正元。
1、博睿数据
北京博睿宏远数据科技股份有限公司主营业务是为企业级客户提供应用性能监测服务、销售应用性能监测软件及提供其他相关服务。公司主要的产品分为应用性能监测产品(APM)、网络性能监测产品(NPM)、大数据分析产品、质量控制产品。
2、京蓝科技
京蓝科技股份有限公司主营业务包括智慧生态运营服务、清洁能源服务综合在内的生态环保业务。主要产品有节水灌溉、基础建设、市政园林、地产园林、土壤修复、清洁能源、产品销售、运营维护、技术服务。
3、永鼎股份
江苏永鼎股份有限公司是一家主营光缆、电缆及通信设备、房地产等行业的公司,公司研制、生产和销售通信光缆、光器件、通信电缆、电力电缆、电力柜等系列产品,提供配套工程服务的专业公司。
4、万方发展
万方城镇投资发展股份有限公司主营业务方向为医疗信息化软件开发以及粮食加工、贸易等相关业务。公司主要产品包括基于电子病历的医院信息平台、人口健康信息平台、移动互联网医疗平台 。
5、中科星图
中科星图股份有限公司主营业务是面向国防、政府、企业、大众等用户提供数字地球产品和技术开发服务。主要产品是数字地球基础平台产品、数字地球应用平台产品。
6、金信诺
深圳金信诺高新技术股份有限公司从事以信号联接技术为基础的全系列信号互联产品的研发、生产和销售,为全球多行业顶尖的企业客户提供高性能、可设计定制的“端到端”的信号传输及连接的解决方案、产品和服务。
7、三人行
三人行传媒集团股份有限公司的主营业务是数字营销服务、场景活动服务和校园媒体营销服务。公司的主要服务是数字营销服务、场景活动服务、校园媒体营销服务等。
8、华胜天成
北京华胜天成科技股份有限公司的主营业务是系统集成、软件及自主产品业务及专业IT服务,公司主要产品包括系统产品及系统集成、软件及软件开发、专业服务。作为国内最早涉足云计算服务的企业之一,公司积极布局全产业链路,在云计算综合服务领域具有显著优势。
9、吉大正元
长春吉大正元信息技术股份有限公司的主营业务以密码技术为核心,开展信息安全产品的研发、生产和销售及服务

❺ 大数据对应用性能管理至关重要

大数据对应用性能管理至关重要
关于大数据方法是否与应用性能管理(APM)有关,目前仍存在某些争论。一些专家表示,即使没有大数据方法,复杂的分析和采样数据也足以应对监测和诊断。而事实上,APM不仅具备监测与警报功能,还可帮助用户了解和提升应用性能。大数据方法提供的完整且正确的数据和分析功能可以帮助用户不断提升应用性能。

大数据的主要作用是在无需提出假设,只需设计采样策略,并通过实验来测试一组理论的情况下获得直接信息。这种通过大数据方法来了解问题的全貌,并由此得到完整且正确分析数据的方式,消除了这一过程中的采样或选择偏差。任何一个时点采样、过滤或汇聚的数据,得到的结果都仅代表真相的一小部分。
在现实中,一些性能问题经常干扰应用的运行,大数据方法则可帮助IT人员更有效地分解和克服长尾问题。大数据使性能分析不再模棱两可。在缺乏精确数据的情况下,性能分析会引发猜测并产生误导。所以,学会剔除不相干因素也同样重要。在进行分析时,IT团队经常会在没有详细取证的情况下试图使用既有知识,比如“我们上次遇到的性能问题是关于日志代码的”并频繁导致方向性错误。但有了大数据,我们就可以很快知道“这不是日志代码问题”,因为在没有记录日志代码的前提下我们捕获了所有内容,不必在此浪费时间和精力。
间歇性性能问题通常是最难诊断的,因为IT人员难以发现问题根源,没有故障回溯功能,缺少发现问题的机会,在这些长期存在的问题中,其环境也在发生变化。大数据方法则可帮助IT人员快速诊断问题。大数据方法无需预先了解故障情况,因为诊断数据已被全面记录在案。同样,无论问题何时发生以及环境如何变化,取证数据都随时可用。
大数据方法在诊断云、虚拟化或容器化环境中的问题时非常有效。在这些短暂的应用环境中,应用基础设施不断变化,导致触发/采样方法在组件生效和失效时丢失状态变化。
了解用户群体对于了解全球性能趋势信息非常重要,但若不完全了解步骤,有时则会导致严重的性能问题。单个用户操作可能会导致整个应用出现性能问题,大数据方法则可以确保所有取证数据均可用于还原“事故现场”。
取证探查是APM大数据的优势之一,IT人员甚至可以发现一些以前未被发现的问题。通常,丰富的历史交易细节或高分辨率环境数据会揭示完全无法预见的行为及用户如何使用或破坏应用的极端状况。我们不仅能利用大数据进行监测和诊断,还能有条不紊地减少性能膨胀。深度性能数据的可用性使我们能够专注于持续提升性能。
应用会随着新功能的发布而不断变化,并导致技术和性能问题不断积累。随着时间的推移,一个性能良好的应用也开始变慢。大数据则有助于了解哪些应用组件占用了大量时间,并将主要精力用于优化性能。
企业永远不会在完全隔离的情况下设计,构建或运行应用。而某些情况下,不同应用可能会共享系统、网络或基础设施。在其他情况下,应用可能会共享通用函数库,数据或API。共享组件或资源虽然有许多好处,但也会常常导致性能问题影响多个应用。
大数据方法能帮助应用支持团队在整个应用环境中发现性能问题及其运行模式,而不仅仅是单个应用组件。一旦在单个应用中发现问题,大数据分析方法就会帮助查找具有相同问题或存在风险的其他应用。
当关键应用出现性能问题时,其原因可能是质保测试未通过或生产环境大不如前。IT人员会分析问题并提出建议。一方面,可以发现分流工作能否成功在很大程度上取决于取证数据的质量,缺乏证据会使团队分裂。另一方面,完整且准确的取证数据消除了模棱两可的情况,有利于凝聚团队,更快地找到解决方案。

❻ 有什么知名的开源apm(Application Performance Management)工具吗

现在会有很多知名的开源的这类的系统体系的的,不过大多数都是参考了目前谷歌所做的大规模分布式系统,其实基本上实现的功能就是一种监控的一种功能,然后经过监控去获取一些数据的目的。


Zipkin

这个项目主要针对的是java领域的一些性能分析的,其实如果做java相关的,其实更应该看看这个开源的项目。项目好像是由韩国团队开源出来的,通过一些java的一些机制来做来进一步实现抓取性能数据的目的。Pinpoint等相关工具的作用收集调用链路上每个服务的性能数据,方便工程师能够快速定位问题。

阅读全文

与大数据apm相关的资料

热点内容
刷子公司网站怎么做 浏览:272
86版本艾尔文测试 浏览:714
深宫曲文件夹是哪个 浏览:618
苹果u盘修复工具哪个好用 浏览:124
微信动态表情包搞笑 浏览:436
可以去哪里找编程老师问问题 浏览:608
win10lol全屏 浏览:25
qq图片动态动漫少女 浏览:122
sai绘图教程视频 浏览:519
如何分析加载减速法数据 浏览:672
手机怎么免费转换pdf文件格式 浏览:668
在哪个网站可以驾照年检 浏览:89
iphone可以播放ape吗 浏览:991
matlabp文件能破解吗 浏览:817
四川省高三大数据考试是什么 浏览:457
导出打开java文件 浏览:671
win10蓝屏是硬盘坏了么 浏览:46
沈阳哪里适合学编程 浏览:811
django19常用版本 浏览:521
三国志11保存在哪个文件夹 浏览:88

友情链接