① 一个企业,特别是电商类的,如何进行大数据分析
大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面——
预测性分析能力:数据挖掘可以让分析员更好地理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
数据质量和数据管理:通过标准化的流程和工具对数据进行处理,可以保证一个预先定义好的高质量的分析结果。
可视化分析:不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求,可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
语义引擎:由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析、提取、分析数据,语义引擎需要被设计成能够从“文档”中智能提取信息。
数据挖掘算法:可视化是给人看的,数据挖掘就是给机器看的,集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值,这些算法不仅要处理大数据的量,也要处理大数据的速度。
据我所知多瑞科舆情数据分析站大数据分析还可以。针对单个网站上的海量数据,无遗漏搜集整理归档,并且支持各种图文分析报告;针对微博或网站或微信,活动用户投票和活动用户评论互动信息整理归档,统计分析精准预测制造新数据;针对某个论坛版块数据精准采集,数据归类,出分析报告,准确定位最新市场动态;针对某个网站监测用户的操作爱好,评定最受欢迎功能;针对部分网站,做实时数据抽取,预警支持关注信息的最新扩散情况;针对全网数据支持定向采集,设置关键词搜集数据,也可以划分区域或指定网站搜集数据针对电商网站实时监测评论,归类成文档,支持出报告。
大数据会影响整个社会的发展,主要看是想要利用数据做什么了
② 企业如何应用大数据分析
企业应用大数据分析就要借助一些数据分析工具,比如商业智能软件FineBI,有了工具就等于完成了一半。一般数据分析工作可分为以下三个步骤:
1、明确业务需求
按业务驱动的角度,了解业务部门需要解决什么样的问题,业务范围是什么,所要达成的效果又是怎样,依据这些需求来实施部署商业智能工具。
2、数据结合与关联
由于企业数据海量的特点和多元化的结构形式,需要商业分析工具具有海量的数据探索和分析能力,能够实时有效的与已有数据结合,产生精确的行动方向。
此外,企业数据的价值最终体现在客户的消费上,因此,对于能直接产生价值的数据要和客户关系和交易数据进行结合和关联,从而做出直接导向效益的决策。
3、培养数据分析人才
企业的数据分析,商业智能系统的部署是关键,但业务人员数据分析水平也同样重要。这就要求人员在信息过程管理当中要逐渐培养科学化管理数据的意识,企业上下也要统一共识,从而形成对企业数据的综合管理。
③ 企业的大数据分析怎么做
企业大数据分析要怎抄么做具体还是看企业的互联网布局,一般来说,企业要先搭建互联网平台,然后利用这些平台获取数据,用户的访问数据、反馈数据,还有互联网上的相关数据也要收集起来,然后通过专业的数据分析方法进行分析。鸭梨科技搭建的互联网生态圈有大数据分析,利用互联网生态圈获取的数据为企业提供决策依据。
④ 企业想要成功布局大数据的七大关键步骤
企业想要成功布局大数据的七大关键步骤
在这个大数据已经成为市场一个美味的“大蛋糕”的今日,大多数企业都很想要分得一块。大多数企业正做好了布局大数据的准备,那么,该怎么做才能成功去布局?
最近,电子科技大学教授,云基地大数据实验室合伙人周涛在接受采访时提出,对于普通企业要通过修炼成为大数据企业,关键要做好7个步骤:
1.要实现数据化。企业要为此做好计划,到底需要保存什么样的数据,以人为中心的数据还是以产品为中心,还是更关注企业运营,需要做好这样的计划,然后再将企业生产经营中的数据保存下来,即便是现在看来没什么用的数据,未来也可能产生巨大的价值。比如说像售楼处、体验店客户的来访数据,就有必要完整的记录下来。包括怎么过来的,一个人来还是几个人,有老人和小孩吗,穿什么样的衣服等等,还有客户的情绪,看了什么,问了什么问题,最后买了什么东西,都是非常重要的数据。
另外,企业内部人力资源的各个方面也都可以记录下来,这些可以进行挖掘和分析的数据。他举例说,长虹公司在自己的生产线设置了很多传感器,监测温度、湿度、震动、噪音、颗粒等等因素,希望了解到生产过程中哪些因素会对员工产生明显影响。他们此前都认为温度和颗粒可能对于员工操作和产品质量影响最大,但是事实上最终数据分析的结果,温度是没有什么影响的,恒温的控制对于生产效率和合格率的贡献并不像想象中那么大,反而是噪音对于员工情绪以及生产的影响非常重要。要成为大数据企业,第一步企必须要实现数据化。
2.企业要自己培养一些大数据理念,或者是小数据挖掘的团队。做大数据,企业的规模不一样,要求也不一样。如果企业规模足够大,比如说是电信运营商或者电力、银行这样的行业,可能会形成一个大数据的团队。如果不是,比如说就是简单的服务企业,那么形成理念就可以了。现在我们认为比较好的数据科学家,也不是说就是特别擅长或适应网络,这样的人不重要了,重要的是要有武器,什么样的问题来了知道怎么解决。
关键我们认识是要培养四种理念:
(1)除了结构化数据以外还有文本、音频、图像、遥感、网络、行为轨迹、时间数据,这些数据怎么处理,它存在的大挑战是什么。
(2)一定要懂预测,因为绝大部分的大数据应用回到预测中,预测里面很多方法都是基准学习的,而基准学习目前最火的方向是集群学习。
(3)要走分布式存储计算,这绝对不是说我知道给Hadoop 、Maprece、Hbase就够了,关键问题是首先要知道怎么样去搭一个混合式的,你的数据来了,我到底是应该牺牲我的一致性还是牺牲操作性,大概的成本多少,哪些数据挖掘的重要算法我要把他Hadoop、Maprece实现,哪些算法要通过SPTA,可变逻辑治理是在硬件里面,从而替代CPU、GPU。
(4)需要整个数据向外的发展,知道哪些数据可能在外部产生什么样的重要价值,或者外部的数据能够在你的企业产生什么样的重要价值。企业应该培养出这四个能力,建立起企业数据挖掘的人才团队。
3.企业一定要做好自己的外部数据储备。我们都说“书到用时方恨少”,很多的企业,比如说像服装销售这样的传统行业,我要进的货在淘宝、天猫上卖的怎么样?在淘宝、天猫哪一个店铺怎么样?它的竞争品牌是什么样售价,怎么样销售的?对于这样一些数据,如果到需要的时候才去找,往往都来不及了。同样的道理。比如银行给中小企业发放贷款的时候,希望了解到它的用水、用电、生产、交通数据,例如通过摄像头就能知道这个企业到底有多少车运行,这些数据可能对于中小企业发放贷款决策都很重要。但是当你要发贷款的时候,再去问已经没有机会了,或者说成本太高了。我们建议,企业应该学会通过公共渠道或者数据交换的方法,根据自己的业务需求来量身定做自己的外部数据和战略数据。
4.企业要建设自己的大数据管理与应用平台。对于很多企业,做大数据并不是意味着要自己去建设数据中心。随着云计算和云数据中心出现,使用外部数据中心的成本已经非常低了,数据存储的费用也是在成倍的下降。但是,企业要做大数据,必须要在IT基础设施方面具有比较好的数据处架构,要用大一些工具比如数据分布式存储、Hadoop等等。很关键的企业不仅要具备一个数据中心的硬件,还要考虑和企业业务方向结合,不仅就是包括了数据的采集、数据库架构,向上的分析模块,再往上的API数据出口,以及横向的一些业务模块和出口这些东西。要做成企业的大数据管理应用平台,我们强调一定要从企业的业务出发,量体裁衣,企业首先必须要搞清楚自己的业务形态是什么。
5.大企业一定要有数据侦测的能力,需要有创新思维的人随时思考这些问题,比如企业占有的数据到底在外部能够产生什么样大的作用。就像我们经常拿雅昌艺术中心的例子,它存了很多艺术品的数据,所以最后它可以发布艺术指数。同样国家电网也发布两个指数,一个叫重工业用电指数,一个叫轻工业用电指数。淘宝网有它的CPI指数,还有很多企业的一些数据,实际上都可以发挥想象不到的价值。
6.一个大数据企业包括未来现代化企业,一定要有开放共享的态度。一方面需要企业把自己的很多问题社会化,另一方面企业要尽量去通过一些平等办法,通过数据交换的方式互相共享形成数据化。
7.企业还要做好数据方面的战略投资。我认为有三种比较先进的模式。
一种模式叫做产业链布局,比如说海尔、长虹可以投物联网,对物联网企业创新进行投入。比如说中信集团可以关注医疗,在这个方面寻找相关的数据应用。
第二个方面就是技术,你要知道哪些是硬技术创新,特别是在基础术设施层面的,比如加速存储,云计算的一些技术,比如数据挖掘,垂直应用分析,这个方面集中了很多创新也可以形成很大的规模。
第三种模式是数据集方面的投资,我们知道阿里巴巴投资高德是为了数据,它投资新浪微博不仅是要投钱还要花钱买数据,所有这一切本质还是想把数据流动起来做更大的事情。这种投资就是集成数据,强调数据流动性。这些投资里面有几点是需要注意的,一是要去关注企业的数据价值,其次要关注早期的投资,去长期指引而不是短期追逐回报率,最后还要多关注传统行业。
周涛教授提出,大数据的本质不在于数据量有多少,也不在于是否是异构的数据,而是在于数据是关联的,整体的数据可以流动起来。他认为,跨领域关联,通过一加一产生远大于二的价值才是大数据的精髓。
当然,数据本身并不产生价值,只有通过大数据的分析去解决难题才是价值,而大数据对于企业营销的作用是可大可小的,不过在这个把大数据作为概念的时代,企业还是要做好布局大数据的准备,向大数据企业修炼。
⑤ 怎样搭建企业大数据平台
步骤一:开展大数据咨询
规划合理的统筹规划与科学的顶层设计是大数据建设和应用的基础。通过大数据咨询规划服务,可以帮助企业明晰大数据建设的发展目标、重点任务和蓝图架构,并将蓝图架构的实现分解为可操作、可落地的实施路径和行动计划,有效指导企业大数据战略的落地实施。
步骤二:强化组织制度保障
企业信息化领导小组是企业大数据建设的强有力保障。企业需要从项目启动前就开始筹备组建以高层领导为核心的企业信息化领导小组。除了高层领导,还充分调动业务部门积极性,组织的执行层面由业务部门和IT部门共同组建,并确立决策层、管理层和执行层三级的项目组织机构,每个小组各司其职,完成项目的具体执行工作。
步骤三:建设企业大数据平台
基于大数据平台咨询规划的成果,进行大数据的建设和实施。由于大数据技术的复杂性,因此企业级大数据平台的建设不是一蹴而就,需循序渐进,分步实施,是一个持续迭代的工程,需本着开放、平等、协作、分享的互联网精神,构建大数据平台生态圈,形成相互协同、相互促进的良好的态势。
步骤四:进行大数据挖掘与分析
在企业级大数据平台的基础上,进行大数据的挖掘与分析。随着时代的发展,大数据挖掘与分析也会逐渐成为大数据技术的核心。大数据的价值体现在对大规模数据集合的智能处理方面,进而在大规模的数据中获取有用的信息,要想逐步实现这个功能,就必须对数据进行分析和挖掘,通过进行数据分析得到的结果,应用于企业经营管理的各个领域。
步骤五:利用大数据进行辅助决策
通过大数据的分析,为企业领导提供辅助决策。利用大数据决策将成为企业决策的必然,系统通过提供一个开放的、动态的、以全方位数据深度融合为基础的辅助决策环境,在适当的时机、以适当的方式提供指标、算法、模型、数据、知识等各种决策资源,供决策者选择,最大程度帮助企业决策者实现数据驱动的科学决策。
关于怎样搭建企业大数据平台,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
⑥ 大数据怎么实现的
搭建大数据分析平台的工作是循序渐进的,不同公司要根据自身所处阶段选择合适的平台形态,没有必要过分追求平台的分析深度和服务属性,关键是能解决当下的问题。大数据分析平台是对大数据时代的数据分析产品(或称作模块)的泛称,诸如业务报表、OLAP应用、BI工具等都属于大数据分析平台的范畴。与用户行为分析平台相比,其分析维度更集中在核心业务数据,特别是对于一些非纯线上业务的领域,例如线上电商、线下零售、物流、金融等行业。而用户行为分析平台会更集中分析与用户及用户行为相关的数据。企业目前实现大数据分析平台的方法主要有三种:(1)采购第三方相关数据产品例如Tableau、Growing IO、神策、中琛魔方等。此类产品能帮助企业迅速搭建数据分析环境,不少第三方厂商还会提供专业的技术支持团队。但选择此方法,在统计数据的广度、深度和准确性上可能都有所局限。例如某些主打无埋点技术的产品,只能统计到页面上的一些通用数据。随着企业数据化运营程度的加深,这类产品可能会力不从心。该方案适合缺少研发资源、数据运营初中期的企业。一般一些创业公司、小微企业可能会选择此方案。(2)利用开源产品搭建大数据分析平台对于有一定开发能力的团队,可以采用该方式快速且低成本地搭建起可用的大数据分析平台。该方案的关键是对开源产品的选择,选择正确的框架,在后续的扩展过程中会逐步体现出优势。而如果需要根据业务做一些自定义的开发,最后还是绕不过对源码的修改。(3)完全自建大数据分析平台对于中大型公司,在具备足够研发实力的情况下,通常还是会自己开发相关的数据产品。自建平台的优势是不言而喻的,企业可以完全根据自身业务需要定制开发,能够对业务需求进行最大化的满足。对于平台型业务,开发此类产品也可以进行对外的商业化,为平台上的B端客户服务。例如淘宝官方推出的生意参谋就是这样一款成熟的商用数据分析产品,且与淘宝业务和平台优势有非常强的结合。在搭建大数据分析平台之前,要先明确业务需求场景以及用户的需求,通过大数据分析平台,想要得到哪些有价值的信息,需要接入的数据有哪些,明确基于场景业务需求的大数据平台要具备的基本的功能,来决定平台搭建过程中使用的大数据处理工具和框架。
⑦ 企业如何实现对大数据的处理与分析
企业如何实现对大数据的处理与分析
随着两化深度融合的持续推进,全面实现业务管理和生产过程的数字化、自动化和智能化是企业持续保持市场竞争力的关键。在这一过程中数据必将成为企业的核心资产,对数据的处理、分析和运用将极大的增强企业的核心竞争力。但长期以来,由于数据分析手段和工具的缺乏,大量的业务数据在系统中层层积压而得不到利用,不但增加了系统运行和维护的压力,而且不断的侵蚀有限的企业资金投入。如今,随着大数据技术及应用逐渐发展成熟,如何实现对大量数据的处理和分析已经成为企业关注的焦点。
对企业而言,由于长期以来已经积累的海量的数据,哪些数据有分析价值?哪些数据可以暂时不用处理?这些都是部署和实施大数据分析平台之前必须梳理的问题点。以下就企业实施和部署大数据平台,以及如何实现对大量数据的有效运用提供建议。
第一步:采集数据
对企业而言,不论是新实施的系统还是老旧系统,要实施大数据分析平台,就需要先弄明白自己到底需要采集哪些数据。因为考虑到数据的采集难度和成本,大数据分析平台并不是对企业所有的数据都进行采集,而是相关的、有直接或者间接联系的数据,企业要知道哪些数据是对于战略性的决策或者一些细节决策有帮助的,分析出来的数据结果是有价值的,这也是考验一个数据分析员的时刻。比如企业只是想了解产线设备的运行状态,这时候就只需要对影响产线设备性能的关键参数进行采集。再比如,在产品售后服务环节,企业需要了解产品使用状态、购买群体等信息,这些数据对支撑新产品的研发和市场的预测都有着非常重要的价值。因此,建议企业在进行大数据分析规划的时候针对一个项目的目标进行精确的分析,比较容易满足业务的目标。
大数据的采集过程的难点主是并发数高,因为同时有可能会有成千上万的用户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑。并且如何在这些数据库之间进行负载均衡和分片也是需要深入的思考问题。
第二步:导入及预处理
数据采集过程只是大数据平台搭建的第一个环节。当确定了哪些数据需要采集之后,下一步就需要对不同来源的数据进行统一处理。比如在智能工厂里面可能会有视频监控数据、设备运行数据、物料消耗数据等,这些数据可能是结构化或者非结构化的。这个时候企业需要利用ETL工具将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,将这些来自前端的数据导入到一个集中的大型分布式数据库或者分布式存储集群,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。对于数据源的导入与预处理过程,最大的挑战主要是导入的数据量大,每秒钟的导入量经常会达到百兆,甚至千兆级别。
第三步:统计与分析
统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在这方面,一些实时性需求会用到EMC的GreenPlum、Oracle的Exadata,以及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化数据的需求可以使用Hadoop。数据的统计分析方法也很多,如假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。在统计与分析这部分,主要特点和挑战是分析涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
第四步:价值挖掘
与前面统计和分析过程不同的是,数据挖掘一般没有什么预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,从而实现一些高级别数据分析的需求。比较典型算法有用于聚类的Kmeans、用于统计学习的SVM和用于分类的NaiveBayes,主要使用的工具有Hadoop的Mahout等。该过程的特点和挑战主要是用于挖掘的算法很复杂,并且计算涉及的数据量和计算量都很大,常用数据挖掘算法都以单线程为主。
总结
为了得到更加精确的结果,在大数据分析的过程要求企业相关的业务规则都是已经确定好的,这些业务规则可以帮助数据分析员评估他们的工作复杂性,对了应对这些数据的复杂性,将数据进行分析得出有价值的结果,才能更好的实施。制定好了相关的业务规则之后,数据分析员需要对这些数据进行分析输出,因为很多时候,这些数据结果都是为了更好的进行查询以及用在下一步的决策当中使用,如果项目管理团队的人员和数据分析员以及相关的业务部门没有进行很好的沟通,就会导致许多项目需要不断地重复和重建。最后,由于分析平台会长期使用,但决策层的需求是变化的,随着企业的发展,会有很多的新的问题出现,数据分析员的数据分析也要及时的进行更新,现在的很多数据分析软件创新的主要方面也是关于对数据的需求变化部分,可以保持数据分析结果的持续价值。
⑧ 企业的大数据营销方案该怎么去做
企业要做大数据营销就需要通过大数据平台,将企业码卖各个部门之间的数据打通,串联并相互融合,从而指导企业制定科学的营销方案。
首先把各个部门的数据汇总到一起,通过对这些数据分析,掌握用户的精准信息,建立用户画像,定义用户属性。同时企业要知道自己产品的定位是什么,产品卖点是什么等,对不同的对象采取不同的营销策略,直击痛点,实现转化。
然后搜集客户的个性化信息和需求,推送购买建议和相关促销信息,到提供跨渠道的客户购买体验,以及激发相关的品牌联系。利用小蜜蜂大数据平台进行数据挖掘和分析,发现客户思维模式和消费行为模式,指导产品的研发与新技术方向。
最后进行全渠道营销:整合并分析用户在终端的行为数据,帮助企业打通外部广告营销、自有终端平台、会员营销、商品分析等多种营销渠道。其具体具体流程可归纳如下:
1.数据采集
数据采集其中分为线下与线上。线下是在指在门店或某个商圈族搭内放置一个数据采集装置,采集周围用户的手机资源。线上是指利用LBS技术对指定区域、地点来精选数据采集调取。
2.数据清洗
原始数据采集上来时往往都是不规则、非结构化的数据,而且数据大量存在重复、缺失、错误等问题。所以需要进行数据清洗,也就是数据画像分析,并将清洗的结果传输到分析及运用系统中以供使用。
原始数据中可能携带一些用户隐私相关的数据,在数据清洗时,需要通过标签化、分类化等等方式对这些数据进行处理。
对于非结构化的数据我们也需要采用数据建模及数据治理等方法将数据转化为结构化数据,这样才能加快统计分析的速度。
3.数据运用
前面二个运用只是基础的环节,最重要的是如何利用数据来达到营销效果。
数据可视化是数据分析及运用环节十分重要的展示窗口,通过这个窗口可以让更多的、各级工种得到数据传递的规律和价值,并使数据在工作决策中起到十分重要的作用。
除了数据可视化还是用户画像分析也是重要的营销手段,通过线下数据和线上数据分析,进行精准客户一系列分析会更迟穗逗加了解客户他们的喜好、浏览习惯、是否拥有消费能力等等,根据这些还可以制定出符合精准客户痛点的营销方案,力求营销最大化。