导航:首页 > 网络数据 > 大数据日志分析模型

大数据日志分析模型

发布时间:2024-01-17 12:51:09

1. 大数据分析方法与模型有哪些

1、分类分析数据分析法


在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。


2、对比分析数据分析方法


很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。


3、相关分析数据分析法


相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。


4、综合分析数据分析法


层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。

2. 支付行业日志大数据分析案例解读

支付行业日志大数据分析案例解读

伴随新的支付方式出现,近年来移动支付蓬勃发展,如何分析、利用海量交易数据,已成为当前支付企业面对的巨大难题。日志作为数据的载体,蕴含着丰富的信息,传统的日志分析方式低效而固化,无法应对数据体量大、格式不统一、增长速度快的现状,在交易出现异常及失败时,更难以满足实时处理、快速响应的需求。

本文讲述某支付公司采用日志易后,通过日志大数据实现业务深度分析及风险控制的实践经验。

本次分享结合企业自身对支付行业的理解,将支付行业的需求总结为以下三点:

一、监管合规

1、人民银行对支付机构的日志审计和安全合规规定;

2、开发访问日志的权限管理。

二、安全性

安全是支付公司非常重视的,安全风险有时会引起一些舆论导向,比如某些金融机构案件被媒体标注为特别关注;某某支付公司发现了资金线的问题,消费者的钱不知去向等,这些都是一个社会的关注的焦点。结合市场风险及大环境,支付行业的安全性需求具体表现在:

1、支付交易的安全性要求;

2、数据访问的安全性要求;

3、防止敏感信息的泄露等。

对支付行业来说,日志易产品在数据访问、权限要求等方面体现出很好的应用价值。

三、可靠性

1、定位及解决问题的时效性;

2、系统流程的可靠性。

众多支付公司,当前做的产品主要针对新兴支付行业,特别是当前较热门的移动支付。那么移动支付的优势在哪里?最主要的是便捷,而便捷的基础就是时效性强,可靠性高。为了更好发挥移动支付的便捷,支付公司对时效性,可靠性的要求很高,而这才是使用日志易大数据分析平台的深层次原因,日志易帮支付公司解决了最根本的行业需求,在可靠性方面展现了产品的价值。

支付公司日常业务方面的需求,涉及到以下场景:

1、多种不同的访问失败类型进行分类;

2、每天需要做应答码的统计排名、占比以及走势图;

3、每个分类统计结果在一张图分别展示每个应答码趋势;

4、统计当日支付失败数量并分析;

5、需要导出访问失败类型的汇总统计表;

6、成功交易占比分析。

该公司原有的解决方案存在一定的局限性,比如:手动工作耗时量大、实时性差、人为造成失误、分析维度不能灵活变动及决策滞后等等。

支付公司有时会根据业务需要,对数据进行收集、清理,包括日志数据的清理等。当人为参与数据操作过多时,会引起部分意想不到的失误,从而引发问题。另外一点就是,原有方案实时性差,会导致公司的很多业务流程优化非常滞后。支付行业IT人都知道,支付的维度是非常非常多的,做任何一笔支付,基础维度包括时间、金额、笔数等,还会有像交易地点、客户习性或者说需要根据支付数据研究客户的习性等等。一家支付公司不可能单纯做一个支付产品,所以支付产品包罗万象,聚合起来维度就更为复杂。

面对支付企业众多需求和行业的原有解决方案的短板,客户选择部署日志易产品后,实现了如下功能:

1、各交易系统中每笔交易的状态等信息,按时间戳归类进行分析统计、实时报表展示;

2、根据日志易实时统计的多个维度的报表、图表,更准确的做出故障点判断;

3、决策层更直观的看到每天、每周、每种交易类型的故障高峰期及故障问题分布。

该支付公司使用日志易产品实现的解决方案及一些需求:

1、产品角度来说,第一就是优化,充分满足客户需求,提升用户体验,第二是产品分析,第三是数字营销方面的.要求;

2、从业务流程的角度或者说从合规角度来说,第一就是我们的业务流程分析,第二是后续的设备性能管理方面的要求。第三是合规方面的要求,最后是运维系统的预防性维护工作;

3、从日志易的数据收集角度来说,产品可以从支付公司的业务数据,也就是从交易数据抽取,然后可以从运维方面的IT数据、安全数据抽取,甚至可以从物联网去抽取一些数据。

电子支付如今已渗透入网购、转账、生活缴费、基金债券等居民的日常生活中,关系着国家经济及居民的生活质量,可谓任重而道远。日志易作为国内首家海量日志分析企业,一直致力于开发一款配置方便、功能强大的日志管理工具,以高品质的产品为金融行业用户信息化建设搭建高可靠平台,共同面对数字浪潮中更多的未知与挑战,实现支付企业对日志分析管理产品高效、实时、安全的需求。

;

3. 大数据分析中,有哪些常见的大数据分析模型

来看看我们公司的大数据平台

我们的DataZ具备高性能实时和离线计算能力,丰富的统计、薯睁答分析、挖掘模型,为行业全流程、全周期的生产运营活动提供商业智能支持,并能可视化您的数据,高效挖掘数据深层次信息。可以应用于金融大数据风控。

系统架构图System Architecture Diagram

大数据可视化Data Visualization

快速收集、筛选、分析、归纳、展现决策者所需要的信息,并根据新增的数据进行实时更新。可以实现决策支持、财务分析、预警分析、仪表板、绩效分析、经营分析等各类数据分析应用。

可视化设计平台

丰富的数据可视化组件库

快速简易的BI实施平台

支持多终端展现

4. 基于大数据审计的信息安全日志分析法

噪声数据随着经济和信息技术的不断发展,许多企业开始引入了ERP等系统,这些系统使得企业的众多活动数据可以实时记录,形成了大量有关企业经营管理的数据仓库。从这些海量数据中获取有用的审计数据是目前计算机审计的一个应用。接下来我为你带来基于大数据审计的信息安全日志分析法,希望对你有帮助。

大数据信息安全日志审计分析方法

1.海量数据采集。

大数据采集过程的主要特点和挑战是并发数高,因此采集数据量较大时,分析平台的接收性能也将面临较大挑战。大数据审计平台可采用大数据收集技术对各种类型的数据进行统一采集,使用一定的压缩及加密算法,在保证用户数据隐私性及完整性的前提下,可以进行带宽控制。

2.数据预处理。

在大数据环境下对采集到的海量数据进行有效分析,需要对各种数据进行分类,并按照一定的标准进行归一化,且对数据进行一些简单的清洗和预处理工作。对于海量数据的预处理,大数据审计平台采用新的技术架构,使用基于大数据集群的分布式计算框架,同时结合基于大数据集群的复杂事件处理流程作为实时规则分析引擎,从而能够高效并行地运行多种规则,并能够实时检测异常事件。

3.统计及分析。

按照数据分析的实时性,分为实时数据分析和离线数据分析。大数据平台在数据预处理时使用的分布式计算框架Storm就非常适合对海量数据进行实时的统计计算,并能够快速反馈统计结果。Storm框架利用严格且高效的事件处理流程保证运算时数据的准确性,并提供多种实时统计接口以使用。

4.数据挖掘。

数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识,所以它所得到的信息具有未知、有效、实用三个特征。与传统统计及分析过程不同的是,大数据环境下的数据挖掘一般没有预先设定好的主题,主要是在现有数据上面进行基于各种算法的计算,从而起到预测的效果,并进一步实现一些高级别数据分析的需求。

大数据分析信息安全日志的解决方案

统一日志审计与安全大数据分析平台能够实时不间断地将用户网络中来自不同厂商的安全设备、网络设备、主机、操作系统、数据库系统、用户业务系统的日志和警报等信息汇集到管理中心,实现全网综合安全审计;同时借助大数据分析和挖掘技术,通过各种模型场景发现各种网络行为、用户异常访问和操作行为。

1.系统平台架构。

以国内某大数据安全分析系统为例,其架构包括大数据采集平台、未知威胁感知系统、分布式实时计算系统(Storm)、复杂事件处理引擎(Esper)、Hadoop平台、分布式文件系统(HDFS)、分布式列数据库(Hbase)、分布式并行计算框架(Map/Rece、Spark)、数据仓库(Hive)、分布式全文搜索引擎(ElasticSearch)、科学计算系统(Euler)。这些技术能够解决用户对海量事件的采集、处理、分析、挖掘和存储的需求。

如图1所示,系统能够实时地对采集到的不同类型的信息进行归一化和实时关联分析,通过统一的控制台界面进行实时、可视化的呈现,协助安全管理人员迅速准确地识别安全事件,提高工作效率。

2.实现功能。

系统能够实现的功能包括:审计范围覆盖网络环境中的全部网络设备、安全设备、服务器、数据库、中间件、应用系统,覆盖200多种设备和应用中的上万类日志,快速支持用户业务系统日志审计;系统收集企业和组织中的所有安全日志和告警信息,通过归一化和智能日志关联分析引擎,协助用户准确、快速地识别安全事故;通过系统的'安全事件并及时做出安全响应操作,为用户的网络环境安全提供保障;通过已经审计到的各种审计对象日志,重建一段时间内可疑的事件序列,分析路径,帮助安全分析人员快速发现源;整个Hadoop的体系结构主要通过分布式文件系统(HDFS)来实现对分布式存储的底层支持。

3.应用场景。

上述系统可解决传统日志审计无法实现的日志关联分析和智能定位功能。如在企业的网络系统中,大范围分布的网络设备、安全设备、服务器等实时产生的日志量非常大,要从其中提取想要的信息非常困难,而要从设备之间的关联来判断设备故障也将是一大难点。例如,某企业定位某设备与周围直连设备的日志消息相关联起来判断该设备是否存在异常或故障,如对于其中一台核心交换机SW1,与之直连的所有设备如果相继报接口down的日志,则可定位该设备SWl为故障设备,此时应及时做出响应。而传统数据难以通过周围设备的关联告警来定位该故障,大数据审计平台则是最好的解决方法。

大数据分析方法可以利用实体关联分析、地理空间分析和数据统计分析等技术来分析实体之间的关系,并利用相关的结构化和非结构化的信息来检测非法活动。对于集中存储起来的海量信息,可以让审计人员借助历史分析工具对日志进行深度挖掘、调查取证、证据保全。

5. 大数据分析中,有哪些常见的大数据分析模型

很多朋友还没有接触过大数据分析方案,认为其仅仅算是个愿景而非现实——毕竟能够证明其可行性与实际效果的案例确实相对有限。但可以肯定的是,实时数据流中包含着大量重要价值,足以帮助企业及人员在未来的工作中达成更为理想的结果。那么,那些领域需要实时的数据分析呢?

1、医疗卫生与生命科学

2、保险业

3、电信运营商

4、能源行业

5、电子商务

6、运输行业

7、投机市场

8、执法领域

9、技术领域

常见数据分析模型有哪些呢?

1、行为事件分析:行为事件分析法具有强大的筛选、分组和聚合能力,逻辑清晰且使用简单,已被广泛应用。

2、漏斗分析模型:漏斗分析是一套流程分析,它能够科学反映用户行为状态以及从起点到终点各阶段用户转化率情况的重要分析模型。

3、留存分析模型留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始化行为的用户中,有多少人会进行后续行为。这是用来衡量产品对用户价值高低的重要方法。

4、分布分析模型分布分析是用户在特定指标下的频次、总额等的归类展现。

5、点击分析模型即应用一种特殊亮度的颜色形式,显示页面或页面组区域中不同元素点点击密度的图标。

6、用户行为路径分析模型用户路径分析,顾名思义,用户在APP或网站中的访问行为路径。为了衡量网站优化的效果或营销推广的效果,以及了解用户行为偏好,时常要对访问路径的转换数据进行分析。

7、用户分群分析模型用户分群即用户信息标签化,通过用户的历史行为路径、行为特征、偏好等属性,将具有相同属性的用户划分为一个群体,并进行后续分析。

8、属性分析模型根据用户自身属性对用户进行分类与统计分析,比如查看用户数量在注册时间上的变化趋势、省份等分布情况。

模型再多,选择一种适合自己的就行,如何利益最大化才是我们追求的目标

阅读全文

与大数据日志分析模型相关的资料

热点内容
如何删除手机软件的重复文件 浏览:908
微信页面没有添加图标 浏览:47
暗黑绿色装备升级 浏览:261
到哪里学编程啊 浏览:752
电脑粉碎文件和卸载 浏览:365
怎么查看共享电脑所有文件 浏览:617
创意编程社区账号在哪里 浏览:377
好用的压缩文件 浏览:538
360下载的补丁包在哪个文件夹 浏览:988
微信54安卓版本官网 浏览:698
为什么cnc编程找工作难 浏览:777
sql数据库端口不通 浏览:361
javaword转swf 浏览:174
cms数据更新是什么 浏览:39
电脑保密柜在文件里怎么找不到了 浏览:225
nodejs前端后端 浏览:129
程序侠后台多少 浏览:32
mysqle执行sql文件在哪里 浏览:466
数据库iostat1 浏览:986
java图片工具包 浏览:159

友情链接