“大数据”已经成为时下最火热的IT行业词汇,各行各业的大数据解决方案层出不穷。究竟什么是大数据、大数据给信息安全带来哪些挑战和机遇、为什么网络安全需要大数据,以及怎样把大数据思想应用于网络安全技术,本文给出解答。
一切都源于APT
APT(Advanced Persistent Threat)攻击是一类特定的攻击,为了获取某个组织甚至是国家的重要信息,有针对性的进行的一系列攻击行为的整个过程。APT攻击利用了多种攻击手段,包括各种最先进的手段和社会工程学方法,一步一步的获取进入组织内部的权限。APT往往利用组织内部的人员作为攻击跳板。有时候,攻击者会针对被攻击对象编写专门的攻击程序,而非使用一些通用的攻击代码。此外,APT攻击具有持续性,甚至长达数年。这种持续体现在攻击者不断尝试各种攻击手段,以及在渗透到网络内部后长期蛰伏,不断收集各种信息,直到收集到重要情报。更加危险的是,这些新型的攻击和威胁主要就针对国家重要的基础设施和单位进行,包括能源、电力、金融、国防等关系到国计民生,或者是国家核心利益的网络基础设施。
现有技术为什么失灵
先看两个典型APT攻击案例,分析一下盲点在哪里:
1、 RSA SecureID窃取攻击
1) 攻击者给RSA的母公司EMC的4名员工发送了两组恶意邮件。邮件标题为“2011 Recruitment Plan”,寄件人是[email protected],正文很简单,写着“I forward this file to you for review. Please open and view it.”;里面有个EXCEL附件名为“2011 Recruitment plan.xls”;
2) 很不幸,其中一位员工对此邮件感到兴趣,并将其从垃圾邮件中取出来阅读,殊不知此电子表格其实含有当时最新的Adobe Flash的0day漏洞(CVE-2011-0609)。这个Excel打开后啥也没有,除了在一个表单的第一个格子里面有个“X”(叉)。而这个叉实际上就是内嵌的一个Flash;
3) 该主机被植入臭名昭著的Poison Ivy远端控制工具,并开始自BotNet的C&C服务器(位于 good.mincesur.com)下载指令进行任务;
4) 首批受害的使用者并非“位高权重”人物,紧接着相关联的人士包括IT与非IT等服务器管理员相继被黑;
5) RSA发现开发用服务器(Staging server)遭入侵,攻击方随即进行撤离,加密并压缩所有资料(都是rar格式),并以FTP传送至远端主机,又迅速再次搬离该主机,清除任何踪迹;
6) 在拿到了SecurID的信息后,攻击者就开始对使用SecurID的公司(例如上述防务公司等)进行攻击了。
2、 震网攻击
遭遇超级工厂病毒攻击的核电站计算机系统实际上是与外界物理隔离的,理论上不会遭遇外界攻击。坚固的堡垒只有从内部才能被攻破,超级工厂病毒也正充分的利用了这一点。超级工厂病毒的攻击者并没有广泛的去传播病毒,而是针对核电站相关工作人员的家用电脑、个人电脑等能够接触到互联网的计算机发起感染攻击,以此 为第一道攻击跳板,进一步感染相关人员的U盘,病毒以U盘为桥梁进入“堡垒”内部,随即潜伏下来。病毒很有耐心的逐步扩散,利用多种漏洞,包括当时的一个 0day漏洞,一点一点的进行破坏。这是一次十分成功的APT攻击,而其最为恐怖的地方就在于极为巧妙的控制了攻击范围,攻击十分精准。
以上两个典型的APT攻击案例中可以看出,对于APT攻击,现代安全防御手段有三个主要盲点:
1、0day漏洞与远程加密通信
支撑现代网络安全技术的理论基础最重要的就是特征匹配,广泛应用于各类主流网络安全产品,如杀毒、入侵检测/防御、漏洞扫描、深度包检测。Oday漏洞和远程加密通信都意味着没有特征,或者说还没来得及积累特征,这是基于特征匹配的边界防护技术难以应对的。
2、长期持续性的攻击
现代网络安全产品把实时性作为衡量系统能力的一项重要指标,追求的目标就是精准的识别威胁,并实时的阻断。而对于APT这种Salami式的攻击,则是基于实时时间点的检测技术难以应对的。
3、内网攻击
任何防御体系都会做安全域划分,内网通常被划成信任域,信任域内部的通信不被监控,成为了盲点。需要做接入侧的安全方案加固,但不在本文讨论范围。
大数据怎么解决问题
大数据可总结为基于分布式计算的数据挖掘,可以跟传统数据处理模式对比去理解大数据:
1、数据采样——>全集原始数据(Raw Data)
2、小数据+大算法——>大数据+小算法+上下文关联+知识积累
3、基于模型的算法——>机械穷举(不带假设条件)
4、精确性+实时性——>过程中的预测
使用大数据思想,可对现代网络安全技术做如下改进:
1、特定协议报文分析——>全流量原始数据抓取(Raw Data)
2、实时数据+复杂模型算法——>长期全流量数据+多种简单挖掘算法+上下文关联+知识积累
3、实时性+自动化——>过程中的预警+人工调查
通过传统安全防御措施很难检测高级持续性攻击,企业必须先确定日常网络中各用户、业务系统的正常行为模型是什么,才能尽早确定企业的网络和数据是否受到了攻击。而安全厂商可利用大数据技术对事件的模式、攻击的模式、时间、空间、行为上的特征进行处理,总结抽象出来一些模型,变成大数据安全工具。为了精准地描述威胁特征,建模的过程可能耗费几个月甚至几年时间,企业需要耗费大量人力、物力、财力成本,才能达到目的。但可以通过整合大数据处理资源,协调大数据处理和分析机制,共享数据库之间的关键模型数据,加快对高级可持续攻击的建模进程,消除和控制高级可持续攻击的危害。
2. 大数据培训课程介绍,大数据学习课程要学习哪些
《大数据实训课程资料》网络网盘资源免费下载
链接:https://pan..com/s/1RiGvjn2DlL5pPISCG_O0Sw
大数据实训课程资料|云计算与虚拟化课程资源|课程实验指导书综合版|机器学习与算法分析课程资源|Spark课程资源|Python课程资源|Hadoop技术课程资源|云计算课程资料.zip|微课.zip|算法建模与程序示例.zip|spark课程资源.zip|hadoop课程资源.zip|实验指导书|教学视频|教学PPT
3. 网络营销大数据实际操作七步走
网络营销大数据实际操作七步走
对很多企业来说,大数据的概念已不陌生,但如何在营销中应用大数据仍是说易行难。其实,作为大数据最先落地也最先体现出价值的应用领域,网络营销的数据化之路已有成熟的经验及操作模式。
一、获取全网用户数据
首先需要明确的是,仅有企业数据,即使规模再大,也只是孤岛数据。在收集、打通企业内部的用户数据时,还要与互联网数据统合,才能准确掌握用户在站内站外的全方位的行为,使数据在营销中体现应有的价值。在数据采集阶段,建议在搜集自身各方面数据形成DMP数据平台后,还要与第三方公用DMP数据对接,获取更多的目标人群数据,形成基于全网的数据管理系统。
二、让数据看得懂
采集来的原始数据难以懂读,因此还需要进行集中化、结构化、标准化处理,让“天书”变成看得懂的信息。
这个过程中,需要建立、应用各类“库”,如行业知识库(包括产品知识库、关键词库、域名知识库、内容知识库);基于“数据格式化处理库”衍生出来的底层裤(用户行为库、URL标签库);中层库(用户标签库、流量统计、舆情评估);用户共性库等。
通过多维的用户标签识别用户的基本属性特征、偏好、兴趣特征和商业价值特征。
三、分析用户特征及偏好
将第一方标签与第三方标签相结合,按不同的评估维度和模型算法,通过聚类方式将具有相同特征的用户划分成不同属性的用户族群,对用户的静态信息(性别、年龄、职业、学历、关联人群、生活习性等)、动态信息(资讯偏好、娱乐偏好、健康状况、商品偏好等)、实时信息(地理位置、相关事件、相关服务、相关消费、相关动作)分别描述,形成网站用户分群画像系统。
四、制定渠道和创意策略
根据对目标群体的特征测量和分析结果,在营销计划实施前,对营销投放策略进行评估和优化。如选择更适合的用户群体,匹配适当的媒体,制定性价比及效率更高的渠道组合,根据用户特征制定内容策略,从而提高目标用户人群的转化率。
五、提升营销效率
在投放过程中,仍需不断回收、分析数据,并利用统计系统对不同渠道的类型、时段、地域、位置等价值进行分析,对用户转化率的贡献程度进行评估,在营销过程中进行实时策略调整。
对渠道依存关系进行分析:分析推广渠道的构成类型与网站频道、栏目的关联程度(路径图形化+表格展示);
对流量来源进行分析:分析网站各种推广渠道类型的对网站流量的贡献程度;
对用户特征及用户转化进行分析:分析各个类型的推广渠道所带来的用户特征、各推广渠道类型转化效率、效果和ROI。
六、营销效果评估、管理
利用渠道管理和宣传制作工具,利用数据进行可视化的品牌宣传、事件传播和产品,制作数据图形化工具,自动生成特定的市场宣传报告,对特定宣传目的报告进行管理。
七、创建精准投放系统
对于有意领先精准营销的企业来说,则可更进一步,整合内部数据资源,补充第三方站外数据资源,进而建立广告精准投放系统,对营销全程进行精细管理。
以上是小编为大家分享的关于网络营销大数据实际操作七步走的相关内容,更多信息可以关注环球青藤分享更多干货
4. 大数据主要学什么内容
大数据开发工程师是大数据领域一个比较热门的岗位,有大量的传统应用需要进内行大数据容改造,因此岗位有较多的人才需求。这个岗位需要掌握的知识结构包括大数据平台体系结构,比如目前常见的Hadoop、Spark平台,以及众多组件的功能和应用,另外还需要掌握至少一门编程语言,比如Java、Python、Scala等。
大数据分析师是大数据领域非常重要的岗位,大数据分析师需要掌握的知识结构包括算法设计、编程语言以及呈现工具,算法设计是大数据分析师需要掌握的重点内容,而编程语言的作用则是完成算法的实现。另外,大数据分析师还需要掌握一些常见的分析工具。
大数据运维工程师的主要工作内容是搭建大数据平台、部署大数据功能组件、配置网络环境和硬件环境、维护大数据平台,大数据运维工程师需要具备的知识结构包括计算机网络、大数据平台体系结构、编程语言(编写运维脚本)等,通常情况下,大数据运维工程师也需要对数据库有深入的了解。
5. 如何统计和分析利用网络大数据
如何统计和分析利用网络大数据?
大数据给互联网带来的是空前的信息大爆炸,它不仅改变了互联网的数据应用模式,还将深深影响着人们的生产生活。深处在大数据时代中,人们认识到大数据已经将数据分析的认识从“向后分析”变成“向前分析”,改变了人们的思维模式,但同时大数据也向我们提出了数据采集、分析和使用等难题。在解决了这些难题的同时,也意味着大数据开始向纵深方向发展。
一、数据统计分析的内涵
近年来,包括互联网、物联网、云计算等信息技术在内的IT通信业迅速发展,数据的快速增长成了许多行业共同面对的严峻挑战和宝贵机遇,因此现代信息社会已经进入了大数据时代。事实上,大数据改变的不只是人们的日常生活和工作模式、企业运作和经营模式,甚至还引起科学研究模式的根本性改变。一般意义上,大数据是指无法在一定时间内用常规机器和软硬件工具对其进行感知、获取、管理、处理和服务的数据集合。网络大数据是指“人、机、物”三元世界在网络空间中彼此交互与融合所产生并在互联网上可获得的大数据。
将数据应用到生活生产中,可以有效地帮助人们或企业对信息作出比较准确的判断,以便采取适当行动。数据分析是组织有目的地收集数据、分析数据,并使之成为信息的过程。也就是指个人或者企业为了解决生活生产中的决策或者营销等问题,运用分析方法对数据进行处理的过程。所谓的数据统计分析,就是运用统计学的方法对数据进行处理。在以往的市场调研工作中,数据统计分析能够帮助我们挖掘出数据中隐藏的信息,但是这种数据的分析是“向后分析”,分析的是已经发生过的事情。而在大数据中,数据的统计分析是“向前分析”,它具有预见性。
二、大数据的分析
1.可视化分析。
数据是结构化的,包括原始数据中的关系数据库,其数据就是半结构化的,譬如我们熟知的文本、图形、图像数据,同时也包括了网络的不同构型的数据。通过对各种数据的分析,就可以清晰的发现不同类型的知识结构和内容,包括反映表征的、带有普遍性的广义型知识;用于反映数据的汇聚模式或根据对象的属性区分其所属类别的特征型知识;差异和极端特例进行描述的差异型知识;反映一个事件和其他事件之间依赖或关联的关联型知识;根据当前历史和当前数据预测未来数据的预测型知识。当前已经出现了许多知识发现的新技术,其中之一就是可视化方法。数据可视化技术有3个鲜明的特点:第一,与用户的交互性强。用户不再是信息传播中的受者,还可以方便地以交互的方式管理和开发数据。第二,数据显示的多维性。在可视化的分析下,数据将每一维的值分类、排序、组合和显示,这样就可以看到表示对象或事件的数据的多个属性或变量。第三,最直观的可视性特点。数据可以用图像、曲线、二维图形、三维体和动画来显示,并可对其模式和相互关系进行可视化分析。
2.数据挖掘算法。
数据挖掘是指数据库中的知识发现,其历史可以追溯到1989年美国底特律市召开的第一届KDD国际学术会议上,而第一届知识发现和数据挖掘(DataMining,DM)国际学术会议是1995年加拿大召开的,会议上将数据库里存放的数据生动地比拟成矿床,从而“数据挖掘”这个名词很快就流传开来。数据挖掘的目的是在杂乱无章的数据库中,从大量数据中找到有用的、合适的数据,并将其隐含的、不为人知的潜在价值的信息揭示出来的过程。事实上,数据挖掘只是整个KDD过程中的一个步骤。
数据挖掘的定义没有统一的说法,其中“数据挖掘是一个从不完整的、不明确的、大量的并且包含噪声的具有很大随机性的实际应用数据中,提取出隐含其中、事先未被人们获知、却潜在有用的知识或模式的过程”是被广泛接受的定义。事实上,该定义中所包含的信息——大量真实的数据源包含着噪声;满足用户的需求的新知识;被理解接受的而且有效运用的知识;挖掘出的知识并不要求适用于所有领域,可以仅支持某个特定的应用发现问题。以上这些特点都表现了它对数据处理的作用,在有效处理海量且无序的数据时,还能够发现隐藏在这些数据中的有用的知识,最终为决策服务。从技术这个角度来说,数据挖掘就是利用一系列相关算法和技术从大量的数据中提取出为人们所需要的信息和知识,隐藏在数据背后的知识,可以以概念、模式、规律和规则等形式呈现出来。
3.预测性分析能力。
预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。大数据分析最终要实现的应用领域之一就是预测性分析,可视化分析和数据挖掘都是前期铺垫工作,只要在大数据中挖掘出信息的特点与联系,就可以建立科学的数据模型,通过模型带入新的数据,从而预测未来的数据。作为数据挖掘的一个子集,内存计算效率驱动预测分析,带来实时分析和洞察力,使实时事务数据流得到更快速的处理。实时事务的数据处理模式能够加强企业对信息的监控,也便于企业的业务管理和信息更新流通。此外,大数据的预测分析能力,能够帮助企业分析未来的数据信息,有效规避风险。在通过大数据的预测性分析之后,无论是个人还是企业,都可以比之前更好地理解和管理大数据。
尽管当前大数据的发展趋势良好,但网络大数据对于存储系统、传输系统和计算系统都提出了很多苛刻的要求,现有的数据中心技术很难满足网络大数据的需求。因此,科学技术的进步与发展对大数据的支持起着重要的作用,大数据的革命需要考虑对IT行业进行革命性的重构。网络大数据平台(包括计算平台、传输平台、存储平台等)是网络大数据技术链条中的瓶颈,特别是网络大数据的高速传输,需要革命性的新技术。此外,既然在大数据时代,任何数据都是有价值的,那么这些有价值的数据就成为了卖点,导致争夺和侵害的发生。事实上,只要有数据,就必然存在安全与隐私的问题。随着大数据时代的到来,网络数据的增多,使得个人数据面临着重大的风险和威胁,因此,网络需要制定更多合理的规定以保证网络环境的安全。
6. 互联网数据分析课程讲什么内容
互联网数据分析课程是企业网络营销和大数据应用基础入门的课程,适合网站运营人员、营销人员、品牌经理和个人站长学习,也适合计算机专业、大数据入门和市场营销专业的同学学习。如需数据分析培训推荐选择【达内教育】。
数据分析是一个检查、清理、转换和建模数据的过程,目的是发现有用的信息、告知结论和支持决策。【数据分析】有多个方面和方法,包括不同名称下的不同技术,并用于不同的商业、科学和社会科学领域。在当今的商业世界,数据分析在使决策更加科学并帮助企业更有效地运营方面发挥着作用。数据分析是获取原始数据并将其转换成对用户决策有用的信息的过程。收集和分析数据以回答问题、测试假设或反驳理论。感兴趣的话点击此处,免费学习一下
想了解更多有关大数据的相关信息,推荐咨询【达内教育】。秉承“名师出高徒、高徒拿高薪”的教学理念,是达内公司确保教学质量的重要环节。作为美国上市职业教育公司,诚信经营,拒绝虚假宣传是该机构集团的经营理念。该机构在学员报名之前完全公开所有授课讲师的授课安排及背景资料,并与学员签订《指定授课讲师承诺书》,确保学员利益。达内IT培训机构,试听名额限时抢购。
7. 大数据学习路线是什么
主要分为 7 个阶段:入门知识 → Java 基础 → Scala 基础 → Hadoop 技术模块 → Hadoop 项目实战 → Spark 技术模块 → 大数据项目实战。
阶段一:学习入门知识
这一部分主要针对的是新手,在学习之前需要先掌握基本的数据库知识。MySQL 是一个 DBMS(数据库管理系统),是最流行的关系型数据库管理系统(关系数据库,是建立在关系数据库模型基础上的数据库,借助于集合代数等概念和方法来处理数据库中的数据)。
MongoDB 是 IT 行业非常流行的一种非关系型数据库(NoSQL),其灵活的数据存储方式备受当前 IT 从业人员的青睐。
而 Redis 是一个开源、支持网络、基于内存、键值对存储数据库。两者都非常有必要了解。
1、Linux 基础入门(新版)
2、Vim编辑器
3、Git 实战教程
4、MySQL 基础课程
5、MongoDB 基础教程
6、Redis基础教程
阶段二:Java基础
Java 是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言。
Java 语言具有功能强大和简单易用两个特征,跨平台应用能力比 C、C++ 更易用,更容易上手。同时还具有简单性、面向对象、分布式、健壮性、安全性、平台独立与可移植性、多线程、动态性等特点。最重要的一点是 Hadoop 是用 Java 编写的。
1、Java编程语言(新版)
2、Java进阶之设计模式
3、J2SE核心开发实战
4、JDK 核心 API
5、JDBC 入门教程
6、Java 8 新特性指南
阶段三:Scala基础
Scala 是一种多范式的编程语言,其设计的初衷是要集成面向对象编程和函数式编程的各种特性。由于 Scala 运行于 Java 平台(Java 虚拟机),并兼容现有的Java 程序,所以 Scala 可以和大数据相关的基于 JVM 的系统很好的集成。
1、Scala 开发教程
2、Scala 专题教程 - Case Class和模式匹配
3、Scala 专题教程 - 隐式变换和隐式参数
4、Scala 专题教程 - 抽象成员
5、Scala 专题教程 - Extractor
6、Scala 开发二十四点游戏
阶段四:Hadoop技术模块
Hadoop 是一款支持数据密集型分布式应用并以 Apache 2.0 许可协议发布的开源软件框架,它能搭建大型数据仓库,PB 级别数据的存储、处理、分析、统计等业务。编程语言你可以选,但 Hadoop 一定是大数据必学内容。
1、Hadoop入门进阶课程
2、Hadoop部署及管理
3、HBASE 教程
4、Hadoop 分布式文件系统--导入和导出数据
5、使用 Flume 收集数据
阶段五:Hadoop项目实战
当然,学完理论就要进行动手实战了,Hadoop 项目实战可以帮助加深对内容的理解,并锻炼动手能力。
1、Hadoop 图处理--《hadoop应用框架》
阶段六:Spark技术模块
Spark 和 Hadoop 都是大数据框架。Hadoop 提供了 Spark 所没有的功能特性,比如分布式文件系统,而 Spark 为需要它的那些数据集提供了实时内存处理。所以学习 Spark 也非常必要。
1、Spark
2、x 快速入门教程
2、Spark 大数据动手实验
3、Spark 基础之 GraphX 图计算框架学习
4、Spark 基础之 DataFrame 基本概念学习
5、Spark 基础之 DataFrame 高阶应用技巧
6、Spark 基础之 Streaming 快速上手
7、Spark 基础之 SQL 快速上手
8、Spark 基础之使用机器学习库 MLlib
9、Spark 基础之 SparkR 快速上手
10、流式实时日志分析系统--《Spark 最佳实践》
11、使用 Spark 和 D3.js 分析航班大数据
阶段七:大数据项目实战
最后阶段提供了大数据实战项目,这是对常用技能的系统运用,例如使用常用的机器学习进行建模、分析和运算,这是成为大数据工程师过程中的重要一步。
1、Ebay 在线拍卖数据分析
2、流式实时日志分析系统--《Spark 最佳实践》
3、大数据带你挖掘打车的秘籍
4、Twitter数据情感分析
5、使用 Spark 进行流量日志分析
6、Spark流式计算电商商品关注度
7、Spark的模式挖掘-FPGrowth算法
(7)大数据网络教程扩展阅读:
大数据技术的具体内容:
分布式存储计算架构(强烈推荐:Hadoop)
分布式程序设计(包含:Apache Pig或者Hive)
分布式文件系统(比如:Google GFS)
多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)
数据收集架构(比如:Kinesis,Kafla)
集成开发环境(比如:R-Studio)
程序开发辅助工具(比如:大量的第三方开发辅助工具)
调度协调架构工具(比如:Apache Aurora)
机器学习(常用的有Apache Mahout 或 H2O)
托管管理(比如:Apache Hadoop Benchmarking)
安全管理(常用的有Gateway)
大数据系统部署(可以看下Apache Ambari)
搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)
多种数据库的演变(MySQL/Memcached)
商业智能(大力推荐:Jaspersoft)
数据可视化(这个工具就很多了,可以根据实际需要来选择)
大数据处理算法(10大经典算法)
8. 如何在网络营销中收集大数据
1. 诱饵设计方案
如何获得客户信息资料,只有让客户主动将信息告诉我们才是最真实、有用的客户数据库。那么,如何让客户主动告知呢,这就是诱饵设计,有相应的诱饵,满足客户的需求与欲望,辅以相应的客户信息收集机制,客户不难将信息告知于你。譬如,你有一个行业内的精品且不公开的资料,需要这份资料的需要留下邮箱地址(当然也可以是QQ、微信、手机等),然后发送给留下的邮箱,相信需要这份资料的人不会不愿意留下他的邮箱地址的,这就是一份成功的用于收集客户数据的诱饵设计方案。
2. 线下数据收集
其实,每个人、每一个生意都是有线下的圈子、客户的。尤其是对于现在进入电商的传统企业来说,线下客户数据是一份优质的资源,譬如经销商的客户购买信息的录入与整理等等。
3. 相关相近行业合作
尤其是不同产品但是属于相同或相近行业的。萧伯纳说过:“你有一个苹果,我有一个苹果,我们彼此交换,每人还是一个苹果;你有一种思想,我有一种思想,我们彼此交换,每人可拥有两种思想。”,同理,这个道理用于客户数据的收集与整理也同样适用,如果有2个公司同为出售汽车产品,一个公司出售汽车灯,一个公司出售汽车坐垫,这样2家公司完全可以达成合作关系共享客户数据,这样可以增加一倍的潜在客户。
关于如何在网络营销中收集大数据,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。