㈠ 数据之巅读后感
细细品味一本名著后,大家心中一定是萌生了不少心得,此时需要认真思考读后感如何写了哦。你想好怎么写读后感了吗?以下是我帮大家整理的数据之巅读后感范文,仅供参考,大家一起来看看吧。
大数据,一个近年来的流行词汇,随着互联网信息技术的普及开始深入人心,又随着互联网对各类行业各种关系的颠覆和变革开始广泛普及。当越来越多的人开始对大数据无比推崇的时候,其实只是跟着趋势而已。这时候,如果能跳出来,看看这种趋势的源头和足迹,或许更容易找出一些能够指导未来的价值。在如今这个数据浪潮之中,《数据之巅》就提供了这么一个别样的视角。
要了解大数据,先得认清数据;要认清数据,先得看清数据的作用和价值。这方面,建国不过二百余年但已然是超级大国的美国无疑是最好的标本。都说美国的文明是建立在印刷术的基础上,这其实就是数据文化的基础——信息可以通过便捷的纸张与文字组合,实现一种虚拟化和抽象化,而这种抽象化很快就得到了广泛的信任。这是最早为数据创造价值准备的基础。在此之上,美国建国的先贤们考虑到了权力的分配、社会的发展等各项因素,建立了民主、共和相互制约的执政体系。事实上,所有的美好都是限制之后的产物,自由、民主和平等这人类的三大追求之间就是相互制约的关系。那么,该怎么进行有效的制约?如何让大家都能接纳?这时候,最能代表客观现实的数据就出现了。
《数据之巅》的第一部分就是这样展开的,从各种历史事件中数据的作用以及人们对数据的态度、反应、应用方式,勾勒出了数据文化的成长和成熟。解决权力分配的问题、决定改变历史的战争、制定从战略到战术的安排、考虑政治的计算以及商业层面上的利用;从搜集、统计、筛选、量化、抽样的方式方法演变到了解、安排、预测、准备、发掘、规范的效果体现,经历的历史似乎并不长,但造就的变革尤其精彩。数据其实一直都在,只在于人们是否需要它、重视它、愿意聆听它的意见……而人们往往也都在遇到了问题难以决断的时候才会想到数据这个伙伴,这也是为什么在第一部分的结尾中日本崛起的思考——二战后空前繁荣的美国工业因为遇上了供不应求的状态,自然走上了粗放型路径,冷落了相应的数据应用,而战败的日本正因为深陷困境,在快速汲取先进知识的同时也迅速接纳了数据文化,通过数据抽样的方式快速提升了质量……日本的崛起可以看作穷则思变的例子,但变革中数据的作用尤其明显。数据的优化作用由此可见一斑,书中更有很多案例,但要参透这一点,先得认识到数据的重要性才行,这可以算作是数据文化的入门吧!
可以说现实中的一切都是越用越少的,但看似虚拟的数据却越用越多。所谓大数据时代,背景正是高度发展科技能让更多的数据得以留存,这种留存和挖掘完全由机器实施,由此得到的结果也是叹为观止的。如果说科技的发展趋势已经越来越超乎我们的想象,那总有一些规律或者原则可以抓住——比如数据。书中第二部分的大数据崛起便将重点放到了当下,由此展望未来的可能性。诚然,大数据是被技术发展所推动的,但更是被重视数据的人们所推动的。
技术降低了数据获取、积累的成本,增加了计算的可能和利用的空间,但这只是一个表象。深层次需要在意的则是数据的开放,只有数据开放才有多元的整合,这需要由人来推动,而推动者必须有多元认知的思维方式、开放的心态——这是数据文化中尤为重要的一部分。如果之前我们认为智慧是属于人的,那么未来这个词将更多的形容一些别的体系,比如“智慧城市”。其实人的'智慧依靠的是学习、理解和经验,那么机器的学习靠的就是数据,还有那些我们为其规划的应用方式和我们的需要。如何确定我们的规划和需求?靠数据,更得靠能够深入人心的数据文化!
正如作者提到中国社会要将“大数据”这个科技符号转变为文化符号,因为只有文化才能真正驱动人们的成长和发展,科技只是手段而已。只有建立了数据文化,愿意尊重数据、善于整合数据、敢于发掘数据中的异动……才能正真利用好大数据。数据文化是尊重事实、强调精确、推崇理性和逻辑的文化,这种文化将是发展最重要的动力,更是最好的参考。从《数据之巅》中,隐约可以看到一条隐约的轨迹,通向未知的远方却一直步步为营,这便是数据,来自于人而胜于人。
歌德把历史称为“上帝的神秘作坊”。在徐子沛先生新作《数据之巅》的精彩演绎下,关于数据文化如何形成、数据治国理念如何深入人心的历史画卷徐徐展开,令我们再次饱览古今中外因数据成就的神奇瞬间,领略统计文史的山风水韵和数据文化的悠远回音。康德说,数字是重要的透视方式。此言不虚。
子沛先生一如既往把中国作为本书的重心和出发点。从中国历史上的吉光片羽到第一次现代意义上的人口普查,从中国数据可视化先驱人物陈正祥的执着努力到民族复兴能否量化的中国话题,这些元素无疑令中国读者感到亲切和温暖。遗憾的是,在悠久的中华文明史上,这样的“统计事件”不仅凤毛麟角,亦未能带动整个民族和社会形成用数据说话、以数据治事的风尚。即使今天,我们依然面对这样一个不容回避的事实:统计数据虽然证明了中国已经成为世界第二大经济体,在数据使用上,特别是大数据的收集、分析、应用的手段、意识、水平和能力方面,我们与美国、欧洲,甚至同处亚洲的日本,仍有不小差距。作为统计人,在享受本书呈现的统计和数据文化盛宴时,无疑更平添了一份独有的清醒与忧思。
中国需要进一步营造数据文化氛围。美国的历史,就是一部“善用数据”的历史。说数据成就了共和政治、数据终结了南方的奴隶制度,尚属见仁见智。“布兰代斯诉讼方法”及后来的汉德公式,公共预算制度的普及,统计学理论方法用于公共政策的制定,以及成本效益分析方法在美国政府的推行等,实实在在证明了数据在保障公平正义、促进进步发展、增进自由和理性方面的决定性支撑作用,体现了数据治国的基本理念。党的十八大把实现国家治理体系和治理能力的现代化作为新的奋斗目标,更加迫切需要大力弘扬建立在数据基础上的科学与理性,需要建树“尊重事实、强调精确、推崇理性和逻辑的数据文化”,需要进一步营造善用数据的社会氛围,使注重数据、使用数据真正成为一种习惯和风尚。
中国统计人要做大数据的先行者和引领者。在统计的“纯真年代”,政府统计是权威一般的存在,是统计生产的当然主导者。大数据时代,海量的网络化电子化信息使每一个人、每一个单位都可能成为信息的生产发布主体,政府统计包打天下的格局正在被打破。我们当然可以通过法律手段来“宣示主权”,但我相信大多数统计人凭着专业精神、职业尊严,将不屑于采取这么“简单而直率”的方法,而更愿意像一名“骑士”一样为荣誉而战。作为统计数据的生产者、发布者和使用者,没有人比我们更了解大数据的意义、价值和力量。“用大数据打造统计基础数据‘第二轨’”,深刻阐明了国家统计局应用大数据的战略思想和战略思维。目前,国家统计局已经与17家企业签订利用大数据战略合作框架协议,在贸易统计、价格统计、交通运输统计、农业统计等多个领域取得重要进展。我们不仅要直接应用大数据,还要在推动数据开放和共享、建立和统一相关应用标准,实施国家大数据创新驱动战略等方面,发挥应有作用。
中国统计人还要成为数据文化的倡导者和传播者。在宣传统计工作、弘扬数据文化方面,统计人有着天然的优势和便利。家喻户晓的GDP、CPI、PPI、PMI等统计拳头产品,大型的经济普查、人口普查、一套表联网直报等重要统计事件,为宣传统计、传播数据文化发挥了重要而积极的作用。我们还可以做得更好,也有理由做得更好。中国统计也要创建类似美国普查局的LEHD—工作单位和家庭住址的纵向动态系统,当超级飓风“桑迪”来袭,该系统大显神通,成功帮助纽约市政府组织救灾,并迅速对灾害影响作出准确评估。这样的统计“明星”产品,能够使人们更加信赖数据、依靠数据,推动数据融入政府管理、商业运营和社会治理以及人们的日常生活。
近年来,国家统计局在统计文化宣传方面做了大量工作,精心打造了统计网站、中国统计开放日、统计微讯微信等一系列新的统计宣传平台,政府统计的形象和公信力不断提升。今后更要以启沃公众数据意识为己任,以记录中华民族复兴的伟大进程为使命,从更大的视野,以更宏大的叙事,讲述中国的统计故事,书写中国的统计历史,把数据文化理念播撒得更广、更深、更远。
尼采在《查拉图斯特拉如是说》中有这样一句话:在有力量的地方,数字这位女主人就会生成,她更有力量。数据不仅代表“真正的事实”,还蕴藏着事物的发展规律。随着大数据时代的到来,数据资源及其开发利用正逐渐成为决定和影响各国核心竞争力的关键因素。中国不仅要做数据大国,更要成为数据强国。
我们这代统计人注定无法甘于淡泊和平凡,唯有顺应时代要求,以更先进的理念、更开放的姿态、更高超的技术积极拥抱大数据,广泛应用大数据,生产出更多更具竞争力的统计产品,才能在智能时代、智慧城市建设以及实现国家治理现代化的进程中,续写政府统计新的辉煌。
最近我读了涂子沛先生的《数据之巅》这本书,我深深的被作者的思考的深度和数据的力量所震撼。全书从数据角度出发,以美国政府历史以来“依数治国”的成功经验来阐释数据带给社会带来的挑战与变革。
进入21世纪第二个十年以来,随着互联网信息技术的普及与广泛应用,大数据时代正式到来。时代的变革意味着新的发展机遇与挑战,要想在数据浪潮当中立于不败之地,这就需要我们在精确的掌握数据之后,通过数据的创新来创造未来。
精确的掌握数据,需要从认识数据开始。简而言之,数据就是体现客观事实的表象,是客观性与抽象性有机结合的产物,容不得半点虚假。我们不能否认的是,所有的美好都是在限制之后的,而能够有效地进行限制,且又能够得到大家的一致认可客观现实,唯有那一张便捷的纸片上数据与文字的组合体,其实这就是数据文化的基础。数据创造价值准备的基础从侧面印证了中国的四大发明印刷术是西方国家文明的基础。
所谓的大数据时代就是在当下高度发展科技能让更多的数据得以保存。保存下来的数据是一种依据,更是一种工具。世间万物的发展都呈现各种各样的规律性,数量庞大且规律复杂,很难让我们掌握,但是一旦转换成数据保存之后,从数据的角度去分析规律变化的轨迹,能够很容易掌握并加以运用。而我作为基层执法工作者,运用数据进行执法,以控制数据达到预期管理预期,是这本书给予我最大的启发。
古代中国传统的执法者,是通过简单甚至带有粗暴的手段对执法对象进行强制管理,执法效果虽然容易操作,且直观,但是这是一种凌驾于规律之上,片面的追求短期效果的低级执法模式。进入新中国以来,尤其是改革开放以来,我国坚持依法治国,党的十八届四中全会更提出了全面推进依法治国的新常态,这是数据文化的有力体现,是我党在大数据时代下,一项重大举措。
我认为,大数据时代下运用数据进行执法,是执法能力现代化的利器。我从事交通执法这个职业已经数载,经历过从无到有,又逐渐的从有变成无。这个前后并不矛盾,从前的“无”是法律不健全,无章可循,有章难循状态。只能够自身党性约束和对事物客观理解进行执法,甚至有的时候片面的依靠上级,人类对事物的理解具有局限性,这难免会造成决策错误。
从无到有,是法律慢慢健全,法律的约束更加全面,但有的时候简单的照本宣科,眉毛胡子一把抓,也就成了教条主义。而从有到无,是一种利用客观的数据,以法律为准则,通过科学执法,将数据调整趋于合理。类似国家利用经济规律宏观调控国民经济,用一只看不见的“大手”将全国的经济发展形势引导至合理增长的区间。数据合理了,管理预期也就达到了。相对于我们有肉眼去观察,显得更为精确,且具很高的可信度。这样一来,对我们基层执法工作者带来的巨大的福利,我们从此以后再也不用担心对工作进展情况不了解而心急火燎了。
在大数据时代变革的今天,客观、精确、理性和逻辑的“数据文化”理念是推进国家治理体系和治理能力的现代化利器。大数据时代下的执法行为更是离不开数据,只有充分的利用数据化管理、数据化创新,才能在当前数据浪潮当中主动适应新常态,科学地实现新突破和新作为。
《数据之巅》读后感这是涂子沛先生关于大数据的第二本书,读了以后可以说是振聋发聩,醍醐灌顶。
第一本书本身就写得很棒了,其主要是从美国现代社会应用大数据成功解决的许多问题入手,说出了大数据的实际用处。而这本书抽丝剥茧从历史上美国对于数据的发展带给我们启迪。
1、数据分权
何为民主,何为共和,如何防范多数人的暴政?基于这个问题美国给出了参议院代表的共和与众议院代表的民主,权利与义务统一,即投票与纳税都按所代表的的人口来。
这里就诞生了对精确人口掌控的需求。基于这一点,逐渐养成了按数据说话的传统。并逐渐将单一的人口数量统计扩展到宗教,种族,性别,年龄。
2、数据引领改革
之前是北美大陆种植烟草亟需黑奴,美国解放后烟草行业败落。后来棉花兴起,死灰复燃。北方工业化也需要劳动力。黑人自由就发疯的言论源于统计上的失误,错误稀释原因因基数不同。一项战役向大海进军完全依靠准确数据抢掠补给。谢尔曼格兰特。背后的原因:维护美国的统一,(解放黑奴后其的生计太难),动员黑奴使其转败为胜。
3、数据推动技术
用数据研究社会,普通人的历史。统计学将研究粒度缩小到一个个人。加菲尔德将普查上升到了专业部门。迅速上升的统计内容,不断增加的人口给数据处理提出了挑战。于是技术创新制表机诞生了(数据处理),依靠这个IBM发展壮大,商业模式:只租不卖设备及服务。
4、数据争取权益
量化提高质量。经济发展带来劳资冲突,政治,道德失范。这时候为了改善工人生活又依靠数据兴起了数据分析法,成本收益分析法又在美国水利方面大显身手,继而福特车的风波也加速了成本收益分析法传播同时依靠数据公开使得企业不断提升产品质量,并将人的价值考虑进来。
5、抽样
运用抽样的方法降低数据处理的工作量,省时省力。盖洛普引领的总统预测,乱世佳人的精准预测,准确定位。把数据引入电影工业。质量管理大师戴明将统计方法引入质量管理领域,成就日本经济奇迹。
㈡ 涂子沛大数据第十章讲了什么
涂子沛大数据第十章讲了胡适批评差不多先生,黄仁宇求索数目字管理,作者从太平洋对面看到中美两国的差距,深知中国缺少什么。
大数据2012年7月出版的《大数据》是中国大数据领域第一本著作,引领了中国社会对大数据战略、数据治国和开放数据的讨论,该书先后获得国家图书馆文津图书奖、第四届中国软科学前沿探索奖、2012年度十大好书等奖项。
涂子沛,知名信息管理专家,曾居美国硅谷,现任阿里巴巴副总裁。毕业于华中科技大学、中山大学和卡内基梅隆大学。赴美留学之前,曾在省、市、县几级政府的不同部门磨砺10年,做过职业程序员,担任过公安边防巡逻艇的指挥官,也从事过政府统计工作。在美期间,先后担任软件公司的数据仓库程序员、数据部门经理、数据中心主任、亚太事务总监、首席研究员等职务。除了工作、写作,还热心公益,曾任中国旅美科技协会匹兹堡分会主席,现任中国旅美科技协会副主席,上海真爱梦想公益基金会理事。
㈢ 《数文明大数据如何重塑人类文明、商业形态和个人世界》epub下载在线阅读全文,求百度网盘云资源
《数文明》(涂子沛)电子书网盘下载免费在线阅读
链接:https://pan..com/s/1EBeikqfWysGwbKOx67V_yg
书名:数文明
作者:涂子沛
豆瓣评分:7.1
出版社:中信出版集团
出版年份:2018-10
页数:384
内容简介:
从量数、据数、普适记录、人脸识别、以图搜车,到雾计算、城市大脑、单粒度治理、无匿名社会、量子思维……作为中国研究大数据的权威专家,作者在《数文明》一书中,以大数据为核心元素,抽丝剥茧,深入地阐述了这个大数据时代的文明社会——一个全新的数文明时代。
将大数据与人类文明融合在一起,这本书提供给我们的不仅是一种全新的叙事结构,它还将突破你的认知边界和思维极限,给你提供一个应对这个世界的全新的认知方法论。
《数文明》一书从三个层面鞭辟入里地描绘了互联网时代的一种全新文明形态:人类的数据文明——它将是互联网的下半场;商业世界的数据文明——商业世界将迎来重塑和再造;以及个人世界的数据文明——我们该如何从不完整的个体跨跃到高能个体。不论在哪个层面,数文明对人类的颠覆和重构都将是影响深远的。
可以说,《数文明》重构的不仅仅是我们的认知逻辑,还有身处这个数文明时代的生存逻辑——不仅包括每一个国家、每一种社会、每一家企业,还有每一个个体。
这本《数文明》为大数据先锋思想家涂子沛所著的第三本力作,分享了他对大数据给人类、社会和文明的各个层面可能带来的机遇和挑战的探索和思考,纵横历史、文字隽永、深入浅出、信息量大、涉及面广,读之获益甚多,难以释卷。
作者简介:
涂子沛
江西吉安人,大数据先锋思想家。曾在美国学习、工作多年,2014年从硅谷回国,出任阿里巴巴集团副总裁。从2017年起先后创建涂子沛咨询、数文明科技。同时担任伊斯佳股份(智能制造)董事、人民网独立董事。
其首部著作《大数据》开大数据之先河,被誉为“为华文世界开创了一个重要话题”;第二部著作《数据之巅》则认为必须把大数据从科技符号提升为文化符号,推动中国在大数据时代的全球竞争中胜出。这本《数文明》为数据三部曲的第三部。
本科毕业于华中科技大学计算机系,研究生毕业于中山大学、卡内基-梅隆大学,获公共管理硕士和信息技术科学硕士学位。
㈣ 大数据下财务分析思考
大数据下财务分析思考
大数据时代的到来为企业的发展提供了机遇,那么,财务分析如何进一步发展呢?以下是我整理的大数据下财务分析思考,希望对大家有所帮助。
【摘要】
财务管理是企业管理的核心,随着互联网的普及,财务工作的内涵和外延不断扩展,如何适应科技发展,提升财务管理的效率和质量就成为企业必须考虑的问题。本文中,笔者就将从财务分析的发展历程和传统财务分析面临的主要问题入手,参考相关理论与文献,结合财务工作实际,对大数据时代下的财务分析具体策略展开研究。
【关键词】财务管理;大数据时代;财务分析
随着信息化时代的发展,云平台、物联网等新兴技术逐渐走入我们的生产与生活。大数据作为海量数据的处理技术,能够帮助人们快速实现数据的归集与分析,为管理者决策提供依据,对于财务管理意义重大。本文中,笔者主要从结果分析转向过程管控、单一分析转向多样性分析、阶段分析转向实时分析等方面对大数据时代下财务分析的发展方向进行研究,并提出一些做好财务分析工作的具体策略。
一、财务分析的发展历程
(一)手工处理阶段
早期,会计人员对数据的采集、存储、加工、传递都是依靠纸张和算盘等计算工具进行的,这种手工方式的处理需要阅读大量的会计资料,在整个过程中,会计人员很容易出现差错,除此之外,手工处理的效率也相对低下。
(二)计算机处理阶段
计算机问世后,财务数据的分析与处理效率得到极大提高,但借助计算机的财务分析也仅仅只是手工方式的模拟,即一种程序只能完成一项业务的分析,会计资料、信息的交换与分享仍主要经由光盘、软盘等存储介质。这一阶段,计算机处理的信息具有很大局限性,各部门对资料的决策参考不能实现充分交流,及时性和准确性有待进一步提升。
(三)网络处理阶段
互联网的普及使财务资料和信息能够借助网络进行处理和传递,会计实现了业务流程和信息流程的集成处理,彻底消除了以往“信息孤岛”的现象,极大提高了企业的信息共享性。但这一阶段对于数据的总结、归纳、提炼仍不够精确,数据的使用价值有待提高。
(四)大数据分析阶段
大数据分析是建立在云计算基础上的一项新型技术,大数据下的财务分析,数据的抽取与分析将更为便捷,数据的结构、内涵将更加复杂、多样,加之分析方法更加精确、更加智能,财务分析的时效性与决策参考价值都得到很大程度提升。
二、传统财务分析面临的问题
(一)以事后分析为主,对事前、事中管控不足
传统财务分析只能对已经发生的财务数据进行归集、处理,这时分析结果的实效性和有效性已经大大降低,既不利于企业财务管理的风险控制,也不利于企业的经营决策。加之,通货膨胀等宏观经济原因的影响,企业的资产会被低估,成本偏低,收益虚增的情况时有发生,这将对企业利润表与资产负债表的真实可靠性不利。
(二)以财务报表分析为主,对非财务资料的分析不足
传统财务分析主要参考财务报表,这使得财务分析的数据和结果均有局限性。一方面,企业固定资产折旧、对外投资核算以及存货发出计价等内容可以依据会计准则以及自身实际情况选择不同的会计处理方法,因此,数据的处理结果往往不具有可比性。另一方面,固定资产折旧年限、固定资产净残值率以及坏账准备金比例等受到会计人员主观影响的可能性较大,这些由估算得来的数值也会对财务分析产生一定影响。
(三)以结果为主,过程分析不足
大多数企业的财务分析仅将企业最终的利润作为分析重点,即过分注重经营结果,忽略了财务管理中的先进管理分析、非会计材料分析、资金链分析等过程分析,认为只要企业盈利了就表明经营状况良好。这种分析思路对于控制企业经营成本与风险不利,不能从根本上帮助提高企业投资产出比和资本运营能力。
(四)以应付外部监管、检查为主,参与企业管理与决策的功能不足
目前,大部分企业的财务分析工作只是为了应付外部检查而设置的,其在企业经营管理中的地位较低,不能参与企业的管理决策。此外,财务分析对应的外部检查项目种类较多,检查方式也多为制式表格,会计人员疲于应付填表,无法实现对数据和信息的细致分析。
三、大数据时代下财务分析的发展趋势
(一)由结果分析向过程分析
转变以销售业务为例,以往的财务分析主要针对终端的销售结果进行统计,进而实现对产品渠道、组织、数量、金额等内容的分析,但这种分析方式无法对产品销售进行溯源,只能根据结果进行定性判断,也就不能为决策提供准确参考。大数据时代下,后台人员能够对特殊信息进行采集、处理,还可对消费者评价、促销活动情况等中间数据与信息进行归集、分析,这对于企业及时调整经营策略,提高经营效率具有重要意义。
(二)由单一分析向多样性分析
转变要判断某个客户的经营状况,按照传统财务分析的思路分析其财务报表是不全面的,必须要有大量的财务数据和非财务数据支撑才能得到更精确的结论。在大数据时代下,财务分析要从以往的单一分析向多渠道信息分析转变,实现对数据内容的拓展,帮助企业更全面地了解自身经营情况。
(三)由阶段性分析向实时分析转变以往对终端信息的采集以及财务分析报告的出台多是定期的,这对于突发项目考虑不够全面,不利于企业的风险管控。在大数据时代下,个性化的策略和精细化的财务分析能够做到实时查询,信息能够通过网络及时传递,企业也能及时参考分析结果进行经营调整。
四、大数据时代下做好财务分析工作的具体策略
(一)提高财务分析人才素养大数据时代,财务分析将在企业管理中扮演更重要的角色,因此,财务人员要更深入地学习新的分析方法,提高自己使用新技术的能力,培养自身敏锐的判断力,积累财务分析的经验,树立大财务思维,重视大数据的开发和运用。
一方面,财务人员要苦练内功,具备扎实的会计业务能力,另一方面还要将视野扩大至决策分析与支持、信用管理、风险管理、作业成本管理等综合管理领域,提升自身财务大数据的处理能力和分析能力。
(二)制定清晰的财务分析战略
行业和企业不同,对于大数据的使用也会存在一定程度的差异,因此,企业要根据自身所处的行业特点与企业属性制定财务战略,构建适合自己的财务分析体系。
具体来讲,企业一方面要明确自身实际,确定自身业务量和信息量,并针对数据的规模确定财务分析的层次、结构以及配备的人员数量和目标结果;另一方面,财务分析战略的建构是一个宏大的工程,企业要制定中长期计划,逐步完成,不可盲目求大,要从IT架构等基础设施做起,逐步向各环节业务领域实现拓展。
(三)完善财务分析新系统的主要功能
首先,要实现大数据财务分析的灵活查询功能。企业要依据职能不同为各环节各部门分配不同权限,用户可查阅权限以内的相关数据,同时,还要进一步完善财务系统建设,筛选真正有价值的指标进行收集与处理,为企业决策提供更准确的参考内容。其次,要引入多维分析技术。
在实际过程中,财务人员面对的资料和数据往往较为复杂,这就需要我们引入多维分析处理技术,进一步整合数据源,提高指标计算的自动化程度,进而提升财务分析的综合性。最后,要引入人机交互的操作模式。大数据时代的财务分析系统要能够根据实际需要进行信息性质和范围的变动,方便财务人员及时进行人为调整,提高财务分析的适应性。
五、结语
总之,大数据时代的到来为企业的发展提供了机遇,作为企业管理核心部位的财务分析应主动适应时代,找准自身定位,做发展的引领者,广大财务人员要进一步创新工作方式,拓展财务分析的外延与内涵,使之成为企业决策、发展的智库。
【参考文献】
[1]涂子沛.大数据:正在到来的数据革命[J].广西师范大学出版社,2012(08)
[2]孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013(01)
[3]迟红梅.发挥财务分析在企业财务管理中的核心作用的研究[J].时代金融,2011(04)
[4]程平,王晓江.大数据、云会计时代的企业财务决策研究[J].会计之友,2015(02)
摘要:
本文从企业的发展由来、中小企业财务管理所存在的问题出发,在列出了几个典型的问题后进行进一步的阐述。企业财务管理犹如企业的血液,要是血液出了问题,那么整体都会出现严重的问题。在深入揭示企业财务管理所存在的问题的同时,本文也给出了一些合理建议和对策供参考。
关键词:
中小企业;财务管理
1、引入背景
现代企业往往都有着很深远的历史,其发展与生产由当时的商品经济情况和生产力状况决定,在其发展的过程中,往往会产生很多的问题,如企业的发展方向该怎么选,企业的目标怎么定,企业的组织结构,企业管理模式,企业财务管理等等。对于企业来说,目标是导向,组织结构和管理模式是根基,而企业财务管理则是决定企业如何周转资金从而实现可持续发展的重要的一点。随着国家相关政策的出台,很多企业相应国家的号召,进行企业的现代企业制度的建设与改革,这在很大程度促进了企业的转型升级和提升,对于形成一个良好的市场经济有着重要的作用。企业财务管理自然而然也发生了很大的转变,从以往单一的财务管理模式到现在的复合型财务管理模式,任何事物都有两面性,企业财务管理模式的转变自然而然也带来了一些问题。去了解这些问题并且尝试提出解决这些问题方法显得尤为重要。
2、中小企业财务管理的问题
2.1内部财务管理没有主动权
有不少的中小企业几乎将自己的企业财务全权交给相应的会计事务所来打理,自己则不干涉其中,这就造成了在很大程度上企业对于自己财务状况的不了解不熟悉,被动地接受专门的会计事务所所出具的分析报告,对于分析报告也只是一般的了解了解下就不管了,只要企业是正盈利就放心,而不去深入了解这种正盈利究竟是短暂的还是长期的,是刚好处于长期正盈利的区间内还是刚好处于盈利与亏损的交界点,这些都是企业对于财务管理不负责任的态度。
2.2财务管理制度不完整
中小企业实力较差,往往没有大企业那种严格的科学的财务管理模式,有的也只是照搬其他企业的模式,不结合自己企业的实际情况,导致企业花了大量精力去管理企业,但是却适得其反,中小企业的财务体制大部分是单调的、没有科学性、不健全等等。
2.3资金使用不恰当
大部分企业认为攥在手里在钱越多企业越适合继续发展,其实这是不对的,企业这样将钱大把大把的放在手上会造成资金的周转困境,严重的甚至会导致持续生产的困难,企业资金比例配置不合理,固定资金多于流动资金或者流动资金多于固定资金的很多倍,导致企业需要流动资金的时候没有,需要固定资金的时候也没有,从而使得企业失去了很多发展的机会,严重的甚至会威胁到企业的发展。企业的赊销也是一个很显见的财务问题,欠的钱无法及时的还,借出去的钱因为没有具体的赊销制度而导致无法合适的收回,造成企业财务状况恶化。
2.4投资投机化
中小企业主要是靠私人老板来决策企业的发展,缺乏健全科学有效的管理决策制度,很多老板看着别人投资这个他也跟着投资,不结合自己企业的具体情况,受投机心理的驱使,往暂时的社会热点区投资,其结果可能导致企业破产。因为这样会使得企业的钱使用不合理,加上前面所述的企业本来就资金周转不合理,就是在这种不合理的情况下,企业一步一步走向了衰退,直至消失。
3、应对策略及建议
3.1内部管理主动化
中小企业应该直接掌握企业的主动权,建立健全财务部门,增强其解决财务问题的能力,财务部门要不断地进行培训工作,定期召开报告大会,可以效仿专业的会计师事务所的管理制度,但是不能照搬,要符合自身企业的发展情况来进一步制定适合企业发展的财务方案。
3.2健全企业财务管理制度
首先,中小企业应该按照科学的方法并且结合企业自身的实际来制定适合本企业发展的企业财务管理制度,决不可照搬他人的,各部门加强协作,从小部门到大部门,都应该做到遵纪守法,企业的发展方向符合市场规律,各财务人员要做好接受专业培训工作,将学习的知识和工作的实践结合起来,在干中学学中干,在内部建立好牵制制度,经办、审批、财物保管等人员的职责与权限要有明确的规定,不能越位行事,做好自己的事情,目光要长远,决不可因为眼前的些许利益而放弃长远的利益,对企业要负责。其次,企业要建立合理的审计制度,因为合理的内部审计制度能够确保企业合理运行的规范性,监督企业财产的安全、完整和使用,确保企业在进行目标的制定和企业重大问题的决策时,有良有效的行事程序,从而有较好的抗风险性。同时要有自己的财务指标,当财务状况偏离财务指标的时候,相关人员要做出调整。
3.3合理配置资金
企业对于资金的配置问题,应该做到客观、合理,要以资金运用效益、效率为导向,发挥企业整体优势,将有限的资金投入在合适的地方,并建立良好的制度来评价和分析资金使用情况,抓住关键环节解决所产生的问题,提高资金利用效率。
3.4投资要符合规范
企业的老板应该多元化投资,即将资金投资在很多不相同的领域,从而减少非系统性风险给企业带来的不必要的损失,投资周期也应该按照企业具体发展情况来确定,既要有长期投资也要有短期投资。同时,投资应该分为对内投资和对外投资,要设立相关领域投资负责人,负责人必须熟悉该领域的特点以及投资的风险性,有相关的投资经验,管理技能,不能随便选择无关人员负责该投资项目,投资还要符合相关法律法规的规定,不能做违反的事情。
4、结语
综上所述,企业财务管理应该规范且适合企业发展,随着市场开放程度的放大,企业必然面临很多机遇与挑战,财务人员要做好应对挑战的准备,为公司创造更多的财富是财务管理人员的首要职责,企业管理人员要用长远的眼光思考问题,正确发展观念则是一个很重要的要素,没有正确的发展观念,企业很难在经济全球化下生存下来,各企业要做好财务管理人员的培训工作,使得他们能够更加专业更加敬业的为企业做贡献,为企业创造更大的财富。
参考文献
[1]袁满.中小企业财务管理的发展与创新[J].中国商论,2011(23).
[2]文逢博,裴更生,高蕾.中小企业财务管理存在的问题及对策[J].河北大学学报(哲学社会科学版),2010(4).
摘要:
从某种程度上看,财务外包服务,这是金融服务外包企业的重要组成部分。现阶段,我国很多的财务外包企业还是处于初步发展的阶段,其缺陷较为明显,例如,业务单一、人员规模较小和专业水准不高等方面的问题,上述的因素必然会影响我国财务外包企业的稳步发展。为此,本文便以“大数据背景下的财务外包企业发展趋势”为题,深入研究我国财务外包企业在发展过程中所存在的问题,并提出具有针对性的措施,从而更好地推动我国财务外包企业的发展。
关键词:
大数据;财务外包;问题;应用
现阶段,现代企业要想更好地在市场竞争中获得有利的地位,这就必须要不断自身的管理水平。同时,我们还要根据时代发展的潮流,逐步财务外包企业的管理。当然,在财务外包企业的内部管理中,需要加强财务管理,这是因为财务管理的工作质量水平将会直接影响到企业的总体发展及市场竞争的有效性。在大数据的背景下,财务外包企业在财务管理方面面临着巨大的挑战,需要不断加强工作和研究力度,尽力寻找全新的管理思路和具体的手段,从而推动财务外包企业的稳步发展。
一、大数据下的数据特点
在大数据背景下,数据、信息和资料,这是现代企业管理工作所必须依赖的内容。而且,现代企业对数据信息的重视程度大大超出了前期的内容。若是不重视数据信息的利用,必然会影响到财务外包企业的快速发展。但是,从目前的情况来看,现阶段简单的数据信息处理与大数据背景下的数据处理还是存在诸多的差距,若是运用一些简单的手段来处理财务问题,显然是无法适应当前大数据背景下的数据利用,以及处理技术的需求。为此,我们想要不断提升大数据背景下财务外包企业的管理水平,这就需要加强大数据背景下的各个数据的处理和应用水平。从某种程度上看,大数据,也就是庞大的数据处理,在数据时代,一般的数据存储介质都是为磁盘、光碟等,在容量和体积上也是以M为单位。可是,近年来数据体积的不断增大,传统的数据单位逐渐变为G和T。而且,在大数据时代下,数据产生的速度较快,且体量也是非常大的,所以,这样就让我们在数据的处理和提炼方面面临着巨大的问题。当然,数据产生量的不断增加,同样也会造成各种数据的杂糅,极大地降低了数据价值的密度。例如,在视频监控的过程中需要进行数据的提取,这既需要进行长达数小时或者是十几个小时的录制和查找,这样就给数据的信息处理工作带来了极大的麻烦。除此之外,虽然说大数据背景下的数据处理呈现出体量巨大、价值密度较低等方面的特点,但是在大数据背景下,其对数据信息的处理要求更为严格。更为重要的是,在物联网、云计算以及PC端的不断发展情况下,财务外包企业必须要不断提升大数据的处理速度,才能更好地实现管理技术的发展。
二、我国财务外包企业的.发展现状分析
从目前来看,我国的财务外包企业企业的业务开展时间较晚,发展也较为缓慢。而且,从财务外包服务企业来看,虽然说国内的财务外包服务业务的企业数量较少,基本上集中在外资企业和中小型企业。而且,我国的财务外包企业的主营业务便集中在传统的会计核算业务,例如,往来账业务出纳服务外包业务、代理纳税申报业务等,而这些传统的业务与会计师事务所、会计代理记账公司、税务师事务所的业务基本重合,难以发挥出财务外包企业自身的特性。同时,从人员的层次上看,我国的财务外包企业的人员素质不高,且人才的学历基本集中在大专水平,所以造成财务外包企业从业人员的待遇偏低,公司人才的流动性较大。在财务外包公司的发展规模上看,我国专业化的财务外包公司的人数基本都是在300人左右。而且,更为重要的是,我国的财务外包公司的业务集中在国内,没有涉及国际财务外包的相关业务。
三、“大数据”背景下对我国财务外包企业的发展影响
从某种程度上看,“大数据”,其主要是利用IT技术来建立相应的数据仓库,并提供和建立数据安全服务,进一步挖掘数据中潜在的商业利益信息,并对其进行商业化的数据分析,以此来获得相应的商业价值。同时,在大数据的背景下,将会直接影响到我国财务外包企业的发展方向。我国财务外包公司只能通过大量的财务数据来进行分析,并挖掘其中重要的信息,从而为客户制定出科学高效的财务数据解决方案,从而达到服务企业的目标。在另外一方面,在大数据时代下,其相关的技术,可以挖掘财务外包公司的数据整理和分析的能力,从而便于将传统的财务外包业务转化成更加具有现代化的会计核算业务,同时,还需要切实帮助财务外包企业领导人更加关注企业的财务数据价值,为财务外包公司的战略目标实现打下坚实的基础。我国财务外包公司在大数据时代的影响下,将会制定出严格高效的战略规划。而且,财务外包公司的业务将不会局限传统的业务核算。而随着我国财务外包企业和发包企业之间的联系,我国财务外包企业将会逐渐演变成为财务管理咨询的业务提供商,并将企业的财务预算管理、信息系统设计研发以及公司的财务战术实施等方面的业务纳入到财务外包企业当中去。最后,受到“大数据”的影响,我国财务外包企业将会掌握大量的企业财务数据信息,在保护企业的信息情况下,我国财务外包企业将会进一步拓展自身的业务。例如,可以利用行业企业的对比数据进行分析,从而为银行贷款提供相应的盈利标准业务,或者是可以为公司担保财务调查服务,还可以为客户提供相应的市场需求信息和金融产品设计理念等方面的信息。
四、加强“大数据”背景下财务外包企业的管理措施
从上述的分析中,我们可以知道,财务外包企业受到“大数据”的影响,财务外包企业在数据收集和处理方面面临全新的问题和特点。为了能够更好地加强数据的收集和整理,将各项财务外包业务从被动到主动的转变,这就需要在财务外包企业的数据信息工作下功夫。不断转变财务外包企业的工作思路,进一步改革管理手段,从而打造全新的管理平台。通过这些方面,才能更好地推动我国财务外包企业的全面发展。
1.灵活地运用财务外包的专业化优势
为了更好地推动大数据背景下财务外包企业的发展,这就需要充分发挥财务外包企业的第三方专业化优势。在当前混合所有制企业下,我们必须要建立公开透明的财务信息体系,以此来扭转财务外包企业信息舞弊的现象,进一步强化财务外包企业的改革。从当前的财务外包企业的发展情况来看,由于缺乏科学高效的财务管理工具,财务外包的委派制度难以起到实质性的效果。为此,我们可以充分发挥好财务外包自身的专业有数,逐步降低企业财务部门的成本,以此来改变财务外包企业内部控制不足的情况,以此来保障财务外包企业自身的资金安全。
2.注重财务外包企业的人才培养
为了能够解决我国财务外包公司专业人才缺乏的问题,这就需要政府、高校以及财务外包企业三者之间形成外包人才培养的机制,只有通过这种方式,才能更好地推动大数据背景下财务外包企业的稳健发展。例如,北京中关村国际孵化软件协会提出了“创新梯队工程”项目,并进一步吸引了更多的人才进入外包企业,同时将财务外包企业与大学生之间进行双向选择,并委派专业导师进入大学生开设相应的选修课,这样就可以让这些大学生直接进入到外包企业工作。最后,我们还要进一步加强财务外包企业的素质选拨,并且根据财务外包企业自身的发展情况制定科学高效的人才培养模式,以此为财务外包企业提供更加专业化的人才。当然,除了要进一步加强我国财务外包企业在职人员的培养外,还需要推行订单式的人才培养模式,以此加强我国财务外包企业的发展。
五、结语
总的来说,在大数据时代下,我国财务外包企业必须要充分发挥数据信息的作用,注重数据的挖掘和分析工作,并能够我财务外包企业提供一系列的财务信息解决方案,不断提升自身的核心竞争力,才能稳步推动我国财务外包企业的发展。同时,还要不断积极参与国际财务外包业务,全面提升我国财务外包企业的业务水平。
参考文献:
[1]王棣华,于婷.财务外包本土化[J].新理财,2011(07).
[2]任秀梅,柳金叶.财务外包风险管理研究[J].中国管理信息化,2010(15).
[3]杨静.财务外包风险控制研究[J].改革与开放,2010(14).
[4]敖翔.简析现代企业财务外包的风险与防范措施[J].中国总会计师,2010(07).
[5]戴福祥,吕利平,石银萍.财务外包风险防范研究[J].财会通讯,2009(29).
[6]王力,方蕾.国际财务外包:特征及风险防范[J].财会学习,2009(09).
;㈤ 大数据为创业创新提供巨大空间
大数据为创业创新提供巨大空间
随着大数据时代的来临,人们普遍关心,在这样的时代,它会怎样影响我们的生活?在昨天的“大数据创新发展论坛”上,与会嘉宾用通俗的语言,生动的例子,深入浅出地向听众解释了大数据的概念、作用,以及大数据时代如何影响我们的生活,并针对如何抓住大数据时代的机遇实现强国梦提出了建议。
大数据与人们的生活息息相关
大数据是什么?它与我们的生活有什么关系?在当今社会,为什么世界各国都如此重视大数据?在昨天的论坛上,每位嘉宾都纷纷强调了大数据的重要性。
中国工程院邬贺铨院士用“大数据已经成为国家基础性战略资源”强调了大数据的作用和价值。他说,大数据的产业链覆盖了社会经济、生活各个领域,可以应用到各个行业,大数据的思维代表了认知论的升华,蕴含着广阔的创新空间。
中国信息通信研究院院长曹淑敏也认为,随着互联网信息的发展和普及,特别是移动互联网,使得通信网的普及程度非常之高,已经从连接人到连接物。整个互联网已经从消费型互联网转向产业型互联网,这为大数据的存储、处理、挖掘、应用奠定了基础。目前,大数据在各方面的应用已经开始逐渐显现,除了传统的服务业领域之外,工业领域的应用也已经开始兴起。
在阿里巴巴副总裁涂子沛看来,大数据已经与我们生活紧密联系在一起,几乎成了每个人生活的一部分。现在,很多人都离不开手机,下飞机第一件事打开手机,早上起来第一件事打开手机,看微信,看朋友圈,看信息,其实,人们所看到的这些都是数据,人们离不开的不是手机而是数据,所以说,大数据的时代已经到来。
华为集团高级副总裁邓彪认为,大数据可以帮助企业增加收入、帮助企业提升运营效率。大数据的应用比数据的存储和计算更重要,大数据一定要用才会有价值,此外,大数据一定要流动、贯穿、沉淀。
抓住大数据机遇实现强国梦
怎样抓住大数据时代机遇,实现强国的梦想?与会嘉宾结合目前国内大数据产业发展的现状,提出了各自的建议。
在贵州省委常委、贵阳市委书记陈刚看来,大数据发展到今天有一个很重要的问题,就是数据存储越来越多,数据处理量越来越大,人类积累数据的能力远超过人类处理数据的能力的发展。换句话说,在未来发展过程中,大数据越来越大,但是,大数据并不能保证我们能把这些数据处理好,因此在未来大数据处理时代,由计算机形成的热点“头脑风暴”,可能是人类社会进入大数据处理能力的最高一个阶段。
他以贵阳市为例说明大数据对一个城市发展的重要性。目前,贵阳市正在做的一件事情就是以交通大数据为基础,成立一个公共数据开放的平台,进而建立一个孵化器的平台,向国内所有的法人企业进行契约式的数据开放;从局部利益来说,通过这些数据的开放,利用社会的资源可以改善贵阳交通,使政府智能化管理,服务民生得到改善。但是它的价值远不止于此,我们考虑的是能不能通过交通大数据的孵化器,通过契约式的方式,吸引社会企业、社会法人来,作为一种契约式的开放管理,进而形成一种良性互动的循环,形成各个部门数据竞相开放,出现各个部门数据融合开放的格局,这是贵阳想做的探索。
邬贺铨院士在演讲中直陈目前中国大数据产业发展所存在的问题,他说,中国是网络大国,也是数据大国,拥有数据资源是中国的优势。但大数据的开发能力和人才是中国的短板,大数据的法治与数据开放共享的不足是我们的“软肋”。他认为,大数据运行需要大平台,过去的数据是静止的,现在数据是活的,所以对平台提出更高的要求,需要实现信息融合,需要从大量的复杂数据里面突出感兴趣的数据。
曹淑敏也建议,要加强数据开放共享,推动应用创新,提升政府治理新能力。大数据的开放给创业创新提供了巨大的空间和潜力,其中既包括大数据的开放平台,又包括培育大数据的众包平台,还有建设大数据的众创平台,这将为中小企业提供很多的创业机会。同时,还要加强数据安全管理。
以上是小编为大家分享的关于大数据为创业创新提供巨大空间的相关内容,更多信息可以关注环球青藤分享更多干货
㈥ 涂子沛大数据读后感1800字
进入2012年大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新,人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者消费浪潮的到来。“大数据”的运用在各个领域发挥着前所未有的重要作用,渗透到了当今每一个行业和业务职能领域,成为重要的生产因素,并对人类的数据驾驭能力提出了更新的挑战。
一、传统的信息格局被打破
不是我不明白,这世界变化快。2000年还是一张软盘打天下的时代,短短十多年光景,硬盘的存储容量已从4GB、16GB、32GB迅速攀升到1TB(相当于1024GB的容量)。原来仅有1.44MB的软盘在当时感觉存储容量还是蛮大的,到现在硬盘容量蹿升至1TB了,反而感觉存储空间捉襟见肘,到底是哪里出现了问题呢?1965年英特尔的创始人之一戈登摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加一倍,换句话说,计算机硬件的处理速度和存储能力,一到两年将提升一倍。这一定律,得到验证。
大数据!一语惊醒梦中人,大数据时代已经悄然来临。随着社交网络的逐渐成熟,移动宽带迅速提升,云计算、互联网应用更加丰富。更多的传感设备、移动终端接入到网络,由此产生的数据及增长速度迅速攀升。那么什么是大数据呢,正如IBM总结的那样:“大量化(Volume)、多样化(Variety)和快速化(Velocity)”就是“大数据”的显著特征。
二、管理法则:质量是数据时代的根本
数据能满足其既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途(引致数据库专家杰克.奥尔森)。
随着网络的出现,政府开始在网上发布信息和数据,对政府而言,是一个很大的挑战,因为数据一经政府发布,往往被视为权威,对社会的各个领域都可能产生重大的影响。任何一份通过网络发布的信息,面对的都不是一定特定群体,而是全体国民,如果政府发布数据的质量不可靠,将受到频繁的、大范围的质疑,特别是一些可以会影响到公共政策和行业管制标准的数据,将引起巨大的争议。
例如:单位奶制品中蛋白质含量、菌落总数应该是多少 ?饮用水里能混杂多少含量的微量元素?新鲜蔬菜能带有多少指标的杀虫剂残留?工厂排放的废气、汽车的尾气以及车间的通风条件都要符合怎样的标准等等,这些标准,都是数据。随着社会的发民、科学的进步,这些标准越来越多越来越细,每一个都和国民生活和经济发展息息相关。所以政府在网上发布数据,必须慎之又慎,保证质量。
三、大数据在各领域中的价值表现
1、数据竞争:企业赢利之道
企业以“低成本、高效率”的方式来开展公司的业务,而要做到“低成本、高效率”的运营以及决策正确,企业必须广泛推选以事实为基础的决策方法、大量使用数据分析来优化企业的各个运营环节,通过基于数据的优化和对接,把业务流程和决策过程当中存在的每一分潜在的价值都“挤”出来,从而节约成本,战胜对手,在市场上幸存。这种竞争,就是一种基于数据的竞争。
已经有越来越多令人信服的证据表明:只要实施正确的政策和激励,大数据将成为竞争的关键性基础,并成为下一波生产率提高、创新和为消费者创造价值的支柱。信息时代的竞争,不是劳动生产率的竞争,而是知识生产率的竞争。数据,是信息的载体、是知识的源泉,当然也就可以创造价值和利润,可以预见,基于知识的竞争,将集中表现为基于数据的竞争,这种数据竞争,将成为经济发展的必然。
2、通讯、电信、商务智能、互联网的逐步演变
近年来,随着大数据的迅猛增加,各个行业、政府部门都在尝试“用数据来决策”、“用数据来管理”、“用数据来创新”,在这个过程中,涌现了一大批既务实管用,又令人耳目一新的做法和应用。
回顾历史,我们从广播的年代到电视的年代再到本世纪初互联网的年代,从音频对话到可视电话,数据技术一直在我们的生活中扮演重要的角色,互联网出现之后,就交流和互动而言,广播和电视无疑相形见绌。
“大数据”可能带来的巨大价值正渐渐被人们认可,它通过技术的创新与发展,以及数据的全面感知、收集、分析、共享,为人们提供了一种全新的看待世界的方法。
四、总结
涂先生从数据本身的革命、社会科学的革命、企业管理的革命、社会管理的革命四个方面深刻阐述了大数据的重要意义,以最前沿的视野、直接的解读和剖析为我们理清了《大数据》一书的脉络和精髓,为我们如何能更好地阅读、理解、领会《大数据》一书的精神实质提供了很好的帮助,让我们意识到:大数据的时代,是不可逃避的。
涂子沛大数据读后感二:读涂子沛的《大数据》有感
首先说下《大数据》这本书好的地方就是将大数据变化为一本科普读物,不是讲大数据的关键技术和具体实现,而更多的是围绕美国政府基于数据的管理历史线条展开,让大家更加容易理解大数据在政府执政和公共事务管理中发挥的作用,所以我看完后最大的感觉就是关注智慧城市的相关人员完全有必要阅读该书,会对以后在智慧城市的管理和建设中如何更好的理解大数据,应用大数据,发挥大数据本身的业务价值有更好的理解。
为何近几年出现大数据,最重要的还是随着信息技术和互联网,管理的精细化,全球化和社交圈扩大,数据呈现了指数级的增长。2009年美国的数据,离散制造业966PB,政府848PB,传媒行业715PB,这是麦肯锡2011年出版的一份报告《大数据:下一代创新,竞争和生产率的前沿》里面的一个估算。正是由于数据指数级的增长,对数据的开放,信息自由,数据的采集,数据的分析和处理,预测和决策提出了更高的要求。
信息自由,一为信息公开,二为信息发布。公开是政府和某一社会特定主体的关系,是点对点的;而信息发布是政府和社会的关系,是点对面的。信息自由法已经成为美国不可缺少的一个基本法案,只有信息自由才谈得上进一步的数据开放和数据共享。
我们信奉上帝,除了上帝任何人都要以数据说话。信息技术发展,数据指数级增长,已经彻底改变了政府,社会,商业群体的决策方法。需要的是形成一种数据驱动的决策方法,数据治国,需要基于实证的事实而非简单的`意识形态。而真正要让数据能够上升到决策层面,首先需要的就是数据大范围采集,数据抽样,数据测量和数据质量管理。另外数据驱动和事件驱动是两种模式,数据驱动强调的是历史和预测,而事件驱动强调的是实时和响应。大数据有一个维度专门是指速度和快速响应,更需要考虑事件驱动和数据驱动融合。
帝国法则,详细讲述了数据的收集法则,使用法则,发布法则和管理法则。数据能够满足既定的用途,它才有质量。如果不能满足既定的目标和用途,就谈不上质量。换句话说,数据的质量不仅取决于它本身,还取决于它的用途。数据质量的问题涉及到数据收集,使用,发布等所有过程的问题。数据质量管理要有标准,有流程,有救助机制。
从软件的开源到数据的开放,我们过渡到一个新的世界,可以讲数据开放式本身的另外一个重点。在这个新的世界里面,数据远远比软件更加重要。从2004年以来,美国一直在进行数据开放运动,联邦政府也专门家里了数据开放站DataGov,其主要目标就是通过数据开放,通过鼓励新的创意,让数据走出政府,得到更多的创新型应用。从而进一步巩固政府透明化,民主化和政府效能。
数据之争涉及到原始数据采集,数据质量,数据安全,数据粒度,数据价值,数据虚实多个维度。而DataGov不仅仅开放了原始数据,地理数据,还包含了数据分析工具的开放。数据开放为创新提供了无穷的燃料,因为创新型应用,数据的能量将逐层放大。
预测未来最好的方法,就是创造未来。而数据最大的价值仍然在预测上面,在解决了数据开放,数据采集,数据质量管理,数据处理后,最重要的作用就是基于数据进行科学的预测和决策。数据竞争将是企业赢之道,一些企业已经将他们商业活动的每个环节放在了数据收集,分析和行动的能力上。
涂子沛大数据读后感三:读涂子沛《大数据》有感
7月的一天,我有幸拿到了涂子沛的《大数据》一书,几个月来认真翻阅了好几遍,并查阅了许多相关的文章,也让我产生了写下这篇读后感的冲动。
。
我们处于大数据时代
当今的时代是一个信息的时代,是一个数据爆炸的时代。信息是数据的内容,数据是信息的载体。随着电脑、网络的普及,搜索引擎技术的进步以及云时代的来临,上至国家下至个人,无不为数据所包围,信息无处不在、数据无处不在。难以想象离开数据、离开数据管理,我们这个社会将会是什么样子。
那么大数据时代到底有多大呢?我们知道计算机用二进制存储和处理数据,一位是指一个二进制数位——0或1,这是存储信息的逻辑单元。一个字节有8位,再往上是KB(1KB是210字节)、MB(1MB是220字节)、GB(1GB是230字节)、TB(1TB是240字节)、PB(1PB是250字节)、EB(1EB是260字节)、ZB(1ZB是270字节)、YB(1YB是280字节)。但这究竟是多大的数据呢,我们还是难以想象。有人统计过将1TB的数据全部打印出来,需要用5000万个四开门的书柜去储藏。这是多么庞大的一个数啊,而这只是1TB——240个字节。而仅全世界消费者一年产生的数据就有6000PB,全世界企业一年产生的数据有7000PB。截至2010年,人类产生的数据为1。2ZB,且数据每年以指数级增长,每两年我们拥有的数据将翻一番。
在大数据时代,数字电视、手机、移动互联网统治了我们。截至2012年,中国手机网民数突破4。2亿;2013年中国超过美国成为最大的智能手机市场;2013年2月微信用户数突破4亿,到9月,微信用户达到5亿,微信用户正在以每6个月增长1亿用户的速度增长;95%的智能手机用户睡前玩手机。
“棱镜门”事件主角爱德华斯诺登一时间成为全球关注的目标,网络时代何处安放我们的隐私?美国间谍卫星精度达到了5至10厘米,当今社会我们每个人近乎“透明”!
大数据时代给我们带来什么。
1965年,英特尔创始人之一戈登摩尔考察了计算机硬件的发展规律,提出了著名的摩尔定律。该定律认为,同一个面积集成电路上可容纳的晶体管数目,一到两年将增加1倍,也就是说,其性能将提升1倍。换句话说,计算机硬件的处理速度和存储能力,一到两年将提升1倍。这一定律揭示了信息技术进步的速度。
数据的爆炸是“三维”的,是立体的,这三个维度,主要表现在:同一类型的数据量在快速增长;数据增长速度在加快;数据的多样性,即新的数据来源和新的数据种类在不断增长。
任何一件事物,都有一个从量变到质变的过程。在当前这个数据爆炸的时代,数据带给我们什么呢?我想最重要的是带来了思维模式的转变。转变了我们一直以来以因果逻辑思维的模式,变成了相互关系的逻辑思维。举一个例子,在不久的将来我们完全可以通过数据分析,预判出一次地震的时间、地点、强度,但我们不是通过分析地壳运动而来的,而是通过相互关系的庞大的数据分析而来的。
2008年的冰灾,当时的广州火车站滞留了25万人,这个数据是通过当时在这个区域的手机使用数统计出来的,与后期的最终统计基本吻合。大数据使我们开始了一次全新的探索,而探索的意义不在于发现新大陆,而在于发现新视角。
大数据时代给企业带来了什么。
数据挖掘是一种知识产生的过程,从中产生创新、产生管理、产生推动社会变革的理论与实践。
沃尔玛公司是美国的一家世界性连锁企业,以营业额计算,为全球最大的公司。沃尔玛一年产生的数据有2500TB。沃尔玛公司通过对大量历史数据的分析发现,年轻爸爸去超市购买婴儿尿布会顺便买点啤酒犒劳自己。因此,沃尔玛推出了尿布与啤酒搭售的营销策略,使销售量增长。
纽约,美国最大的城市及第一大港,拥有810多万人口,其36%为外国移民,人口使用约170种语言。1990年,纽约市共发生了凶杀案2245宗,1995年下降到1171宗,2009年下降到466宗,创下50年最低。纽约是如何实现这个成绩的呢?原来纽约通过把20年的犯罪数据和交通数据整合,开发出了“数据驱动的警务管理”,发现交通事故高发地带,也是犯罪活动的高发地带,而且两者的高发时间段也同样吻合。这就将警察以往“亡羊补牢”的工作模式转变为“守株待兔”的工作模式,取得了巨大的成绩。
大数据及其分析,将会在未来10年改变几乎每一个行业的业务功能。任何一个组织,如果早一点着手大数据工作,都可以获得明显的竞争优势。用另一本类似著作《大数据时代》的作者维克托的一句话:“大数据是未来,是新的油田、金矿。”
当前我们的企业每天获得大量的生产、营销、办公数据,如何将数据分析应用其中是时代赋予我们的挑战。如何实现粗放型向精细化转变,大数据为我们的企业提升管理效率、提高服务水平提供了有利平台。
世界每天都在变,唯一不变的是变化。大数据将是传统行业的掘墓者,盛极一时的柯达倒闭了,微软收购了诺基亚……我们的企业处在这样一个变革的社会,应该何去何从,值得我们每一个人深思。
㈦ “大数据是迈向智能社会的土壤”
“大数据是迈向智能社会的土壤”
“有人说数据是石油,是黄金。在我看来,那都是1.0版本的说法。如今,数据是土壤,是我们迈向智能社会的土壤。”9月13日上午,著名信息管理专家、阿里巴巴集团副总裁涂子沛做客广东职工大讲堂时表示。
他认为,在这个大数据时代,沉淀、采集和分析数据使人们能够掌握很多以前无法获得的信息,实现预判趋势和定制化生产,从而帮助企业转型升级,实现社会精细化发展;同时,通过合理开放和融通数据,能够实现智慧的集成和社会治理水平的提高。
互联网是沉淀数据的战略基础设施
“今天的互联网,不仅仅是互联,而是沉淀数据的基础设施。”涂子沛认为,“互联网+”里的“+”是指超越互联,而具体表现就是数据化。
那么,互联网时代的大数据又是什么?他表示,数据是对客观世界的测量和记录,而大数据是“传统的小数据”+“现代的大记录”。“我们在收集数据时,可能是出于某个特定目的,只限于在特定维度上来收集。但这些数据往往可能在新的维度,在新的领域发生作用。”
比如,现在社会上都在讲传统企业转型,怎么转型?涂子沛表示,传统企业很难清楚地知道自己的产品卖到哪里、卖给了谁,但借助互联网,企业能够通过数据了解并分析购买者的消费行为。
他认为,一切业务数据化,便是互联网企业与传统企业的不同所在:互联网能把每一笔交易用数据沉淀下来,作为基础设施将数据采集,决定着企业今后的命运。
“企业可以和每一个终端用户之间建立数据联系,通过实时的、源源不断的数据沉淀,更加了解市场和用户。在数据时代,比的不是劳动生产力,而是知识生产力。就以电商来说,哪一家电商平台最早、最有效最精确把这些分析出来,销售量可能提得更高。不仅如此,互联网和大数据还能帮助企业拓展新的业务和商机。”
涂子沛以阿里巴巴为例,“每做一笔交易就沉淀一笔记录,数据沉淀越来越多,有了这些数据,便可以去开拓新的领域,比如说金融业务。”他解释,目前阿里巴巴平台上如果有商家提出贷款需求,在几分钟内,平台便可以决定是否发放贷款。“依据是什么?便是借助交易等各类数据的积累,全面了解商家的运营状况等信息,决策能不能放贷。”
大数据“表示的是过去,表达的是未来”
在“互联网+”时代,数据到底有多重要?“数据是土壤”,孕育智能社会。涂子沛称,数据不再仅是黄金和石油,因为它们用一次就消耗了,而数据永远在那里,越用越多,并最终经过沉淀、采集、分析实现1+1>2的效果。
“如今数据存储分享成本极其低廉,微信、微博等社交媒体的普及,使得每个人都贡献数据,引起数据爆炸。”在涂子沛看来,这些数据是预测世界最好的工具,数据表示的是过去,表达的是未来,数据就是规律的载体。“目前我们的数据正在实现把机器连接起来,成为物联网,而未来一旦机器跟人体连接上网,7×24小时源源不断收集数据、产生数据,一切都将数据化。
进入大数据时代,未来生产和社会将变成什么样?涂子沛认为,依托大数据分析,企业还可以预测消费行为和市场趋势,从而提供个性化产品满足不同需求。
“比如每个人打开手机淘宝,看到的页面、产品、商品都不一样,做了个性化之后,手机淘宝点击和下单的人要比不做个性化高一倍左右。为什么?因为数据分析使得我们把他最关心的事情推送给他了。”
值得注意的是,数据也将对传媒业产生巨大影响。他提到,媒体每天处理的信息其实就是数据的富矿,也应当通过数据分析和用户习惯给每个人推送新闻,使每一位客户通过客户端只看到自己想看到的新闻,为每一位客户量身定做,提供个性化服务。
涂子沛补充说,这就需要有大量的数据,才能基于客户兴趣和趋向的掌握,提供个性化服务。当前我们处在一个注意力匮乏的时代,大数据信息爆炸,注意力是最宝贵的,个性化服务就是在争取注意力,从而实现价值。
大数据帮助提高社会治理水平
“数据虽然是最重要的资源,不流动,就不能产生价值”,涂子沛认为,“互联网+”时代,开放数据,让数据流动,整合数据,才能够实现“1+1>2”的增值。开放数据才能推动知识经济、网络经济、新经济的发展。
他强调,数据要融通才能产生价值。要通融数据,必须首先开放数据。“中国已成立专门部门管理数据开放问题,广东则是第一个成立大数据管理局的省份。涂子沛认为,开放数据是一个系统工程,要把数据以一定的程度跟其他的数据、其他平台进行整合,更好的服务经济社会的发展。
“比如,通过掌握每一部车的位置,就知道车在红绿灯面前等了多久,现在智能红绿灯是全世界交通领域的前沿,通过将几千万条出租车数据开放出来,举办一场数据大赛,号召大家设计这样一套系统,让所有车在所有路口和地区等待的时间加总之和要最小。”
他说,这意味着,用外部力量调动内部创新,用互联网来调动资源,寻找最优解决方案,提高社会治理水平。数据开放、共享和融通不仅使得社会效率更加有效,还增加新的蓝海、新的资源,我们已经享受到了开放数据的好处。
以上是小编为大家分享的关于“大数据是迈向智能社会的土壤”的相关内容,更多信息可以关注环球青藤分享更多干货
㈧ 读《大数据时代》心得体会
读《大数据时代》心得体会(一)
读了《大数据时代》后,感觉到一个大变革的时代将要来临。虽然还不怎么明了到底要彻底改变哪些思维和操作方式,但显然作者想要“终结”或颠覆一些传统上作为我们思维和生存基本理论、方法和方式。在这样的想法面前,我的思想被强烈震撼,不禁战栗起来。
“在小数据时代,我们会假象世界是怎样运作的,然后通过收集和分析数据来验证这种假想。”“随着由假想时代到数据时代的过渡,我们也很可能认为我们不在需要理论了。”书中几乎肯定要颠覆统计学的理论和方法,也试图通过引用《连线》杂志主编安德森的话“量子物理学的理论已经脱离实际”来“终结”量子力学。对此我很高兴,因为统计学和量子力学都是我在大学学习时学到抽筋都不能及格的课目。但这两个理论实在太大,太权威,太基本了,我想我不可能靠一本书就能摆脱这两个让我头疼一辈子的东西。作者其实也不敢旗帜鲜明地提出要颠覆它们的论点,毕竟还是在前面加上了“很可能认为”这样的保护伞。
近几十年,我们总是在遇到各种各样的新思维。在新思维面前我们首先应该做到的就是要破和立,要改变自己的传统,跟上时代的脚步。即使脑子还跟不上,嘴巴上也必须跟上,否则可能会被扣上思想僵化甚至阻碍世界发展的大帽子。既然大数据是“通往未来的必然改变”,那我就必须“不受限于传统的思维模式和特定领域里隐含的固有偏见”,跟作者一起先把统计学和量子力学否定掉再说。反正我也不喜欢、也学不会它们。
当我们人类的数据收集和处理能力达到拍字节甚至更大之后,我们可以把样本变成全部,再加上有能力正视混杂性而忽视精确性后,似乎真的可以抛弃以抽样调查为基础的统计学了。但是由统计学和量子力学以及其他很多“我们也很可能认为我们不再需要的”理论上溯,它们几乎都基于一个共同的基础——逻辑。要是不小心把逻辑或者逻辑思维或者逻辑推理一起给“不再需要”的话,就让我很担心了!
《大数据时代》第16页“大数据的核心就是预测”。逻辑是——描述时空信息“类”与“类”之间长时间有效不变的先后变化关系规则。两者似乎是做同一件事。可大数据要的“不是因果关系,而是相关关系”,“知道是什么就够了,没必要知道为什么”,而逻辑学四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明确规定”任何事物都有其存在的充足理由。且逻辑推理三部分——归纳逻辑、溯因逻辑和演绎逻辑都是基于因果关系。两者好像又是对立的。在同一件事上两种方法对立,应该只有一个结果,就是要否定掉其中之一。这就是让我很担心的原因。
可我却不能拭目以待,像旁观者一样等着哪一个“脱颖而出”,因为我身处其中。问题不解决,我就没法思考和工作,自然就没法活了!更何况还有两个更可怕的事情。
其一:量子力学搞了一百多年,为了处理好混杂性问题,把质量和速度结合到能量上去了,为了调和量子力学与相对论的矛盾,又搞出一个量子场论,再七搞八搞又有了虫洞和罗森桥,最后把四维的时空弯曲成允许时间旅行的样子,恨不得马上造成那可怕的时间旅行机器。唯一阻止那些“爱因斯坦”们“瞎胡闹”的就是因果关系,因为爸爸就是爸爸,儿子就是儿子。那么大数据会不会通过正视混杂性,放弃因果关系最后反而搞出时间机器,让爸爸不再是爸爸,儿子不再是儿子了呢?其二:人和机器的根本区别在于人有逻辑思维而机器没有。《大数据时代》也担心“最后做出决策的将是机器而不是人”。如果真的那一天因为放弃逻辑思维而出现科幻电影上描述的机器主宰世界消灭人类的结果,那我还不如现在就趁早跳楼。
还好我知道自己对什么统计学、量子力学、逻辑学和大数据来说都是门外汉,也许上面一大篇都是在胡说八道,所谓的担心根本不存在。但问题出现了,还是解决的好,不然没法睡着觉。自己解决不了就只能依靠专家来指点迷津。
所以想向《大数据时代》的作者提一个合理化建议:把这本书继续写下去,至少加一个第四部分——大数据时代的逻辑思维。
读《大数据时代》心得体会(二)
信息时代的到来,我们感受到的是技术变化日新月异,随之而来的是生活方式的转变„„我们这样评论着的信息时代已经变为曾经。如今,大数据时代成为炙手可热的话题。笔者在这说明信息和数据,只是试图首先说明信息、数据的关系和不同,也试图说明,为什么信息时代转变为了大数据时代?大数据时代带给了我们什么?
信息和数据的定义。维基网络解释:信息,又称资讯,是一个高度概括抽象概念,是一个发展中的动态范畴,是进行互相交换的内容和名称,信息的界定没有统一的定义,但是信息具备客观、动态、传递、共享、经济等特性却是大家的共识。数据:或称资料,指描述事物的符号记录,是可定义为意义的实体,它涉及到事物的存在形式。它是关于事件之一组离散且客观的事实描述,是构成信息和知识的原始材料。数据可分为模拟数据和数字数据两大类。数据指计算机加工的“原料”,如图形、声音、文字、数、字符和符号等。从定义看来,数据是原始的处女地,需要耕耘。信息则是已经处理过的可以传播的资讯。信息时代依赖于数据的爆发,只是当数据爆发到无法驾驭的状态,大数据时代应运而生。这是否是《大数据时代》一书所未曾阐述的背景材料?
在《大数据时代》一书中,大数据时代与小数据时代的区别:1、思维惯例。大数据时代区别与转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。作者语言绝对,却反思其本质区别。数据的更多、更杂,导致应用主意只能尽量观察,而不是倾其所有进行推理?这也是明智之举2、使用用途。小数据停留在说明过去,大数据用驱动过去来预测未来。笔者认为数据的用途意在何为,与数据本身无关,而与数据的解读者有关,而相关关系更有利于预测未来。3、结构。大数据更多的体现在海量非结构化数据本身与处理方法的整合。大数据更像是理论与现实齐头并进,理论来创立处理非结构化数据的方法,处理结果与未来进行验证。4、分析基础。大数据是在互联网背景下数据从量变到质变的过程。笔者认为,小数据时代也即是信息时代,是大数据时代的前提,大数据时代是升华和进化,本质是相辅相成,而并非相离互斥。
数据未来的故事。数据的发展,给我们带来什么预期和启示?银行业天然有大数据的潜质。客户数据、交易数据、管理数据等海量数据不断增长,海量机遇和挑战也随之而来,适应变革,适者生存。我们可以有更广阔的业务发展空间、可以有更精准的决策判断能力、可以有更优秀的经营管理能力„„可以这些都基于数据的收集、整理、驾驭、分析能力,基于脱颖而出的创新思维和执行。因此,建设“数据仓库”,培养“数据思维”,养成“数据治理”,创造“数据融合”,实现“数据应用”才能拥抱“大数据”时代,从数据中攫取价值,笑看风云变换,稳健赢取未来。
读《大数据时代》心得体会(三)
这本书里主要介绍的是大数据在现代商业运作上的应用,以及它对现代商业运作的影响。
《大数据时代》这本书的结构框架遵从了学术性书籍的普遍方式。也既,从现象入手,继而通过对现象的解剖提出对这一现象的解释。然后在通过解释在对未来进行预测,并对未来可能出现的问题提出自己看法与对策。
下面来重点介绍《大数据时代》这本书的主要内容。
《大数据时代》开篇就讲了Google通过人们在搜索引擎上搜索关键字留下的数据提前成功的预测了20XX年美国的H1N1的爆发地与传播方向以及可能的潜在患者的事情。Google的预测比政府提前将近一个月,相比之下政府只能够在流感爆发一两个周之后才可以弄到相关的数据。同时Google的预测与政府数据的相关性高达97%,这也就意味着Google预测数据的置信区间为3%,这个数字远远小于传统统计学上的常规置信区间5%!而这个数字就是大数据时代预测结果的相对准确性与事件的可预测性的最好证明!通过这一事以及其他的案例,维克托提出了在大数据时代“样本=总体”的思想。我们都知道当样本无限趋近于总体的时候,通过计算得到的描述性数据将无限的趋近于事件本身的性质。而之前采取的“样本<总体”的做法很大程度上无法做到更进一步的描述事物,因为之前的时代数据的获取与存储处理本身有很大的难度只导致人们采取抽样的方式来测量事物。而互联网终端与计算机的出现使数据的获取、存储与处理难度大大降低,因而相对准确性更高的“样本=总体”的测算方式将成为大数据时代的主流,同时大数据时代本身也是建立在大批量数据的存储与处理的基础之上的。
接下来,维克多又通过了IBM追求高精确性的电脑翻译计划的失败与Google只是将所有出现过的相应的文字语句扫描并储存在词库中,所以无论需要翻译什么,只要有联系Google词库就会出现翻译,虽然有的时候的翻译很无厘头,但是大多数时候还是正确的,所以Google的电脑翻译的计划的成功,表明大数据时代对准确性的追求并不是特别明显,但是相反大数据时代是建立在大数据的基础住上的,所以大数据时代追求的是全方位覆盖的数字测度而不管其准确性到底有多高,因为大量的数据会湮埋少数有问题的数据所带来的影响。同时大量的数据也会无限的逼近事物的原貌。
之后,维克托又预测了一个在大数据时代催生的重要职业——数据科学家,这是一群数学家、统计学与编程家的综合体,这一群人将能够从获取的数据中得到任何他们想要的结果。换言之,只要数据充足我们的一切外在的与内在的我们不想让他人知道的东西都见会在这一群家伙的面前展现得淋漓尽致。所以为了避免个人隐私在大数据时代被这一群人利用,维克托建议将这一群人分为两部分,一部分使用数据为商业部门服务,而另一群人则负责审查这一些人是否合法的获得与应用数据,是否侵犯了个人隐私。
无论如何,大数据时代将会到来,不管我们接受还是不接受!
我觉得《大数据时代》这本书写的很好,很值得一读。因为会给我们很多启发,比如你在相关的社交网站发表的言论或者照片都很有可能被“数据科学家”们利用,从而再将相关数据卖给各大网店。不过,事实就是我们将会成为被预测被引诱的对象。所以说,小心你在网上留下的痕迹。
我喜欢这本书是因为它给我展现了一个新的世界。
读《大数据时代》心得体会(四)
利用周末,一口气读完了涂子沛的大作《大数据》。这本书很好看,行文如流水,引人入胜。书中,你读到的不是大数据技术,更多是与大数据相关的美国政治、经济、社会和文化的演进。作为一名信息化从业者,读完全书,我深刻感受到了在信息化方面中国与美国的各自特色,也看到了我们与美国的差距。有几个方面的体会,但窥一斑基本能见全貌。
一是政府业务数据库公开的广度和深度。近年来,随着我国信息公开工作的推进,各级政府都在通过政府门户网站建设积极推进网上政务信息公开,但我们的信息公开,现阶段还主要是政府的政策、法律法规、标准、公文通告、工作职责、办事指南、工作动态、人事任免等行政事务性信息的公开。当然,实时的政府业务数据库公开也已经取得很大进步。在中国政府门户网,可以查询一些公益数据库,如国家统计局的经济统计数据、环保部数据中心提供的全国空气、水文等数据,气象总局提供的全国气象数据,民航总局提供的全国航班信息等;访问各个部委的网站,也能查到很多业务数据,如发改委的项目立项库、工商局的企业信用库、国土资源部的土地证库、国家安监总局的煤矿安全预警信息库、各类工程招标信息库等等。这是一个非常大的进步,也是这么多年电子政务建设所取得的成效和价值!但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,还仅限于部门内部人员使用,没有公开给公众;已经公开的数据也仅限于一部分基本信息和统计信息,更多数据还没有被公开。从《大数据》一书中记录的美国数据公开的实践来看,美国在数据公开的广度和深度都比较大。美国人认为“用纳税人的钱收集的数据应该免费提供给纳税人使用”,尽管美国政府事实上对数据的公开也有抵触,但民愿不可违,美国政府的业务数据越来越公开,尤其是在奥巴马政府签署《透明和开放的政府》文件后,开放力度更加大。DATA.GOV是美国联盟政府新建设的统一的数据开放门户网站,网站按照原始数据、地理数据和数据应用工具来组织开放的各类数据,累积开放378529个原始和地理数据集。在中国尚没有这样的数据开放的网站。另外,由于制度的不同,美国业务信息公开的深度也很大,例如,网上公布的美国总统“白宫访客记录”公布的甚至是造访白宫的各类人员的相关信息;美国的FedSpending网站,能够逐条跟踪、记录、分析联邦政府每一笔财政支出。这在中国,目前应该还没有实现。
二是对政府对业务数据的分析。目前,中国各级政府网站所提供的业务数据基本上还是数据表,部分网站能提供一些统计图,但很少能实现数据的跨部门联机分析、数据关联分析。这主要是由于以往中国政务信息化的建设还处于部门建设阶段。美国在这方面的步伐要快一些,美国的DATA.GOV网站,不仅提供原始数据和地理数据,还提供很多数据工具,这些工具很多都是公众、公益组织和一些商业机构提供的,这些应用为数据处理、联机分析、基于社交网络的关联分析等方面提供手段。如DATA.GOV上提供的白宫访客搜索工具,可以搜寻到访客信息,并将白宫访客与其他微博、社交网站等进行关联,提高访客的透明度。
三是关于个人数据的隐私。在美国,公民的隐私和自有不可侵犯,美国没有个人身份证,也不能建立基于个人身份证号码的个人信息的关联,建立“中央数据银行”的提案也一再被否决。这一点,在中国不是问题,每个公民有唯一的身份信息,通过身份证信息,可以获取公民的基本信息。今后,随着国家人口基础数据库等基础资源库的建设,公民的社保、医疗等其他相关信息也能方便获取,当然信息还是限于政府部门使用,但很难完全保证整合起来的这些个人信息不被泄露或者利用。
数据是信息化建设的基础,两个大国在大数据领域的互相学习和借鉴,取长补短,将推进世界进入信息时代。我欣喜地看到,美国政府20XX年启动了“大数据研发计划”,投资2亿美元,推动大数据提取、存储、分析、共享、可视化等领域的研究,并将其与超级计算和互联网投资相提并论。同年,中国政府20XX年也批复了“十二五国家政务信息化建设工程规划”,总投资额估计在几百亿,专门有人口、法人、空间、宏观经济和文化等五大资源库的五大建设工程。开放、共享和智能的大数据的时代已经来临!
我精心推荐
㈨ 大数据的现实意义
问题一:大数据的现实意义 举个例子 你在某宝买了件内衣 马云就能知道你的胸围 你的嗜好(蕾丝还是)你的住址 电话 姓名等等一系列问题
问题二:大数据有哪些重要的作用 主要由以下三点作用:
第一,对大数据的处理分析正成为新一代信息技术融合应用的结点。移动互联网、物联网、社交网络、数字家庭、电子商务等是新一代信息技术的应用形态,这些应用不断产生大数据。云计算为这些海量、多样化的大数据提供存储和运算平台。通过对不同来源数据的管理、处理、分析与优化,将结果反馈到上述应用中,将创造出巨大的经济和社会价值。
第二,大数据是信息产业持续高速增长的新引擎。面向大数据市场的新技术、新产品、新服务、新业态会不断涌现。在硬件与集成设备领域,大数据将对芯片、存储产业产生重要影响,还将催生一体化数据存储处理服务器、内存计算等市场。在软件与服务领域,大数据将引发数据快速处理分析、数据挖掘技术和软件产品的发展。
第三,大数据利用将成为提高核心竞争力的关键因素。各行各业的决策正在从“业务驱动” 转变“数据驱动”。
问题三:大数据真的有意义么 研究表明,大数据是继传统IT之后下一个提高生产率的技术前沿和信息服务业发展的重要推动力。大数据的使用将成为未来提高竞争力、生产力、创新能力以及创造消费者盈余的关键要素。
大数据应用能够发挥重要的经济作用,不但有利于私人商业活动,更有利于国民经济和公民。数据可以为世界经济创造重要价值,提高企业和公共部门的生产率与竞争力,并为消费者创造大量的经济剩余。
大数据及其开发利用能够催生新的产业形态,拓展成为战略性新兴产业的重要组成部分。大数据的生产、整合、开发利用具有广泛的高附加值,可以形成和应用于各行业的关键发现,大数据的有效利用可以创造巨大的潜在价值,许多行业和承担业务职能的组织可以利用大数据提高人力、物力资源的分配和协调能力,减少浪费,增加透明度,并促进新想法和新见解的产生。
在当下这个信息爆炸的时代,大数据是未来的趋势。ITjob官网有关于大数据应用实例的文章和介绍,很多论坛和贴吧也有关于大数据的讨论,你可以去具体了解下大数据在生活中的应用。以及未来的发展前景,再来思考有没有意义。
问题四:什么是大数据,大数据为什么重要,如何应用大数据 空谈数据没有太大意义,要看数据的主要方向是什么。1、从技术应用方向来说,我们的数据主要做传播指导;2、数据研究过程中我们的数据主要来自互联网的公共数据(媒体数据、自媒体数据、企业自营的媒体数据),通过数据解决用户洞察问题、传播效果问题、竞争情报获取的问题,3、我们主要是在大数据的维度上的研究上,我们的维度更多更宽广,维度的多少决定了效果。
问题五:何谓大数据?大数据的特点,意义和缺陷. 大数据技术(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
特点:
1.数据量大;
2.数据类型多;
3.数据处理实时性强;
4.数据真实性。
意义:大数据的意义在于通过对大量数据进行分析从而对核心价值进行预测。
缺陷:对处理能力要求高,存在隐私安全问题。
问题六:什么是大数据,大数据为什么重要,如何应用大数据 读读这本书吧。。
驾驭大数据 驾驭未来
文/林海龙 虎嗅网友
大数据的流行,也引发了图书业大数据出版题材的升温。去年出版的《大数据》(涂子沛著)是从数据治国的角度,深入浅出的叙述了美国 *** 的管理之道,细密入微的阐释了黄仁宇先生”资本主义数目式管理“的精髓。最近人民邮电出版社又组织翻译出版了美国Bill Franks的《驾驭大数据》一书。
该书的整体思路,简单来说,就是叙述了一个”数据收集-知识形成-智慧行动“的过程,不仅回答了”what“,也指明了”how“,提供了具体的技术、流程、方法,甚至团队建设,文化创新。作者首先在第一章分析了大数据的兴起,介绍了大数据的概念、内容,价值,并分析了大数据的来源,也探讨了在汽车保险、电力、零售行业的应用场景;在第二章介绍了驾驭大数据的技术、流程、方法,第三部分则介绍了驾驭大数据的能力框架,包括了如何进行优质分析,如何成为优秀的分析师,如何打造高绩效团队,最后则提出了企业创新文化的重要意义。整本书高屋建瓴、内容恣意汪洋、酣畅淋漓,结构上百川归海,一气呵成,总的来说,体系完备、内容繁丰、见识独具、实用性强,非常值得推荐,是不可多得的好书!
大数据重要以及不重要的一面
与大多数人的想当然的看法不同,作者认为“大数据”中的”大”和“数据”都不重要,重要的是数据能带来的价值以及如何驾驭这些大数据,甚至与传统的结构化数据和教科书上的认知不同,“大数据可能是凌乱而丑陋的”并且大数据也会带来“被大数据压得不看重负,从而停止不前”和大数据处理“成本增长速度会让企业措手不及”的风险,所以,作者才认为驾驭大数据,做到游刃有余、从容自若、实现“被管理的创新”最为重要。在处理数据时,作者指出“很多大数据其实并不重要”,企业要做好大数据工作,关键是能做到如何沙里淘金,并与各种数据进行结合或混搭,进而发现其中的价值。这也是作者一再强调的“新数据每一次都会胜过新的工具和方法”的原因所在。
网络数据与电子商务
对顾客行为的挖掘早已不是什么热门概念,然而作者认为从更深层次的角度看,下一步客户意图和决策过程的分析才是具有价值的金矿,即“关于购买商品的想法以及影响他们购买决策的关键因素是什么”。针对电子商务这一顾客行为的数据挖掘,作者不是泛泛而谈,而是独具慧眼的从购买路径、偏好、行为、反馈、流失模型、响应模型、顾客分类、评估广告效果等方面提供了非常有吸引力的建议。我认为,《驾驭大数据》的作者提出的网络数据作为大数据的“原始数据”其实也蕴含着另外一重意蕴,即只有电子商务才具备与顾客进行深入的互动,也才具有了收集这些数据的条件,从这点看,直接面向终端的企业如果不电子商务化,谈论大数据不是一件很可笑的事?当然这种用户购买路径的行为分析,也不是新鲜的事,在昂德希尔《顾客为什么购买:新时代的零售业圣经》一书中披露了商场雇佣大量顾问,暗中尾随顾客,用摄影机或充满密语的卡片,完整真实的记录顾客从进入到离开商场的每一个动作,并进行深入的总结和分析,进而改进货物的陈列位置、广告的用词和放置场所等,都与电子商务时代的客户行为挖掘具有异曲同工之妙,当然电子商务时代,数据分析的成本更加低廉,也更加容易获取那些非直接观察可以收集的数据(如信用记录)。
一些有价值的应用场景
大数据的价值需要借助于一些具体的应用模式和场景才能得到集中体现,电子商务是一个案例,同时,作者也提到了车载信息“最初作为一种工具出现的,它可以帮助车主和公司获得更好的、更有效的车辆保险”,然而它所能够提供的时速、路段、开始和结束时间等信息,对改善城市交通拥堵具有意料之外的价值。基于GPS技术和手......>>
问题七:互联网大数据有哪些好处多 大数据是什么?为什么要使用大数据?大数据有哪些流行的工具?本文将为您解答。
现在,大数据是一个被滥用的流行词,但是它真正的价值甚至是一个小企业都可以实现。
通过整合不同来源的数据,比如:网站分析、社交数据、用户、本地数据,大数据可以帮助你了解的全面的情况。大数据分析正在变的越来越容易,成本越来越低,而且相比以前能更容易的加速对业务的理解。
大数据通常与企业商业智能(BI)和数据仓库有共同的特点:高成本、高难度、高风险。
以前的商业智能和数据仓库的举措是失败的,因为他们需要花费数月甚至是数年的时间才能让股东得到可以量化的收益。然而事实并非如此,实际上你可以在当天就获得真实的意图,至少是在数周内。
为什么使用大数据?
数据在呈爆炸式的速度增长。其中一个显著的例子来自于我们的客户,他们大多使用谷歌分析。当他们分析一个长时间段数据或者使用高级细分时,谷歌分析的数据开始进行抽样,这会使得数据的真正价值被隐藏。
现在我们的工具Clickstreamr可以收集点击级的巨量的数据,因此你可以追踪用户在他们访问路径(或者访问流)中的每一个点击行为。另外,如果你加入一些其他的数据源,他就真正的变成了大数据。
更完整的解析
大数据大数据并不仅仅是大量的数据。他的真正意义在于根据相关的数据背景,来完成一个更加完整的报告。举个例子,如果你把你的CRM数据加入到你网站的数据分析当中,你可能就会找到你早就知道的高价值用户群。她们是女性,住在西海岸,年龄30至45,花费了大量的时间在Pinterest和Facebook。
现在你已经被这些知识武装起来了,那就是如何有效的设定和获取更多高价值的用户。
类似Tableau和谷歌这样的公司给用户带来了更加强大的数据分析工具(比如:大数据分析)。Tableau提供了一个可视化分析软件的解决方案,每年的价格是2000美金。谷歌提供了BigQuery工具,他可以允许你在数分钟内分析你的数据,并且可以满足任何的预算要求。
大数据是什么?
由于大数据往往是一个混合结构、半结构化和非结构化的数据,因此大数据变得难以关联、处理和管理,特别是和传统的关系型数据库。当谈到大数据的时候,高德纳公司(Gartner Group,成立于1979年,它是第一家信息技术研究和分析的公司)的分析师把它分成个3个V加以区分:
量级(Volume):大量的数据
速率(Velocity):高速的数据产出
多样性(Variety):多种类型和来源的数据。
正如我们所说,大部分的企业每一天在不同的领域都在产出大量的数据。这里给出一组样本数据的来源及类型,他们都是企业在做大数据分析时潜在的收集和聚合数据的方式:
网站分析
移动分析
设备/传感器数据
用户数据(CRM)
统一的企业数据(ERP)
社交数据
会计系统
销售点系统
销售体系
消费者数据(例如益佰利的数据、邓氏商联的数据或者普查数据)
公司内部电子表格
公司内部数据库
位置数据(空间位置、GPS定位的位置)
天气数据
但是针对无限的数据来源,不要去做太多事情。把焦点放在相关的数据上,并且从小的数据开始。通常以2-3种数据源开始是一个好的建议,比如网站数据、消费者数据和CRM,这些会让你得到一些有价值的见解。在你最初进入大数据分析之后,你可以开始添加数据源来促进你的分析,并且公布更多的分析结果。
想要获得更多关于大数据细节的知识,可以去查阅 *** 的大数据词条。
大数据的好处
大数据提供了一种识别和利用高价值机会的前瞻性方法。如果你想,那么大数据可以提供如......>>
问题八:大数据时代,大数据概念,大数据分析是什么意思? 世界包含的多得难以想象的数字化信息变得更多更快……从商业到科学,从 *** 到艺术,这种影响无处不在。科学家和计算机工程师们给这种现象创造了一个新名词:“大数据”。大数据时代什么意思?大数据概念什么意思?大数据分析什么意思?所谓大数据,那到底什么是大数据,他的来源在哪里,定义究竟是什么呢?
一:大数据的定义。
1、大数据,又称巨量资料,指的是所涉及的数据资料量规模巨大到无法通过人脑甚至主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。 2、大数据技术,是指从各种各样类型的大数据中,快速获得有价值信息的技术的能力,包括数据采集、存储、管理、分析挖掘、可视化等技术及其集成。适用于大数据的技术,包括大规模并行处理(MPP)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联网,和可扩展的存储系统。
互联网是个神奇的大网,大数据开发也是一种模式,你如果真想了解大数据,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3、大数据应用,是 指对特定的大数据 *** ,集成应用大数据技术,获得有价值信息的行为。对于不同领域、不同企业的不同业务,甚至同一领域不同企业的相同业务来说,由于其业务需求、数据 *** 和分析挖掘目标存在差异,所运用的大数据技术和大数据信息系统也可能有着相当大的不同。惟有坚持“对象、技术、应用”三位一体同步发展,才 能充分实现大数据的价值。 当你的技术达到极限时,也就是数据的极限”。大数据不是关于如何定义,最重要的是如何使用。最大的挑战在于哪些技术能更好的使用数据以及大数据的应用情况如何。这与传统的数据库相比,开源的大数据分析工具的如Hadoop的崛起,这些非结构化的数据服务的价值在哪里。
二:大数据的类型和价值挖掘方法1、大数据的类型大致可分为三类:1)传统企业数据(Traditionalenterprisedata):包括 CRM systems的消费者数据,传统的ERP数据,库存数据以及账目数据等。2)机器和传感器数据(Machine-generated/sensor data):包括呼叫记录(CallDetail Records),智能仪表,工业设备传感器,设备日志(通常是Digital exhaust),交易数据等。3)社交数据(Socialdata):包括用户行为记录,反馈数据等。如Twitter,Facebook这样的社交媒体平台。2、大数据挖掘商业价值的方法主要分为四种:1)客户群体细分,然后为每个群体量定制特别的服务。2)模拟现实环境,发掘新的需求同时提高投资的回报率。3)加强部门联系,提高整条管理链条和产业链条的效率。4)降低服务成本,发现隐藏线索进行产品和服务的创新。
三:大数据的特点业界通常用4个V(即Volume、Variety、Value、Velocity)来概括大数据的特征。具体来说,大数据具有4个基本特征:1、是数据体量巨大数据体量(volumes)大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;网络资料表明,其新首页导航每天需要提供的数据超过1.5PB(1PB=1024TB),这些数据如果打印出来将超过5千亿张A4纸。有资料证实,到目前为止,人类生产的所有印刷材料的数据量仅为200PB。2、是数据类别大和类......>>
问题九:举例说明大数据在哪些方面发挥着重要作用 大数据是信息技术与专业技术、信息技术产业与各行业领域紧密融合的典型领域,有着旺盛的应用需求、广阔的应用前景。为把握这一新兴领域带来的新机遇,需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各领域的大数据开发与利用,推动国家、行业、企业对于数据的应用需求和应用水平进入新的阶段。
问题十:为什么大数据如此重要 大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
在维克托・迈尔-舍恩伯格及肯尼斯・库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
对于“大数据”(Big data)研究机构Gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
根据 *** 的定义,大数据是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据 *** 。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术。[1]
随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。《著云台》的分析师团队认为,大数据(Big data)通常用来形容一个公司创造的大量非结构化数据和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘电网、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
意义:
有人把数据比喻为蕴[4] 藏能量的煤矿。煤炭按照性质有焦煤、无烟煤、肥煤、贫煤等分类,而露天煤矿、深山煤矿的挖掘成本又不一样。与此类似,大数据并不在“大”,而在于“有用”。价值含量、挖掘成本比数量更为重要。对于很多行业而言,如何利用这些大规模数据是成为赢得竞争的关键。
大数据的价值体现在以下几个方面:
1)对大量消费者提 *** 品或服务的企业可以利用大数据进行精准营销;
2) 做小而美模式的中长尾企业可以利用大数据做服务转型;
3) 面临互联网压力之下必须转型的传统企业需要与时俱进充分利用大数据的价值。