导航:首页 > 网络数据 > so大数据

so大数据

发布时间:2024-01-15 19:46:03

『壹』 都说现在是大数据时代,是什么意思

现在的社会是一个高速发展的社会,科技发达,信息流通,人们之间的交流越来越密切,生活也越来越方便,大数据就是这个高科技时代的产物。

大数据(Big data)通常用来形容一个公司创造的大量非结构化和半结构化数据,这些数据在下载到关系型数据库用于分析时会花费过多时间和金钱。

大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十、数百或甚至数千的电脑分配工作。

对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。

(1)so大数据扩展阅读:

最早提出大数据时代到来的是全球知名咨询公司麦肯锡, 大数据在物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业存在已有时日,却因为近年来互联网和信息行业的发展而引起人们关注。

大数据作为云计算、互联网之后又IT行业又一大颠覆性的技术革命。云计算主要为数据资产提供了保管、访问的场所和渠道,而数据才是真正有价值的资产。企业内部的经营信息、互联网世界中的商品物流信息,互联网世界中的人与人交互信息、位置信息等,其数量将远远超越现有企业IT架构和基础设施的承载能力,实时性要求也将大大超越现有的计算能力。

如何盘活这些数据资产,使其为国家治理、企业决策乃至个人生活服务,是大数据的核心议题,也是云计算内在的灵魂和必然的升级方向。

『贰』 大数据是干什么的啊,好学不

大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据是需要紧紧围绕大数据的价值空间来展开,目前主要的操作可以分为三大块,分别是数据采集操作、数据分析操作和数据应用操作,这些操作的背后几乎涵盖了当前大数据行业的所有产业链,数据采集操作是大数据产业链的起始端,所以要想了解大数据操作,首先就应该从数据采集开始。当前数据采集渠道通常有三个,一个是传统信息系统,比如各种ERP系统就是典型的代表,这些ERP系统当中的数据往往具有较高的价值密度,通常对于安全性也有非常高的要求。从数据结构上来看,传统信息系统的数据结构是相对比较单一的,处理起来也比较容易。
大数据需要学习的内容还是很多的,是有一定难度的,知乎专栏:从头学习大数据供你参考学习,可以尝试自学一下,感受一下难易程度。

大数据注重逻辑性,在学习时可以有意识的培养逻辑思维,快速捋清编程逻辑,还要多动手实操,将理论与操作结合,搞懂现象背后的逻辑。另外,要分析源码、勤做笔记,多做复习,学习的事情来不得半点马虎,不努力肯定不行的。

分享一份大数据技术的学习路线供你参考,希望对你有所帮助!

学习大数据首先我们要学习Java语言和Linux操作系统,这两个是学习大数据的基础,学习的顺序不分前后。

『叁』 【大数据领域】必须知道的20个网站,你占了几个

第一次写文章,不知道写些什么,干脆给大家分享一些关于“大数据”方面的网站,可以在做分析、调研、报告的时候用得上。 此次列出的所有网站都可以免费使用(专业版除外) 。

1、网络指数  https://index..com/

2、TBI腾讯浏览指数  http://tbi.tencent.com/

3、微博指数  http://data.weibo.com/index

4、360指数  http://index.so.com/

5、微信指数  http://www.weishu.com/

6、清博指数  http://www.gsdata.cn/

7、新浪微舆情  http://wyq.sina.com/login.shtml

1、阿里指数  https://alizs.taobao.com/

2、易车指数  http://datamodel.bitauto.com/

3、义乌小商品指数  http://www.ywindex.com/cisweb/

1、艾瑞数据  http://index.iresearch.com.cn/

2、网络浏览统计  http://tongji..com/data/browser

1、网贷之家统计  http://shuju.wdzj.com/platdata-1.html

2、第一网贷统计  http://www.p2p001.com/wdzs/wdzs_p2pline.html

3、温州指数  http://www.wzpfi.gov.cn/

1、卓创资讯数据  http://dh.sci99.com/

2、数码市场统计 http://www.itppi.org/

1、网络预测  http://trends..com/

2、国家统计局  http://www.stats.gov.cn/

3、爱奇艺指数_首页 http://index.iqiyi.com/

『肆』 大数据能做什么用

如果说砍树是一个职业,那你手中的斧头就是大数据。大数据是一种覆盖政专商等领属域的超大型平台,你可以用大数据来瞄准你所关心领域的长短点并很快很准地得出预判,升华概念,你能通过数据预测未来,行业的未来你能掌握了,就能赚钱。

『伍』 什么是大数据。。大数据是什么

大数据,IT行业术语,是指无法在一定时间范围内用常规软件工具进行捕捉、管理内和处理的数据集合,容是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。

大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。



(5)so大数据扩展阅读:
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。

据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了。

『陆』 大数据包括哪些

大数据技术庞大复杂,基础的技术包含数据的采集、数据预处理、分布式存储、NoSQL数据内库、容数据仓库、机器学习、并行计算、可视化等各种技术范畴和不同的技术层面。
大数据主要技术组件:Hadoop、HBase、kafka、Hive、MongoDB、Redis、Spark 、Storm、Flink等。
大数据技术包括数据采集,数据管理,数据分析,数据可视化,数据安全等内容。数据的采集包括传感器采集,系统日志采集以及网络爬虫等。数据管理包括传统的数据库技术,nosql技术,以及对于针对大规模数据的大数据平台,例如hadoop,spark,storm等。数据分析的核心是机器学习,当然也包括深度学习和强化学习,以及自然语言处理,图与网络分析等。

『柒』 【科普】企业中,大数据部门的常见组成

在IT公司里,大数据部门的成员,一般可分为4种:(以房子为例)

先用一张图,帮助大家理解一下~~
出道题目,我们公司的大数据部门,目前有这些岗位,你能一一推测出他们的所在位置吗?
【数据应用工程师】、【数据可视化工程师】、【数据可视化设计师】、【数据平台工程师】、【算法工程师】、【数据分析师】

建房子地基(埋在地下)的那群人
他们就是 平台组/架构组 的那群人,他们负责搭建一套大数据的平台架构体系。一般你肉眼看不到他们的产出,但是当某一堵墙壁歪了的时候,或者你进屋打水但水龙头却流不出来水的时候,你就会意识到他们工作的重要性。
平台组的常见发展路径
平台初期,很多公司会用自己的服务器搭一个 私有集群 ,将数据维护起来,开始构建数据平台的第一步。这个,也是原始的大数据平台。(当然,现在有很多公司也是直接上云服务器)
当平台进入高速发展期,考虑到不断扩充的数据量和服务器的维护成本上升,很多公司会迁移平台到 云服务 上,比如阿里云,华为云。云服务的选择要解决的是选择平台所提供的服务,成本,数据通道的维护。【我们公司目前正处于这一阶段,选择了云服务。当前,经过考量也正在由阿里云迁移到华为云】
还有一个阶段,你发现云服务的费用太高,虽然省了你很多事,或者是考虑到敏感数据的安全问题(当然,私有集群也不是百分百安全),然后又开始往 私有集群 迁移。这时候,鉴于数据规模,你大概需要一个靠谱的团队,设计网络布局、设计运维规范、架设监控、建立机房,值班团队走起7*24小时随时准备出台。
至此,产生了平台组,真的大数据平台来了

建屋子(砌墙盖瓦)的那群人 :
应用组 的那群人,他们负责建设各类系统/应用。他们搬砖砌墙,建好房子,还要铺设各类管道线路,把地基里面的数据抽出来,放在房子里,让用户们推开门就可以享用。
应用组,有哪些应用?
这块不太好讲。不过,为了尽量让大家看懂,用 从大到小的思路 尝试下:
在整个社会层面,大数据已应用于各行各业,比如:金融行业/地产行业/零售行业/医疗行业/农业/物流行业/城市管理等等……有哪一个行业,可以脱离数据而生存?有哪一个行业可以不依赖数据而发展?
那么,在一个企业中,数据必然是无法避免的会应用到,不管是1个员工的皮包公司,还是10万员工的跨国集团。so,我们来讲讲具体有哪些应用呢?
一般而言,数据应用分为3类:分别是面向企业内部, 面向企业外部以及面向用户这三种。

这里,鉴于今天的主题,我们只讲 面向企业内部 的大数据应用。
进入正题了:
企业内部产品中,可以从2个角度来看待具体有哪些应用:

策略类 的方向较多,常见的有:

这些有时候会有部分或全部不划在大数据部门下面,但都需要比较规范的数据基础,以及着重与利用数据分析调整产品策略。

做企业内部的大数据应用产品,常常有些心酸的地方:

屋子里面的人 :
产品组 的那群人,主要是一群产品经理(我们公司,目前就半个,由一个分析师兼职着,所以,我们公司没有产品组哦),负责数据类的应用产品设计。他们和上面建房子的工程师们,是紧密的团队关系。鉴于上面对数据应用产品已做了很多阐述,关于他们工作产出的应用具体有哪些,这里就不再赘述。
讲一讲, 数据产品经理 的从业人员得有几个素质:

屋子外面的人 :
分析组 的那群人,一般会有3类:数据分析师、算法工程师 (类似数据挖掘) 、数据科学家 (我们公司没有) 。他们工作的日常:为你提取一份EXCEL数据、制作一张报表数据、用算法模型分析一个问题、训练出一套算法模型等等工作,但不局限于此。
他们常常需要与各个部门打交道,接待很多业务的数据需求,与业务关系紧密。在一些公司,分析组不一定都设置在大数据部门下,他们可能分散在不同的业务部门,为各自部门服务。但是,他们终究也是需要从大数据平台来获取所需的业务数据,做分析处理,得到相关结论~
据我所知,我们公司的业务部门,(好像)也是有自己的分析人员。
简单概括一下这些职位的特点:
【数据分析师】
业务线,负责通过数据分析手段发现和分析业务问题,为决策作支持。
【算法工程师】/【数据挖掘工程师】
偏技术线,负责通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。
【数据科学家】
数据科学家是使用专业知识构建机器学习模型,再以此做出预测并对关键业务问题进行解答的专家。数据科学家仍然需要对数据进行清洗、分析以及可视化处理,这一点和数据分析师是一致的。不过数据科学家在专业技能方面有者更深的研究,涉猎范围也更广,同时他们也能够对机器学习模型进行训练与优化。

至此,整篇文章,已经讲差不多了。
最后总结下,本质上,围绕房子的这4拨人,做的是同一件事情: 提供数据服务

完结~

『捌』 新媒体运营工具有哪些

新媒体运营工具有很多呀,例如小蚂蚁编辑器主要是做微信图文排版的,水熊虫投票主要是专注于微信投票的,小蚂蚁Page主要是做微信公众号的列表图文模板的。

阅读全文

与so大数据相关的资料

热点内容
暗黑绿色装备升级 浏览:261
到哪里学编程啊 浏览:752
电脑粉碎文件和卸载 浏览:365
怎么查看共享电脑所有文件 浏览:617
创意编程社区账号在哪里 浏览:377
好用的压缩文件 浏览:538
360下载的补丁包在哪个文件夹 浏览:988
微信54安卓版本官网 浏览:698
为什么cnc编程找工作难 浏览:777
sql数据库端口不通 浏览:361
javaword转swf 浏览:174
cms数据更新是什么 浏览:39
电脑保密柜在文件里怎么找不到了 浏览:225
nodejs前端后端 浏览:129
程序侠后台多少 浏览:32
mysqle执行sql文件在哪里 浏览:466
数据库iostat1 浏览:986
java图片工具包 浏览:159
ps文件损坏出现不兼容情况 浏览:942
为什么iphone耗wifi 浏览:495

友情链接