导航:首页 > 网络数据 > 大数据管理应用与挑战

大数据管理应用与挑战

发布时间:2024-01-15 12:50:11

大数据应用都面临什么挑战

第一个挑战就是对数据资源及其价值的认识不足。这是因为全社会尚未形成对大数据客观、科学的认识,对数据资源及其在人类生产、生活和社会管理方面的价值利用认识不足,存在盲目追逐硬件设施投资、轻视数据资源积累和价值挖掘利用等现象。所以说这是我国大数据长期内最大的挑战,但也是比较容易实现的目标。

第二个挑战就是技术创新与支撑能力不够。这主要是因为大数据需要从底层芯片到基础软件再到应用分析软件等信息产业全产业链的支撑,无论是新型计算平台、分布式计算架构,还是大数据处理、分析和呈现方面与国外均存在较大差距,对开源技术和相关生态系统的影响力仍然较弱,总体上难以满足各行各业大数据应用需求。而这是大数据短期内最大的挑战。

第三个挑战就是数据资源建设和应用水平不高。这是因为用户普遍不重视数据资源的建设,即使有数据意识的机构也大多只重视数据的简单存储,很少针对后续应用需求进行加工整理。而且数据资源普遍存在质量差,标准规范缺乏,管理能力弱等现象。在很多跨部门、跨行业的数据共享仍不顺畅,有价值的公共信息资源和商业数据开放程度低。数据价值难以被有效挖掘利用,所以说,大数据应用整体上处于起步阶段,潜力远未释放。

第四个挑战就是信息安全和数据管理体系尚未建立。数据所有权、隐私权等相关法律法规和信息安全、开放共享等标准规范缺乏,技术安全防范和管理能力不够,尚未建立起兼顾安全与发展的数据开放、管理和信息安全保障体系。

第五个挑战就是人才队伍建设还需加强。就目前而言,我国的综合掌握数学、统计学、计算机等相关学科及应用领域知识的综合性数据科学人才缺乏,远不能满足发展需要,尤其是缺乏既熟悉行业业务需求,又掌握大数据技术与管理的综合型人才。

Ⅱ 大数据给我们的管理活动带来什么挑战

一、大数据时代抄网络舆情管理面临的袭新形势,大数据意味着人类可以分析和使用的数据大量增加,有效管理和驾驭海量数据的难度不断增长,网络舆情管理面临全新的机遇和挑战。
二是信息选择性传播的挑战。网上数据无限性和网民关注能力有限性之间的矛盾,加剧了社会舆论的“盲人摸象”效应。
三是舆论话语权分散的挑战。大数据时代各类数据随手可得,越来越多的机构、个人通过数据挖掘和分析得出的各种结论会不胫而走,有效管理舆情的难度越来越大。

Ⅲ 企业大数据工作的任务、工具及挑战

企业大数据工作的任务、工具及挑战
随着互联网、移动互联网和物联网的广泛而深入地应用,人类活动的踪迹加快在网络空间的映射,网络浏览、行车轨迹、物等等均留下数据记录。
目前,全球数据呈现爆发式增长态势,人类社会迈入大数据时代;
全球每18个月新增数据量是人类有史以来全部数据量的总和。
大数据的核心是数据,与大小无关,数据已经成为战略资产。
数据是人类活动在网络空间的映射,蕴含人类生产、生活的规律,挖掘数据潜在价值,对国家治理、社会管理、企业决策和个人生活影响深远。
世界经济论坛的报告认为大数据为新财富,价值堪比石油;
商业版图由此被重新划定,通晓如何利用这些数据的企业将成为最强者。

0. 澄清基本概念
为了不在后面讨论中因概念不清产生误解,我们首先给出几个定义:
大型IT企业:指对外提供IT相关的软硬件产品及服务的公司,员工至少在万人以上。
数据平台:指大型IT企业用来为自身服务为主,担负数据存储、处理、分析业务和软硬件综合。
主要针对内部服务,不对外开发。
数据分析:此处的数据分析师广义的,包括一切基于数据得出的insights的行为,包括统计分析、机器学习建模和预测等。
1. 大型IT企业开展对内数据业务的驱动力
就目前而言,IT企业针对自身的数据分析业务可以分为广告和非广告两类。
对大多数企业而言,除了广告之外的数据业务,并不能直接带来可以量化的收入。
但是,无论当前数据分析的结果为企业的现金流做了多少贡献。
数据为王的思想已然占据了众多前沿企业间的头脑。
数据是矿山,insights是金子,有了矿山才能有金子,有了矿山,终究会有金子。
因此,开发数据业务最主要的驱动力,实际是对数据业务未来前景的积极预估。
主要应用有(除广告之外):
用户画像——越来越多的企业开始观众用户画像,毕竟知己知彼百战不殆,卖东西先得了解买主。
客户保持——预测哪些现有客户可能弃用产品或服务,即使采取措施挽留之。
产品使用分析——DAU,MAU,PV,UV,CTR等等,这些看起来都是些简单的统计数字,但却是反应产品被使用情况的重要指标。
产品推荐、销量预测销售指标……等等
具体到某一种应用,看似并不复杂,有些有成熟的方法可以用来训练模型,还有些根本就是统计指标。
似乎并不需要什么高深的算法背景。但一旦涉及实际,就不像看起来那么简单了。
即使是统计指标,也不像想象得那样,随便run几个sql query就能得出来。
对于大型分布式系统,不同模块的访问log都有可能分布在不同的cluster上,单纯收集每日全局log就是一个复杂工作,更别说之后的合并、去重、聚合等工作。
因此,大型企业的数据分析不是做个excel表,安装一个免费mysql能够解决的,而是需要专门的大型数据分析平台。
2. 数据分析平台通用架构
常见的数据分析平台,至少包括数据存储、处理和分析三个部分。

2.1 数据存储
数据存储不必解释,是一定必要的。
但是如何备份是一个很重要的问题。
假设:某公司一年产生上千PB的数据。
按照单纯数据的存储费用1美元/GB年计算,存1TB一年就是1000美元,一PB就是100万,1000PB就是10亿。如果就是简单的使用hadoop的默认配置,每份数据都存3份,那么,这个实际产生数据x 3的体量将有多大?有将有多大的cost?
这是存储层的挑战。为了解决这个问题,一方面从硬件层面力图降低存储介质的价格,比如近年来冷存储的提出,就是针对运维费用。
另一方面就是寻找备份算法。
例如,yahoo专门研发了一种图片存储算法,逻辑上是11个备份,但是size只有原size的1.x倍。

2.2 数据处理
数据处理传统上叫ETL、EDW,主要指数据的清洗、迁移和格式化。
大数据平台,由于应用范畴不同,自然多种多样,源数据包括结构化数据和非结构化数据。
但是如果数据真的是“大数据”(符合4V特征)的话,即使本身收集上来的数据是结构化的,也往往需要二次处理,转换format或schema。
数据处理层所需技术相对简单,然而挑战在于对于数据的理解。
如果不知道这个收集上来的log文件里面要提取出多少字段,每个字段对应数据源中的哪个部分,则数据提取完全不能进行。
这就要求进行数据处理的人必须同时具备对业务的了解。

2.3 数据分析
数据分析是数据中寻找价值的关键步骤。
数据分析工作本身还处于初级阶段。
除了一些简单的统计计算,大多数数据还是只能交给分析人员,进行没有特别针对性的探索,效果难以得到保证。
对于这些挑战,开展数据业务早的公司,相应的平台和技术是在针对自身业务的过程中慢慢发展起来,部分公司选择是将平台外包或者自己开发针对自身业务的定制功能。
相对于前两者,数据分析师一个业务针对性更强的步骤,因此更难采用通用方法或手段解决,更加依赖企业自身的积累。

3. 数据分析平台开源框架
3.1 开源框架
目前,就国内而言,谈到数据分析相关的开源框架,总不能忽略下面三个:
hadoop:batch,mapRece

storm:streaming

spark:batch + streaming

这些开源框架的共同特点是把重点放在并行计算框架上,关注的是job latency, load balance和fault recovery,对于资源分配、用户管理和权限控制几乎不考虑。
它们基于的假设是:所有用户都一样,平权,所有用户都能用所有的机器以最快的可能完成所有工作。
3.2 开源框架的局限
而在大型企业内部,不同部门,同一部门的不同job,绝对不是平权的。
不同部门之间,也有很多私密的数据,不让别人访问。
不同用户的权限也是不一样的。对于计算资源的需求,因为不同job的优先级不同,也要求予以区别。
在这种需求之下,催生了一些第三方,专门提供hadoop等开源框架的资源、权限管理产品或者服务。hadoop在升级到2以后,也考虑一些数据隔离的问题。
但其力度,恐怕难以满足大多数大型企业的要求。
这也是使用开源框架的无奈。使用开源产品的商业发行版,也是一种办法。不过始终是不如企业原生系统在这方面的支持。

3.3 企业原生框架
确实也有些企业独立开发了全自主(不基于开源产品)的仅限于内部使用的分布式数据处理平台。在用户管理,数据访问权限,存储、运算资源管理等方面很下功夫。
例如:要求每个用户在提交job前必须先申请token,有多少token,就有多少计算量。不同数据存储路径之间的权限完全单独管理,使用者也要实现申请权限。
但是开发这样的系统意味着企业必须具备非常强大的研发能力,并能承担得起巨大的人力等资源的消耗。而且相对于开源系统已经实现的功能,难免有重复造轮子之嫌,即使是大型企业,也很少选取这种方案。
4. 大型IT企业数据业务的挑战
4.1 通用挑战:意识、技术和人才
4.1.1 意识
意识主要是指决策层的思想意识——数据对于企业发展是否真的必要?
这一点在很多管理者脑子里还是存疑的,他们目前所处状态很多是:听说数据这东西有用,人家都在搞,所以我们也要搞,至于是不是真有用,搞出来看看再说。
如果只是采用游戏或者试探态度,必然影响发展进程。但这也是没办法的事情,所有新事物都必须经历这一过程。

4.1.2 技术
技术指目前数据分析的技术,基本是采用新框架逆流支持旧接口的策略。
曾经有一篇文章,名叫《NoSQL?NO,SQL》,说的就是这个。
包括spark回头支持SQL,也是如此。明明我们分析的是非结构化数据,但是因为高阶算法的问题,却连mapRece都放弃了,索性回到SQL时代。
为了让更多人用的舒服,不去开发针对非结构化数据的新方法,而是反过来,向下兼容结构化。
个人认为这是一种逆流。这样做则永远无法避免巨大的数据处理工作。
4.1.3 人才
“数据科学家”这个词大家肯定都知道。
可是,这个职位其实很模糊,不同公司,甚至同一公司的不同部门之间对这一职位的定义相差甚远。
有些数据科学家是学数学的博士,有些是以前做BI的,有些是PM转行的,水平参差不齐。
所以,恐怕在相当长的时期里,这会是一个门槛低,要求高的职位。很难短时间内批量涌现出优秀者。
4.2 特有挑战:产品align
产品align是说每个产品的数据分析结果可以互相对比,也就是要求其定义和实现都一致。
对于一个产品众多的大企业而言,要求不同产品、流水线的分析报告具有可比性,这是一个很常见的需求。
但是由于现在大多数企业中数据分析不是由一个部门统一管理,各个产品部门各自为战,结果导致在align的过程中互相牵制,进而拉低了所有产品的分析水平。
这样的挑战有赖于企业总体数据策略的制定和执行。
而整体策略的制定和执行又有赖于前面所说的三点通用挑战,环环相扣,显然不能一蹴而就。
5. 大企业数据工作的发展趋势
早期的数据分析工作,在实践层面基本采用批处理模式。
随着业务的发展,对于其实时或者准实时(NRT)的需求越来越多。
提供latency极短的增量分析和流式服务是众多企业数据分析工作的当务之急。
从长远考虑,真正拥有数据的是大企业,未来,大企业在数据的分析利用上,也必将全面胜出小企业。
不过,处于不同成熟阶段的大公司突破点各不同。
有些技术先行,在分析方法和工具上成为领军。
另一些则倾向数据管理和治理,在管理层面上,在策略、条例的制定上为整个社会提供先进经验。

Ⅳ 大数据技术的出现给地理信息系统带来哪些机遇和挑战

机遇是,通过结合大数据,gis可以更好地研究区域的时空变化,以及全国乃至全球的时空变化,也可以研究多指标耦合影响下的时空变化。挑战就是,技术可能更难实现。

Ⅳ 在当前大数据的新环境下it企业面临哪些机会与挑战

  1. 挑战一:数据来源错综复杂,丰富的数据源是大数据产业发展的前提。而我国数字化的数据资源总量远远低于美欧。

  2. 挑战二:数据挖掘分析模型建立,关于大数据分析,人们鼓吹其神奇价值的喧嚣声浪很高,却鲜见其实际运用得法的模式和方法。

  3. 挑战三:数据开放与隐私的权衡,目前我国一些部门和机构拥有大量数据但宁愿自己不用也不愿提供给有关部门共享,导致信息不完整或重复投资。

  4. 挑战四:大数据管理与决策,在今时今日的商业世界中,高管的决策仍然更多地依赖个人经验和直觉,而不是基于数据。

  5. 挑战五:大数据人才缺口,精通大数据技术的相关人才也成为一个大缺口。

阅读全文

与大数据管理应用与挑战相关的资料

热点内容
电脑怎么编程算字符串长度 浏览:951
如何预防网络被占用 浏览:394
dns怎么修复不了网络异常 浏览:328
怎么查看苹果备份文件 浏览:26
网络上说的陈劲生是什么 浏览:913
网站首页都用了哪些知识点 浏览:41
如何删除手机软件的重复文件 浏览:908
微信页面没有添加图标 浏览:47
暗黑绿色装备升级 浏览:261
到哪里学编程啊 浏览:752
电脑粉碎文件和卸载 浏览:365
怎么查看共享电脑所有文件 浏览:617
创意编程社区账号在哪里 浏览:377
好用的压缩文件 浏览:538
360下载的补丁包在哪个文件夹 浏览:988
微信54安卓版本官网 浏览:698
为什么cnc编程找工作难 浏览:777
sql数据库端口不通 浏览:361
javaword转swf 浏览:174
cms数据更新是什么 浏览:39

友情链接