⑴ 扒扒跟大数据有关的那些事儿
扒扒跟大数据有关的那些事儿
如今,业界和学术界一直在讨论一个词,那就是大数据。不管是学术圈还是IT圈,只要能谈论点儿大数据就显得很高大上。然而,大数据挖掘、大数据分析、大数据营销等等事情仅仅只是个开始,对大多数公司来说,大数据仍有很强的神秘色彩。于是,在我们还没有完全搞明白如何运用大数据进行挖掘时,各种过于神化大数据的舆论就已经不绝于耳了。当然,也有很多人直接批判大数据或大数据营销给我们造成的隐私威胁。也有很多人根本没有搞清楚什么是大数据,到底有什么价值。
于是,站在客观的角度,围绕下面几个问题与大家分享有关大数据的几个观点,也扒扒大数据的那些事儿:1、大数据营销和个人隐私泄露究竟有无因果和逻辑关系?
2、大数据营销到底能带给企业什么样的价值?到底能带给用户什么价值?用户是否全盘否定或反感大数据营销?
3、如何正确看待大数据?如何看待大数据和传统调查方法或统计学的关系?
4、大数据营销究竟面临什么样的挑战?
一、大数据的迅猛发展与数据隐私的忧虑相伴而生
社交媒体的出现,让用户数据的分享数量达到了难以估量的程度。而如今,社交媒体的种类有增无减,智能手机的更大普及,又让更多用户转移到移动互联网,从而又进一步贡献更多数据和内容。这样的数据增量让全球社交媒体的收入大涨,仅根据咨询公司Gartner2012年的研究结果显示,2012年全球社交媒体收入估计达到169亿美元。
一边是社交媒体因为大数据的盆钵满载,另一方面则是用户不断毫无保留的将个人信息交给互联网,这些信息包括年龄、性别、地域、生活状态、态度、行踪、兴趣爱好、消费行为、健康状况甚至是性取向等。一时间,针对海量用户信息的大数据挖掘、大数据分析、大数据精准营销、广告精准投放等等迅速被各大公司提上日程。
比如,一个发生在美国的真实故事就会告诉我们,利用数据挖掘如何掌握我们的行踪。一个美国家庭收到了一家商场投送的关于孕妇用品的促销劵,促销劵很明显是给给家中那位16岁女孩的。女孩的父亲很生气,并找商场讨说法。但几天后,这位父亲发现,16岁的女儿真怀孕了。而商场之所以未卜先知,正是通过若干商品的大量消费数据来预估顾客的怀孕情况。
类似的大数据挖掘和营销事件在今天更多的发生,尤其是社交媒体产生大量数据后。于是,许多人对个人隐私数据开始担忧,开始批判大数据精准营销侵犯了个人隐私,忧虑我们进入了大数据失控的时代,并将原因更多归结于社交媒体。
二、大数据营销和个人隐私泄露之间不能完全划等号!逻辑关系不成立!
如果客观的分析一下上述问题就会发现,这是一个难以分说的鸡生蛋还是蛋生鸡的问题。一味地批判大数据分析对个人用户数据的泄露或滥用是不客观的。
因为,社交媒体的本质在于分享和传播,社交媒体的出现的确满足了人们分享个人信息、晒各种数据的欲望,让人们在过去无声无息的生活中突然转移到了可以让全世界看到自己的平台上来。人们从而达到了内心的满足感和存在感。因此,单从个体的背后心理来考虑,社交媒体对他们来说是有益的,他们不认为自己贡献的是不可告人的秘密,既然分享出来,那一定是希望或允许别人看到的。因此,这是一种无形的默许的交易,用户乐意把自己的各种琐碎细节暴露于社交媒体,而对社交媒体上杂乱无章的海量用户数据进行有序的分类和分析也没有什么不妥。
当然,如果社交媒体平台随意滥用或泄露用户的后台数据,比如个人联系方式、家庭住址、银行等极为隐秘的信息,这的确是赤裸的侵犯隐私的行为,极其没有道德,必须要受到谴责和法律制裁。
但目前,许多大数据精准营销的前提是对用户在互联网上留下的公开显在的信息进行算法归类和内容分析,从而对海量用户进行人群划分,或者对小众群体进一步细分化,甚至达到某种程度上针对单个人的个性化定制,最终达到精准推送广告或有针对性推出营销活动的目的。
所以,从这个角度来看,大数据精准营销与个人主动分享和传播到网络上的信息数据之间并没有矛盾。人们起初或许会惊讶:为什么他们知道我想买什么?为什么他们知道我的需求?但随着“猜透心思”的推送行为让人们的生活越来越便利时,比如省去大量搜索、查找和对比产品或服务的时间,他们可能会十分习惯并依赖这种精准性,并不会在意他们本来就随意分享到网络上的杂乱信息被如何挖掘和利用。
因此,用户发布和分享的信息是否为隐私,在用户分享信息之前就做过慎重考量和筛选。这一点非常重要,这是侵犯隐私与否的界限。那些被用户选择为不适合发布或不希望别人知道的信息就是用户认为的隐私,而那些已经公开发布到社交媒体或网络上的信息则被用户认为是可以传播的。
所以,普通的对海量公开信息的分析、挖掘、归类,从而进行精准营销的大数据行为不能一味被骂成是对用户利益的损害。而那些对用户存储在某些位置、不希望被他人了解的信息(私人存储的信息)如果被别有用心的人泄露或利用,那这就是隐私侵犯行为。但这就不能归罪于大数据,而应质问存贮平台的安全性问题。
因此,我们不能过分解读大数据精准营销。其实,问题的本质在于,人们是否真的在意杂乱信息的去向(涉及到分享信息的背后心理和动机)?以及大数据营销是否真的触碰了人们不可告人的秘密或底线(需要对秘密和底线重新定义)?因为,如果人们默认分享的都是公开的,那么侵犯隐私的概念就是不成立的。如果人们有不希望别人知道的信息,也不会贸然在网络上分享和传播。
三、大数据营销究竟会给企业和用户带来什么价值?
讨论完上面的问题之后,我们是否应该诚恳对待大数据精准营销这件事?那么大数据营销究竟对于企业和用户两方面来说,都有什么样的价值?
1、对于企业的价值
让我们先看一个国外案例:
我们都知道美剧《纸牌屋》,提到《纸牌屋》的成功,最大的功劳便是大数据分析。因此,《纸牌屋》几乎成了大数据营销的经典案例,也是美国Netflix公司基于用户信息挖掘来决定内容生产的成功尝试。
Netflix的订阅用户达到了3000万左右,而大多数用户的观影都与精准推荐系统有关。Netflix会定时收集并分析用户观看电影或电视剧的行为,比如根据用户对电影的评分、用户的分享行为、用户的观影记录等信息去分析用户的收看习惯,从而推断用户喜欢什么样的影视剧,喜欢什么样的风格,喜欢什么样的导演和演员。在此基础上利用算法对用户感兴趣的视频进行推荐排序,直到用户找到最喜欢的影视剧。《纸牌屋》的导演和主演就是Netflix挖掘用户信息后的预测出来的。
那我们再看一个国内案例:
我们都知道阿里巴巴和新浪微博合作的事情,阿里巴巴斥资5.86亿入股新浪微博。除了网络上各大媒体分析的,认为阿里巴巴希望打造生态圈、强化流量入口、挑战腾讯等等原因之外,还有一个重要原因或许就是大数据营销的战略。
如今各大互联网大佬都在跑马圈地,圈住用户,谁能圈住用户,让用户在其平台上活跃,谁就掌握了用户的大量信息(包括显在的前台信息和隐藏的后台信息)。新浪微博在中国有几亿用户,这个量十分庞大,但如果新浪不能把这些用户产生的信息合理的利用,那么这些资源就是巨大的浪费。我们再看阿里巴巴,中国最大电商平台,它有产品,但是却没有完整的用户日常生活行为信息,只有购买信息,但这些购买信息不足以了解人群特点和喜好。所以,只有跟新浪微博合作,掌握大量用户的行为信息,从而对其分类,找到不同人群甚至不同个体的喜好、偏好、兴趣、爱好、习惯、传播习惯、分享路径等等,那么就能实现精准营销,甚至还可以通过不同用户的信息传播规律,而制定产品的最佳品牌传播途径。这是一座巨大的金矿。
新浪微博和阿里巴巴合作后,微博上出现了一些产品推荐信息,同时新浪微博已经推出支付功能。可以想象:未来你在微博上看到相关推荐的产品,恰好是你喜欢的产品,那么你就可以直接在微博上实现支付和购买。从而新浪微博和阿里巴巴各取所需,共享收益。当然,这是我个人的观察和分析,不过阿里巴巴的大数据战略也很明显了。
2、对于用户的价值
上述两个例子说的都是大数据带给企业的价值,那么,大数据营销对于用户来说,到底有没有价值?用户是否十分反感精准营销?让我们再来看看一个新的调查数据:
中国传媒大学国家广告研究院刚刚发布一份《2014中美移动互联网发展报告》,这份调查报告对比了中美两国用户移动互联网的使用习惯,以及移动用户对于移动广告的态度。
调查显示,最可能得到智能终端用户回应的广告内容为:(1)与用户要购买物品相关的广告(2)与要购买物品相关的优惠券(3)搞笑的广告(4)与用户最喜爱品牌相关的广告(5)与用户在线上访问过网站或使用过的应用相关的广告(6)与最近线上购物相关的广告(7)与用户所在场所相关的广告(8)与最近收听、收看的广播/电视相关的广告。(占比>=20%)
从这些数据我们可以看出,在8个结果中,有6个都是跟大数据精准营销扯上关系的。比如,与用户要购买物品相关的广告,更能引起用户的回应或互动。如何理解?大数据营销的前提就是计算并推测用户的真实需求,看用户需要购买什么相关产品,然后给用户直接推送用户想要的、喜欢的,做到了精准到达。那么用户呢?用户乐意对这样的推动广告或产品做出回应,因为这些广告少了对用户的打扰,并且让用户费劲心思对对比或货比三家后才购买的决策过程降低,节省了时间,让用户直接找到内心真正所需的产品或服务。
所以,这样的结果就表明,大数据精准营销并不是完全都会让用户反感,而是看你猜透用户心思的程度。因此,如果你推送的内容和用户想要购买的物品相关,与用户最喜爱的品牌相关等等。那么这种精准挖掘并不会受到用户的反感,反而会给用户带来便利。
以上是小编为大家分享的关于扒扒跟大数据有关的那些事儿的相关内容,更多信息可以关注环球青藤分享更多干货
⑵ 大数据里的青年是什么样子
90后海归研制的马桶能智能体检;南京餐饮业求职者7成是90后,平均薪资排全国第二;00后们其实很认同传统美德,九成认为成功要靠自己奋斗……昨天(5月4日)是五四青年节,QQ、淘宝、口碑、58等多家互联网机构出台了各种角度关于年轻人的大数据画像,让我们来看看这里有没有你熟悉的年轻人。
画像三
南京餐饮业平均薪资6447元,求职者七成是90后
“四千块你就想请个服务员?你想多了吧!”这个前两年流传的段子或许正在变成现实。58英才招聘研究院联合口碑刚刚发布的今年1至4月全国重点城市餐饮业用工分析报告显示,北上广深、南京等一二线城市餐饮用工缺口巨大,餐饮人员供不应求直接拉高了餐饮企业薪资水平,服务员薪水最高的重点城市依次是北京、南京、广州、上海等。其中,南京餐饮企业平均支付薪资水平已达6447元。
数据显示,2018年1-4月,餐饮业企业招聘量城市前十位依次是北京、广州、深圳、上海、成都、杭州、重庆、武汉、西安、苏州。餐饮行业员工流动性较大,一直是用工需求最大的行业之一,招人难、留人难已成为绝大多数餐饮企业面临的问题。
统计数据还显示,餐饮业企业支付薪资水平城市前十位依次是北京、南京、广州、上海、深圳、杭州、合肥、苏州、西安、武汉。其中,北京的餐饮业企业薪资标准居全国第一,为7656元,其次是南京、广州、上海、深圳,分别为6447元、6377元、6331元和6196元。值得一提的是,南京的餐饮业平均薪资超过了广州、上海、深圳等一线城市,仅次于北京。
什么样的人应聘餐饮业最多?58英才招聘研究院数据显示,餐饮业求职者中,90后占比最高,达到72.5%。
以上内容来自:扬子晚报
⑶ 有关大数据 你不一定知道的几个冷知识
有关大数据 你不一定知道的几个冷知识
大数据的隐秘魅力就在于,他比你都了解你。你以为你每次按下手机按键的动作都是一样的吗?哈哈图样图森破。
来自今日头条的技术副总裁杨震原告诉童鞋们,他们正在测试的“黑科技”,恰恰能从你点击按键的时间和手指面积,推测出你当时的情绪。你的漫不经心、愤怒或者感动,都能够成为后台为你推送何种消息的依据。未来,如下场景可期:
如果你正处在被女神甩掉的悲伤中,也许客户端会为你推送——搞基的一百种好处。如果你正处在领到本月工资飘飘欲仙的快乐中,也许客户端会为你推送——在北京月两万何时能买一个厕所?
那么这种“恰到好处“的情绪拿捏和大数据有什么关系呢?实际上对你情绪的推测是建立在对你多次正常点击的记录之上的。这种行为数据甚至在你还未意识到的时候,就“出卖”了你的情绪。
今日头条技术副总裁杨震原在分析一个按钮的平均触摸时间
你的“姿势”,才是真的大数据
银行每天的交易账目流水的统计数据,并不是大数据,而每个用户在拿号之后等待了多久才排到,有多少用户骂娘,有多少用户过于焦急愤而离去,这些真正的行为才是大数据。
杨震原又举了今日头条在应用中的另一个例子。
实际上,你在一篇文章的什么位置停留多久,然后划动了多远,在新的位置停留了多久,是否看了评论,看了几条评论,都可以按顺序被记录下来。接下来就是通过算法评估读者的兴趣所在。
CSDN创始人蒋涛也特别提到,美国电商平台Wish正是用大数据的方法,根据每个人的数据不同,“看人下菜碟”地推荐你可能喜欢的货品,三年时间已经发展成北美最大的电商之一。
所以,一个悲伤的消息是:未来如果你要隐藏自己的身份,不仅仅要变装易容伪造指纹,甚至连点击手机,查看文章的习惯都要改变了。
大数据就是:一个都不能少
如果要想知道有多大比例的人喜欢GV,那么只需要做好抽样调查就可以了,没有必要对所有人进行调查。但是如果你想要推销宅腐的周边智能硬件产品,则需要逐个排查每个人“独特”的兴趣爱好。
所有数据一个都不能少,这就是所谓的“全量加工”,这些数据的制造者正是各大厂商利润的源泉。
360商业产品首席架构师刘鹏是一名网红,他在很多场合都强调:全量加工才是大数据。他说,涉及到个性化推荐、计算广告、个人征信这些场景,大规模的计算就是无法避免的。
从技术角度来说,之所以大数据可以做到这么精准,也主要得益于技术的进步。感知设备被丰富地用在五花八门的硬件上,使得以前无法记录的数据,现在都可以被记录了。
大数据不应该给人用
大数据应该交给机器做决策,而不是交给人做决策。
这种洋溢着对人类深深不信任感的论断同样来自于刘鹏。在他眼中,大数据是为机器提供的食粮。而能够驾驭大数据的人类基本只有两种:数据科学家和统计工作者。
IT企业中养一群科学家的可能性为零。而人类的判断往往基于宏观、战略,不可能有精力做到“因事而异”。相比之下机器的判断比人类更加细致。比如为每个用户比如画像、贴标签。所以,要想把大数据利用透彻,愚蠢的人类还是暂时靠边站吧。
“有点错误”的大数据更好用
“数据”这两个字,天然给人一种完美而且精准的感觉。在这方面,大数据要挑战你的底线。作为数字广告领域的大牛,刘鹏强调,大数据可以存在半一致性这样模棱两可的属性。换句话说,允许数据错误和丢失。
纳尼?错误的数据也是好数据吗?没错。由于数据量巨大,而且分析半天往往没什么有用的收获(价值密度低),分析者往往需要选取一些特征数据做加工,而对于这些特征数据,也许还要简化之后再加工。所以最终大数据要达到的结果是难得糊涂,却一针见血。
所以,如果有人向喜爱人民网的你推荐草榴的时候,先不要发火,你可能只是大数据的一个错误罢了。
保险公司最喜欢和大数据在一起
如果你是一个鲁莽的人,最想知道这个情况的无疑是你的汽车保险公司,想必你的保费会居高不下;如果你是一个谨小慎微的人,最想知道的也是保险公司,因为它可以用打折的保费吸引你投保。
在你身上,甚至存在一个精确的“岀险率”数字。这个听上去很惊悚的数字恰恰是保险公司利润的来源。因为不掌握这样大数据的个人,是无法计算自己的岀险率的。保险公司恰恰利用这种信息不对称,给一个岀险率是万分之一的人开出了千分之一的保价,相当于赚了十倍的利润。
隐私问题要靠技术改进
数据比它看上去的样子更险恶,这是大数据业内人士的普遍共识。即使隐去了你的姓名电话等等敏感信息,只保留你和其他人联系的记录,熟悉你的人完全可以猜到你的身份。目前大数据的安全性,在他人的恶意之下,显得力不从心。
隐私问题,制度只能解决20分,剩下的80分要靠技术进步来解决。
刘鹏如是说。期待市场倒退到前大数据时代,似乎没有希望了。
如何精确统计出有多少人喜爱苍井空,有多少人喜欢武藤兰,但是又不泄露到底是谁喜欢苍老师,谁喜欢武老师,这是目前大数据的最前沿研究。
有关大数据的政策再严格,没有一套可靠的保密技术,数据的安全都是无从谈起的。隐私算法、数据脱敏、数据隔离。都是研究的方向。在此之前,各位的大数据还都在相对危险的状态。这也是为什么目前法律没有禁止数据买卖,而各大巨头却不敢将数据出售的原因。当然,大数据库市场价目前比较低也是一个重要的原因。
SDCC,中国软件开发者大会。由全球最大中文IT社区CSDN于2007年创办,每年一届。主题是下一代软件开发技术趋势与对各行业的深刻影响,以谈干货实料著称。
以上是小编为大家分享的关于有关大数据 你不一定知道的几个冷知识的相关内容,更多信息可以关注环球青藤分享更多干货
⑷ 十个有关大数的信息
十个有关大数的信息:
1)大数据计算提高数据处理效率,增加人类认知盈余
大数据技术就像其他的技术革命一样,是从效率提升入手。大数据技术平台的出现提升了数据处理效率。其效率的提升是几何级数增长的,过去需要几天或更多时间处理的数据,现在可能在几分钟之内就会完成。
大数据的高效计算能力,为人类节省了更多的时间。我们都知道效率提升是人类社会进步的典型标志,可以推断大数据技术将带领人类社会进入另外一个阶段。通过大数据计算节省下来的时间,人们可以去消费,娱乐和创造。未来大数据计算将释放人类社会巨大的产能,增加人类认知盈余,帮助人类更好地改造世界。
2)大数据通过全局的数据让人类了解事物背后的真相
相对于过去的样本代替全体的统计方法,大数据将使用全局的数据,其统计出来的结果更为精确,更接事物真相,帮助科学家了解事物背后的真相。大数据带来的统计结果将纠正过去人们对事物错误的认识,影响过去人类行为、社会行为的结论,带来全新的认知。
有利于政府、企业、科学家对过去人类社会的各种历史行为真正原因的了解,大数据统计将纠正样本统计误差,为统计结论不断纠错。大数据可以让人类更加接近了解大自然,增加对自然灾害原因的了解。
3)大数据有助于了解事物发展的客观规律,利于科学决策
大数据收集了全局的数据,准确的数据,通过大数据计算统计出了解事物发展过程中的真相,通过数据分析出解人类社会的发展规律,自然界发展规律。利用大数据提供的分析结果来归纳和演绎出事物的发展规律,通过掌握事物发展规律来帮助人们进行科学决策,大数据时代的精准营销就是典型的应用。
4)大数据提供了同事物的连接,客观了解人类行为
在没有大数据之前,我们了解人类行为的数据往往来源于一些被动的调查表格及滞后的统计数据。拥有了大数据技术之后,大量的传感器如手机APP、摄像头、分享的图片和视频等让我们更加客观的了解人类的行为。
大数据技术连接了人类行为,通过大数据将人类的行为数据收集起来,经过一定的分析后来统计人类行为,帮助我们了解人类的行为。可以说大数据的一个重要作用就是将人类行为数据进行收集分析,了解人类行为特点,为数据价值的商业运用提供基础资产
5)大数据改变过去的经验思维,帮助人们建立数据思维
人类社会的发展一直都在依赖着数据,无论是各国文明的演化,农业的规划,工业的发展,军事战役及政治事件等。
但是出现大数据之后,我们将会面对着海量的数据,多种维度的数据、行为的数据、情绪的数据、实时的数据。这些数据是过去没有了解到的,通过大数据计算和分析技术,人们将会得到不同的事物真相,不同的事物发展规律。
依靠大数据提供的数据分析报告,人们将会发现决定一件事、判断一件事、了解一件事不再变得困难。各国政府和企业将借助于大数据来了解民众需求,抛弃过去的经验思维和惯性思维,掌握客观规律,跳出历史预测未来的困境。
大数据发展趋势:
1)趋势一:数据的资源化
何谓资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
2)趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
3)趋势三:科学理论的突破
随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。
趋势四:数据科学和数据联盟的成立
未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。
大数据分析:
现在的大数据分析,跟传统意义的分析有一个本质区别,就是传统的分析是基于结构化、关系性的数据。而且往往是取一个很小的数据集,来对整个数据进行预测和判断。但现在是大数据时代,理念已经完全改变了,现在的大数据分析,是对整个数据全集直接进行存储和管理分析。
(4)有关大数据的段子扩展阅读:
大数含义
1. 交易员术语,指汇率的头几位数字。
2. 数学用语,指两个数中较大的数。
3.代表十的七十二次方。
4.大数在编程中表示超过32位二进制位的数。
⑸ 一个段子解释什么叫大数据什么叫蓝海红海什么叫互联网思维什么叫众筹
大数据:指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产!
红海战略:是指市场竞争已经白热化,产品、服务同质化严重,企业利润呈现微薄甚至负利,在这样的市场中竞争、搏杀,价格战此起彼伏,最后都是两败俱伤,所以很形象的表示为红海;对于后进入的企业就在没有必要进去了。
蓝海战略:是指通过创新,无论是经营管理创新、营销创新还是商业模式创新等等,都是通过改造现有的体系,从成本、消费群体、消费方式转变、产品服务升级提升等诸多方面,实现创新从而跳出红海,开辟属于自己的蓝海市场空间,达到盈利的目的。通过创新实现进步,带给消费者更多的体验和享受,并且消费者愿意接受的方式,但蓝海的开拓是建立在时间效力之上的,在新开辟的市场中很快会有跟进者,从而又会出现红海的情况,所以企业必须保持领先,不断的超越自己,不断发现新的蓝海,保持盈利水平。
互联网思维:充分利用互联网的精神、价值、技术、方法、规则、机会来指导、处理、创新、工作的思想。世界公仆领袖“联谊会公仆”、“全球大同”的作者彭友指出全球已进入互联网时代,我思献人人、人人助我思的互联网思维顺势而生。
互联网以用户体验为中心,真正找到用户的痛点,找到用户的普遍需求,为客户创造价值。
众筹:简单说就是有大众或群众做投资的一种方式,比如现在比较流行的PHP投资这种类型
⑹ 关于大数据应用有什么例子
1、关能源行业大数据应用
计算居民用电量。
2、职业篮球赛大数据应用
专业篮球队会通过搜集大量数据来分析赛事情况,然而他们还在为这些数据的整理和实际意义而发愁。通过分析这些数据,找到对手的弱点。
3、保险行业大数据应用
集中处理所有的客户信息。