导航:首页 > 网络数据 > 大数据小分析

大数据小分析

发布时间:2024-01-10 21:38:09

1. 大数据分析是什么优缺点是什么大数据的优缺点

数据分析是指抄用适当的袭统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。
大数据分析的优点:能够准备得出可靠信息,有助于企业发展,已经找到自己的方向;
缺点:信息透明化,大数据比你更了解你自己。
大数据优点:
(1)及时解析故障、问题和缺陷的根源,每年可能为企业节省数十亿美元。
(2)为成千上万的快递车辆规划实时交通路线,躲避拥堵。

(3)分析所有SKU,以利润最大化为目标来定价和清理库存。

(4)根据客户的购买习惯,为其推送他可能感兴趣的优惠信息。
(5)从大量客户中快速识别出金牌客户。
(6)使用点击流分析和数据挖掘来规避欺诈行为。
大数据的缺陷:
当前,大部分中国企业在数据基础系统架构和数据分析方面都面临着诸多挑战。根据产业信息网调查,目前国内大部分企业的系统架构在应对大量数据时均有扩展性差、资源利用率低、应用部署复杂、运营成本高和高能耗等缺陷。

2. 大数据分析是什么,怎么分析的呢

朋友刚打电话说想吃日料,你打开手机某团APP就会显示有日料团购推荐,刚在某信上说要去日本玩,就在盆友圈看到了机票广告。你是否有过疑惑,为什么我的手机APP如此了解我?难道是我的日常生活习惯大数据被分析了吗?
大数据是什么?
大数据不仅仅是大量的数据,而且是来自不同来源,存在不同类型,代表不同含义的海量数据。大数据应该动态变化,不断增加,而且能够通过研究分析发现规律产生价值。
大数据可以帮助我们根据对历史情况的分析,发现事物的发展变化规律,可以有助于更好的提高生产效率,预防意外发生,促进营业销售,使我们的工作和生活变得更加高效轻松便利。

当然APP不会窃取你的数据,是你的行为数据让某团和某信意识到了你的需求,才有了以下推荐。
当你注册一个APP账号的时候,需要输入电话,姓名,性别,所在地等基础数据,更进一步的数据是你的消费记录,发过的红包,日常用语习惯,打车记录,外卖订单记录等等,这些数据会变成你的事实标签,成为你行为数据很重要的一部分。

上边提到的大数据分析不仅仅是收集庞大的数据,更是建立模型,分析数据资料,并得出一系列结论的系统过程。从杂乱的数据中分析出你的兴趣爱好,进而构建全面的用户画像。

举个例子来说,当你打开一篇标签为雪地靴的文章时,你的行为可能是专门点开,也可能是无意中点开,这个时候就需要更多的行为来判断这篇文章对你的吸引力了。
这是一个非常初级的内容标签权重算法:
兴趣标签(雪地靴)权重 = 行为权重 x 访问时长 x 衰减因子
行为权重:什么都不干1分,评论+0.5,点赞+0.5,转发+2,收藏+1
时长权重:10S以内权重为0.5,10S-60S为1,60S以上为2
衰减因子:0-3天内权重为1,3-7天权重为0.85,7-15天权重为0.7,15-30天权重为0.5,30天以上权重为0.1
行为权重对应你是否有评论、点赞、转发、收藏等操作,不同操作有不同的数值,累加成行为权重。停留时间越长,时间权重也越高。最后,短期行为也无法代表长期兴趣,单次阅读行为的权重会随着时间流逝不断衰减。于是,你每次打开雪地靴类的内容都会生成一个兴趣权重,根据型渣函数公式得到一个兴趣标签值,数值越高,你对雪地靴就越感兴趣。

当你各个方面的偏好被计算完成之后,这些偏好就会变成特征向量,再通过计算特征向量找出与你相似的人并分类。再通过训练模型和测试准确度,最终,你的某信,某宝和某团等APP就会得到一个相对于较全面你的用户画像,上边标注了你被分析之后的行为事实标签。根据这个用户画像,广告主就可以根据这个找到他们想要的消费者了。

之后,一个住在黑龙江漠河的有过雪地靴消费记录的未婚女青年在即将刷到广告位的那一瞬间,广告平台会发起竞价请求,最后价高的广告将出现在你的眼前。
需要说明的是,某宝某信和某团等采集的行为数据不仅只对应你的账号,更与你的手机唯一识别码绑定在一起,这意味着,你就算不注册不登录,你的行为数据一样会被采集。同时,广告平台也可以根据你的手机识别码在其他 App 上为你投放广告,这样你刷某音的时候也能看到某宝的雪地靴广告了。

不过大家不要紧张隐私泄露问题,根据国家《个人信息安全规范》,商业广告平台卜蠢悄的所有标签都应该避免精档空确定位到个人,以保护你的隐私安全 。

3. 大数据分析的目的是什么

1、分析现状

分析现状是我们数据分析的基本目的,我们需要明确当前市场环境下,我们的产品市场占有率是多少,注册用户的来源有哪些,注册转化率是多少,购买转化率是多少,竞品是什么,竞品的发展现状如何。

我们和竞争对手相对,优势有哪些,不足又有哪些等等,都是属于对于现状的分析。这里包括两方面的内容,分析自己的现状和分析竞争对手的现状。

2、分析原因

分析原因是数据运营者用得比较多的了,做运营的人,在具体的业务中,不光要知道怎么了,还需要知道为什么如此。在业务上,我们经常会遇到某天用户突然很活跃,有时用户突然大量流失等,每一个变化都是有原因的,我们要做的就是找出这个原因,并给出解决办法,这些就是分析原因。

3、预测未来

数据分析的第三个目的就是预测未来,所谓未雨绸缪,用数据分析的方法预测未来产品的变化趋势,对于产品的运营者来说至关重要。

作为运营者,可根据最近一段时间产品的数据变化,根据趋势线和运营策略的力度,去预测未来的趋势,并用接下来的一段时间去验证这个趋势是否可行,而且实现数据驱动业务增长。

(3)大数据小分析扩展阅读:

大数据要分析的数据类型主要有四大类:

1、交易数据(TRANSACTION DATA)

大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志。

2、人为数据(HUMAN-GENERATED DATA)

非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流。这些数据为使用文本分析功能进行分析提供了丰富的数据源泉。

3、移动数据(MOBILE DATA)

能够上网的智能手机和平板越来越普遍。这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码)。

4、机器和传感器数据(MACHINE AND SENSOR DATA)

这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器。这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析。

机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子。来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备)。

4. 大数据分析方法有哪些,大数据分析方法介绍

5. 大数据分析的价值和分析方式

大数据分析的价值和分析方式

对中国大数据市场趋势的调查数据进行解析,以诠释中国大数据市场和技术趋势。同时,会通过在线讲座和中国读者解读中国大数据市场趋势,以及大数据对IT技术、架构、管理以及格局的影响。中桥结合中国大数据市场的调研数据和分析,将分成四个系列对“中国大数据价值和趋势”进行解读。

在前面3个系列里,中桥就大数据分析对未来24个月、企业的大数据分析投入重点以及大数据分析对IT资源的需求进行了分析。在这一系列里,中桥将就大数据的分析方式和技术进行阐述。

大数据分析的业务价值和数据类型

越来越多的企业认识到大数据分析能够带给企业业务的价值。中桥的多选项调查结果显示(图1),企业认为大数据分析能够带来的主要业务价值依次是:提高生产过程的资源利用率,降低生产成本;根据商业分析提高商业智能的准确率,降低传统“凭感觉”做决策的业务风险;动态价格优化利润和增长;获取优质客户。这表明大数据已经对企业的成本、业务决策、利润有着直接的影响。中桥的另外一组调研数据显示,目前越来越多的企业级用户考虑从批量分析(大数据创造价值的第一阶段)向近实时分析(第二阶段)发展,从而提高IT创造价值的能力。同时,数据分析在快速从商业智能向用户智能发展。中国市场正逐步从大数据降低成本向大数据加速业务增长、提高利润以及突破创新发展。

图1. 大数据分析的主要业务价值

目前中国用户主要是通过数据分析来提高整个企业的运营效率,降低运营成本。从图2对数据类型的调查结果来看,目前,中国企业的数据分析还是以结构化数据为主,如数据库或事务性数据。此外办公文件、计算机/网络日志文件、文本/信息等也是企业数据增长的主要来源,同时也是能够攫取出价值的数据类型。

图2. 大数据分析数据类型

而就导致大数据问题的数据来源调查显示(图3),毫无疑问,数据库首当其冲,是企业大数据的主要来源;而半结构化和非结构化数据如软件和网络日志、感应数据、社群等也已经纳入企业数据分析的主要范畴,这表明企业已经意识到这些数据对于业务的重要性,这也是实现从(大)数据分析第一阶段到大数据分析第二阶段的必要条件。也成为未来24个月用户通过IT创造价值的IT投资重点。

图3. 大数据分析数据来源

中国市场大数据分析方法

在了解了企业大数据的来源和种类之后,如何采取有效方式对这些数据进行分析,从而最大程度攫取数据价值,转化为最明智的商业决策以利于企业业务运营,是企业对大数据进行分析的目的所在。从目前中国大数据分析的分析方法来看(图4),有33.8%的企业选择针对具体工作负载来调整通用数据库;22.0%的受访企业选择数据分析云计算服务(如软件即服务和/或基础设施即服务);还有20.7%的企业选择自定义开发的解决方案。仅4.8%的用户使用了并行处理(MPP)分析数据库,3.3%使用了对称处理(SMP)分析数据库。这一结果表明,大多数的中国企业仍处于数据分析的第一阶段。而且,目前中国用户大多采用通用数据库、云计算或自定义开发的解决方案和数据库工具作为大数据分析方法,而没有选择去购买数据分析的软件。

图4. 大数据分析方法

MapRece可以让用户把半结构化和非结构化数据整合到数据处理和分析平台,从传统的核心式数据分布演进到集群或网格式数据分布。从图5关于数据处理和分析平台的调查结果来看,常用的分布式计算环境(29.0%)、自定义开发的解决方案(27.7%)、SMP(对称处理)数据库(16.0%)、公有云平台(10.5%)是目前大数据环境下较为普遍采用的数据处理和分析平台,而使用MapRece的企业占比较低(4.8%)。这说明,目前中国企业对MapRece的认同有限,这不仅影响着数据分析三个阶段的演进速度,也制约着数据的采集管理,进一步也影响着大数据分析四个环节的后面几个环节。

图5. 大数据处理和分析平台

以上是小编为大家分享的关于大数据分析的价值和分析方式的相关内容,更多信息可以关注环球青藤分享更多干货

6. 大数据分析是指的什么

大数据分析是指对规模宏弯巨大的数据进行分析。

对大数据bigdata进行采集、清洗、挖掘、分析等,大数据主要有数据采集、数据存储、数据管理和数据分析与挖掘技术等:

数据处理:自然语言处理技术。

统计分析:假设检验、显著性检验、差异分析、相关分析、多元回归分析、逐步回归、回归预测与残差分析等。

数据挖掘:分类(Classification)、估计(Estimation)、预测(Prediction)、相关性分组或悉键关联规则()、聚类(Clustering)、描述和可视化、DescriptionandVisualization)、复杂数据类型挖掘(Text,Web,图形图像,视频,音频等)。

随着大数据的发展,大数据分析广泛应用在各行各业,其中金融与零售行业应用较为广泛。

大数据分析方法:

大数据挖掘:定义目标,并分析问题

开始大数据处理前,应该定好处理数据的目标,然后才能开始数据挖掘。

大数据挖掘:建立模型,采集数据

可以通过网络爬虫,或者历年的数据资料,建立对应的数据挖掘模型,然后采集数据,获取到大量的原始数据。

大数据挖掘:导入并准备数据

在通过工具或者脚本,将原始转换成可以处理的数据,

大数据分析算法:机器学习

通过使用机器学习的方法,处理采集到的数据。根据具体的问题来定。这里的方法就特别多。

大数据分析目标:语义引擎蔽陆闷

处理大数据的时候,经常会使用很多时间和花费,所以每次生成的报告后,应该支持语音引擎功能。

大数据分析目标:产生可视化报告,便于人工分析

通过软件,对大量的数据进行处理,将结果可视化。

大数据分析目标:预测性

通过大数据分析算法,应该对于数据进行一定的推断,这样的数据才更有指导性。

7. 大数据分析工具有哪些,有什么特点

Excel
Excel简单实用好操作,对于个人的工作汇报和日常工作的数据整理帮助特别大。但是其可供选择的统计图样式有点难看,好看的需要付费。另外,Excel不足以支撑TB级别的数据分析需求。

亿信华辰—一站式数据分析平台(ABI)
亿信ABI融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报等功能,采用轻量级SOA架构设计、B/S模式,各模块间无缝集成。数据整合模块支持可视化的定义ETL过程,完成对数据的清洗、装换、处理。数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。

神策数据—神策分析
神策分析的产品有完整的使用文档,每个模块都有详细的使用说明以及示例,降低了用户的学习成本。而且支持私有部署、任意维度的交叉分析,并帮助客户搭建专属的数据仓库。工具需要付费使用。

帆软—FineBI
FineBI分为数据处理、可视分析和分享公用三大功能模块。分析页面由控件和组件组成,控件和组件的数量是可以添加至任意多个,但是布局的交互比较僵硬,且使用逻辑有点乱,引导不明确。需要安装本地客户端才能使用。

永洪科技—永洪BI
永洪BI是一款可在前端进行多维分析和报表展现的BI软件。支持拖拽操作,数据源格式多样,提供不同级别的查询支持,支持跨库跨源连接。不过其产品用户体验一般,主题样式虽多但是给人感觉样式还是很传统。

8. 如何进行大数据分析及处理

探码科技大数据分析及处理过程


聚云化雨的处理方式

9. 数据分析:大数据处理的基本流程(三)

01

什么是数据分析

随着数字化进程的高速发展,越来越多的企业面对愈加激烈的竞争,差异化的市场,多变的环境,常常会面临各种难题,也变得更依赖于数据。

分析的本质是让业务更加清晰,让决策更加高效。 数据分析 作为大数据价值产生的必要步骤、整个 大数据处理流程的核心 ,其在企业中的地位也越来越重要。

数据分析的目的 说白了就是把隐藏在一大批看来杂乱无章的数据中的信息集中和提炼出来,对其加以汇总、理解并消化,以求最大化地开发数据的功能,从而找出所研究对象的内在规律,发挥数据的作用。

简而言之, 数据分析就是一个有组织、有目的收集数据、为了使其成为信息而对数据加以详细研究和概括总结的过程。

在企业实际应用中,数据分析的一系列过程也是产品质量管理体系的支持过程。在企业产品的整个寿命周期,包括从市场调研到售后服务的各个过程都需要适当运用数据分析,以提升数据分析的有效性,能够适时解决企业难题、识别机会、规避风险。

数据分析的作用及价值,可简单归纳总结为下面四个方面:

1.追溯过去,了解真相(识别机会、规避风险)

2.洞察本质,寻本溯源(诊断问题、亡羊补牢)

3.掌握规律,预测未来(评估效果、改进策略)

4.采取措施,驱动行动(提高效率、加强管理)

02

数据分析的三个常用方法

数据分析本身是一个非常大的领域,这里将主要讨论一下在企业产品整个寿命周期期间,3个常用的数据分析方法 (想看数据分析常用算法的小伙伴可以点这里跳转) :

数据趋势分析

数据对比分析

数据细分分析

趋势 , 对比 , 细分 ,基本包含了数据分析最基础的部分。无论是数据核实,还是数据分析,都需要不断地找趋势,做对比,做细分,才能得到最终有效的结论。

数据趋势分析

趋势分析一般而言,适用于产品核心指标的长期跟踪,比如产品点击率、活跃用户数等。简单的数据趋势图并不算是趋势分析,趋势分析更多的是需要明确数据的变化,以及对变化原因进行分析。

趋势分析,最好的产出是比值。在趋势分析的时候需要明确几个概念: 环比,同比,定基比 。

环比 指本期统计数据与上期比较,利用环比可以知道最近的变化趋势,但是有些数据可能会受季节、时间、地域等因素影响而产生差异。

为了消除差异,于是有了 同比 的概念,例如2019年2月份和2018年2月份进行比较。

定基比 就是和某个基点进行比较,比如2018年1月作为基点,定基比则为2019年2月和2018年1月进行比较。

趋势分析另一个核心目的则是对趋势做出解释,对于趋势线中明显的拐点,发生了什么事情要给出合理的解释。

数据对比分析

很多时候单独看数据的趋势变化并不能说明问题,此时就需要给孤立的数据一个合理的参考系,否则孤立的数据毫无意义,这也是对比分析的意义所在。

一般而言,对比的数据是数据的基本面,比如行业情况,全站的情况等。

有的时候,在产品迭代测试的时候,为了增加说服力,会人为的设置对比的基准,也就是A/B test,比较试验最关键的是A/B两组只保持单一变量,其他条件保持一致,只有这样才能得到比较有说服力的数据。可以简单理解为样本数量为2的控制变量法。

数据细分分析

在得到一些初步结论后,就需要进一步对数据进行细拆,因为在一些综合指标的使用过程中,会抹杀一些关键的数据细节。

细分分析是一个非常重要的手段,多问一些为什么,才是得到结论的关键,而一步一步拆分,就是在不断问为什么的过程。

进行数据细分分析时,一定要进行多维度的细拆,可以包括但不限于:

分时 :不同时间短数据是否有变化

分渠道 :不同来源的流量或者产品是否有变化

分用户 :新注册用户和老用户相比是否有差异,高等级用户和低等级用户相比是否有差异

分地区 :不同地区的数据是否有变化

组成拆分 :比如搜索由搜索词组成,可以拆分不同搜索词;店铺流量由不用店铺产生,可以分拆不同的店铺

03

大数据时代数据分析面临的挑战

大数据时代,数据分析技术的发展也并非一直顺风顺水,眼下可能会面临一些新的挑战,主要有以下几点:

1

数据量大并不一定意味着数据价值的增加,也有可能是意味着数据噪音的增多。

因此,在数据分析之前必须进行数据清洗等预处理工作,但是预处理如此大量的数据,对于计算资源和处理算法来讲都是非常严峻的考验。

2

大数据时代的算法需要进行调整。

大数据的应用常常具有实时性的特点,算法准确率不再是大数据应用的最主要指标。很多时候,算法需要在处理实时性和准确率之间博得一个平衡点。

其次,分布式并发计算系统是进行大数据处理的有力工具,这就要求很多算法必须做出调整以适应分布式并发的计算框架,算法需要变得具有可扩展性。许多传统的数据挖掘算法都是线性执行的,面对海量的数据很难在合理的时间内获取所需的结果。因此需要重新把这些算法实现成可以并发执行的算法,以便完成对大数据的处理。

最后,在选择处理大数据的算法时必须谨慎,当数据量增长到一定规模以后,可以从少量数据中挖掘出有效信息的算法并非一定适用大数据。

3

数据结果的衡量标准。

对大数据进行分析并非易事,同样的,对大数据分析结果好坏如何衡量也是大数据时代数据分析面临的更大挑战之一。

大数据时代的数据体量大、类型混杂、产生速度快,进行分析时如果没有对整个数据的分布特点了如指掌,无疑会导致在设计衡量的方法、指标时遇到困难。

企通查-企业大数据平台基于 数据采集、特征提取、信息关联、机器学习和深度学习算法模型、NLP文本分析 等先进技术,清晰构建企业全维度动态画像,通过 企业风控指数、企业信用指数、企业活力指数 三大指数模型体系和基于 企业基本能力、创新能力、经营能力、核心能力、财务能力和风险能力 六大方面的大数据风控体系,实现对企业和客户的 全流程主动感知、重点监控、变动提醒和风险预警 。此外,企通查还可以根据客户的不同需求定制所需的一系列企业数据。

阅读全文

与大数据小分析相关的资料

热点内容
js循环添加控件 浏览:615
学习计算机网络的作用 浏览:235
access数据库最新内容怎么调 浏览:203
上古世纪新版本跑商 浏览:267
iphone5国际漫游设置 浏览:107
ipodwatch如何安装app 浏览:114
谁有微信抢红包的群号 浏览:872
word07页码从任意页开始 浏览:791
js禁止滑动事件 浏览:800
苹果查序号怎么看不是 浏览:61
linux在txt文件 浏览:568
ps如何导入文件匹配 浏览:201
转转app怎么把自己的账号租出去 浏览:828
福昕阅读器合并照片pdf文件 浏览:591
vhd文件有什么用 浏览:482
编程小朋友看什么书 浏览:623
经营如何让数据说话 浏览:258
如何在手机上升级opop 浏览:614
coreldrawx5免费视频教程 浏览:725
网站引导页面源码 浏览:234

友情链接