⑴ 大数据在智慧城市中的应用及其发展
作者 | 网络大数据
来源 | raincent_com
城市大数据是指在城市运行过程中产生或获取的数据,是其与信息收集、处理、利用和通信能力相关的活动要素组成的有机系统,是国民经济和社会发展的重要战略资源,简单易懂的公式可以表述为:城市大数据=城市数据+大数据技术+城市职能。
城市大数据的数据资源来源丰富多样,广泛存在于经济、社会各个领域和部门,是政务、行业、企业等各类数据的总和。同时,城市大数据的异构特征显著,数据类型丰富、数量大、速度增长快、处理速度和实时性要求高,且具有跨部门、跨行业流动的特征。
按照数据源和数据权属不同,城市大数据可以分为政务大数据、产业大数据和社会公益大数据。政务大数据指的是政务部门在履行职责过程中制作或获取的,以一定形式记录、保存的文件、资料、图表和数据等各类信息资源。产业大数据指的是在经济发展中产生的相关数据,包括工业数据、服务业数据等。
此外,还有一些社会公益大数据。当前,城市大数据多数为政务大数据和产业大数据,所以城市大数据的主要推动者应为一个城市的政府和相关的具有一定数据规模的企业。
为保障城市运转的安全高效,智慧城市建设需要对海量的数据资源进行收集、整合、存储与分析,并使用智能感知、分布式存储、数据挖掘、实时动态可视化等大数据技术实现资源的合理配置。因此,城市大数据是实现城市智慧化的关键支撑,是推动“政通、惠民、兴业”的重要引擎。
新型智慧城市发展面临挑战数据驱动的新型智慧城市发展面临诸多问题。白皮书认为,虽然当前各级地方政府和企业都在积极探索智慧城市建设,但仍存在着特色不明、体验不佳、共享不足等问题。究其根源在于,未能实现城市大数据资源与城市业务的良好融合。
具体而言,挑战包括三个方面:一是信息系统烟囱林立,阻碍数据共享;二是数据治理普遍薄弱,价值大打折扣;三是数据管理水平不一,缺乏整体联动。
如何应对新型智慧城市建设中的困难和挑战?白皮书认为城市大数据平台的建设能够发挥积极作用,具体表现在三个方面。
一、通过数据汇集加速信息资源整合应用
第一,城市大数据平台建立了数据治理的统一标准,提高数据管理效率。通过统一标准,避免数据混乱冲突、一数多源等问题。通过集中处理,延长数据的“有效期”,快速挖掘出多角度的数据属性以供分析应用。
通过质量管理,及时发现并解决数据质量参差不齐、数据冗余、数据缺值等问题。第二,城市大数据平台规范了数据在各业务系统间的共享流通,促进数据价值充分释放。通过统筹管理,消除信息资源在各部门内的“私有化”和各部门之间的相互制约,增强数据共享的意识,提高数据开放的动力。通过有效整合,提高数据资源的利用水平。
二、通过精准分析提升政府公共服务水平
在交通领域,通过卫星分析和开放云平台等实时流量监测,感知交通路况,帮助市民优化出行方案;在平安城市领域,通过行为轨迹、社会关系、社会舆情等集中监控和分析,为公安部门指挥决策、情报研判提供有力支持。
在政务服务领域,依托统一的互联网电子政务数据服务平台,实现“数据多走路,群众少跑腿”;在医疗健康领域,通过健康档案、电子病历等数据互通,既能提升医疗服务质量,也能及时监测疫情,降低市民医疗风险。
三、通过数据开放助推城市数字经济发展
开放共享的大数据平台,将推动政企数据双向对接,激发社会力量参与城市建设。一方面,企业可获取更多的城市数据,挖掘商业价值,提升自身业务水平。
另一方面,企业、组织的数据贡献到统一的大数据平台,可以“反哺”政府数据,支撑城市的精细化管理,进一步促进现代化的城市治理。
六个方面推进平台建设白皮书认为,当前我国城市大数据平台的建设仍处于起步阶段,且各地在管理机制、业务架构和技术能力等方面各有优劣,不利于城市大数据平台的长远发展。对于建设城市大数据平台的具体路径,白皮书提出了六点建议。
一、强化平台顶层设计
科学合理的顶层设计是城市大数据平台建设的关键,需从落实国家宏观政策出发,结合地方实际需求,统筹考虑平台目标、数据主权、关键技术、法制环境、实现功能等各个方面,以“高起点、高定位、稳落地”开展平台的顶层设计,保障城市大数据平台建设有目标、有方向、有路径、有节奏地持续推进,并且根据项目进展状况,不断迭代更新、推陈出新。
二、完善平台配套保障机制
城市大数据平台建设与运营须有相应的配套保障机制,并充分发挥保障机制的导向作用和支撑作用,以确保平台规划建设协调一致和平台整体效能的实现。
如建立城市大数据资源管理机制,明确数据内容的归口管理部门、数据采集单位和共享开放方式等;建立城市大数据平台运行管理机制,明确平台使用中数据、流程、安全等各项内容和管理标准,保障平台持续稳定运行。
三、加强数据管理
加强城市大数据管理,实现数据从采集环节到数据资产化的全过程规范化管理。明确数据权属及利益分配,以及个人信息保护、数据全生命周期的管理责任问题。明确数据资源分类分级管理,健全数据资源管理标准。
分类指的是通过多维数据特征准确描述政府基础数据类型;分级是指确定各类数据的敏感程度,为不同类型数据的开放和共享制订相应策略,完善数据采集、管理、交换、架构、评估认证等标准,推动数据共享与开放的基本规范和标准出 台。
以资源目录汇编、资源整合汇聚、交换共享平台为三大标准步骤,坚持“一数一源”、多元校核,统筹建设政务信息资源目录体系和共享交换体系。建立一套科学合理的数据分类体系,将不同领域、多种格式的数据整合在一起,通过多元的检索途径、分析工具与应用程序,方便用户查找和利用数据内容。
四、因地制宜开展平台建设与运营
城市大数据平台的建设与应用要结合,避免出现重平台建设轻平台使用的现象。政府、产业和城市的数据资源极其庞杂,需要明确平台数据资源的权属性,保障数据所有权的归属。
政府拥有政府数据资源所有权,互联网企业往往掌握着先进的数据技术和拥有互联网思维的专业队伍,本地企业对当地的人才资源、市场环境、产业发展等因素有更清晰、更准确的认识,需要充分盘活政府、互联网企业、本地企业等各方资源,参与平台的建设与运营。
城市大数据平台的数据治理和运营体系相当复杂,平台建设的模式和路径没有固定模式,需要发挥各方的主观能动性,因地制宜,挖掘地方优势,突出地方特色,为城市大数据决策提供有力的支撑。
五、开展城市大数据综合评价
各省市大数据主管部门应制定平台长效运行机制和考评办法,建立完善的上报、检查、考评机制,设计量化考核内容和标准,加强平台数据质量管控,管好用好城市大数据平台。
加强对城市大数据平台项目的后评价和项目稽查,强化对数据资源建设以及数据共享开放、数据质量和安全的审计监督。科学构建城市大数据平台综合评价指标体系,开展城市大数据平台建设成效综合评价工作,引导各地城市大数据平台建设工作,不断提升城市大数据平台建设应用成效。
六、加强平台数据安全保障
城市大数据平台包含大量政务和产业数据,涉及国家利益、公共安全、商业秘密、个人隐私,具有高度敏感性,因此必须加强平台数据安全保障能力建设。
落实等级保护、安全测评、电子认证、应急管理等基础制度,建立数据采集、传输、存储、使用、开放等各环节的安全评估机制,明确数据安全的保护范围、主体、责任和措施。研究制定数据权利准则、数据利益分配机制、数据流通交易规则,明确数据责任主体,加大对技术专利、数字版权、数字内容产品、个人隐私等的保护力度。
⑵ 大数据未来的发展前景怎么样
行业主要上市公司:易华录(300212)、美亚柏科(300188)、海量数据(603138)、同有科技(300302)、海康威视(002415)、依米康(300249)、常山北明(000158)、思特奇(300608)、科创信息(300730)、神州泰岳(300002)、蓝色光标(300058)等
本文核心数据:大数据产业链、产业规模、应用市场结构、竞争格局、发展前景预测等
产业概况
1、定义:大数据产业覆盖范围广
根据中国信通院发布的《大数据白皮书》,大数据产业是以数据及数据所蕴含的信息价值为核心生产要素,通过数据技术、数据产品、数据服务等形式,使数据与信息价值在各行业经济活动中得到充分释放的赋能型产业。不同机构对大数据的定义也有所不同,具体如下:
2、产业链剖析:大数据产业链庞大
大数据产业链覆盖范围广,上游是基础支撑层,主要包括网络设备、计算机设备、存储设备等硬件供应,此外,相关云计算资源管理平台、大数据平台建设也属于产业链上游;
大数据产业中游立足海量数据资源,围绕各类应用和市场需求,提供辅助性的服务,包括数据交易、数据资产管理、数据采集、数据加工分析、数据安全,以及基于数据的IT运维等;
大数据产业下游则是大数据应用市场,随着我国大数据研究技术水平的不断提升,目前,我国大数据已广泛应用于政务、工业、金融、交通、电信和空间地理等行业。
大数据产业上游基础设施具体包括IT设备、电源设备、基础运营商及其他设备,相关代表企业华为、中兴通讯、艾默生、三大运营商等。
中游大数据领域可以细分为数据中心、大数据分析、大数据交易与大数据安全等子行业,相关代表企业包括宝信软件、数据港、久其软件、拓尔思、上海数据交易中心、贵阳大数据交易所与华云数据等。
在下游应用市场,我国大数据应用范围正在快速向各行各业延伸,除发展较早的政务大数据、交通大数据外,在工业、金融、健康医疗等众多领域大数据应用均初见成效。
产业发展历程:十年来大数据产业高速增长,信息智能化程度得到显著提升
我国大数据产业布局相对较早,2011年,工信部就把信息处理技术作为四项关键技术创新工程之一,为大数据产业发展奠定了一定的政策基础。自2014年起,“大数据”首次被写进我国政府工作报告,大数据产业上升至国家战略层面,此后,国家大数据综合试验区逐渐建立起来,相关政策与标准体系不断被完善,到2020年,我国大数据解决方案已经发展成熟,信息社会智能化程度得到显著提升。
产业政策背景:优化升级数字基础设施,鼓励大数据产业发展
2014年,大数据首次写入政府工作报告,大数据逐渐成为各级政府关注的热点,政府数据开放共享、数据流通与交易、利用大数据保障和改善民生等概念深入人心。此后国家相关部门出台了一系列政策,鼓励大数据产业发展。
当前,随着5G、云计算、人工智能等新一代信息技术快速发展,信息技术与传统产业加速融合,数字经济蓬勃发展,数据中心作为各个行业信息系统运行的物理载体,已成为经济社会运行不可或缺的关键基础设施,在数字经济发展中扮演至关重要的角色。数据中心作为大数据产业重要的基础设施,其快速发展极大程度地推动了大数据产业的进步。在2021年3月发布的“十四五”规划中,大数据标准体系的完善成为发展重点。
产业发展现状
1、行业整体情况:大数据产业规模维持高速增长 主要应用于金融和政府领域
——大数据产业规模:2021年超过800亿元
近年来我国大数据行业取得快速发展,赛迪CCID统计,我国大数据市场规模由2019年的619.7亿元增长至2021年的863.1亿元,复合年增长率达到18.0%,大数据市场规模包含了大数据相关硬件、软件、服务市场收入。
——大数据市场结构:产业整体以大数据服务为主,应用领域以金融和政府领域为主
从产业结构来看,目前,我国的大数据产业进入高质量发展阶段,大数据软件和大数据服务的需求开始不断提升,大数据硬件占比有所下降但仍占据主导地位,
CCID统计,2021年我国大数据市场结构中,大数据硬件、大数据软件和大数据服务的市场占比分别为40.5%、25.7%和33.8%。近几年大数据硬件的占比在逐渐下降,大数据软件和大数据服务的占比在逐步提高。未来我国大数据软件和服务市场相比硬件市场将呈现更好的发展态势。
从应用领域来看,大数据分析产品及服务已经从最早的为电信领域客户提供经营分析、为银行领域客户提供风控管理等辅助性经营决策,发展到目前的为金融、电信、政府、互联网、工业、健康医疗、电力等多个行业领域客户提供预测性分析、自主与持续性分析等,以实现企业决策与行动最优化。大数据分析产品及服务应用已经十分广泛,但由于各下游领域业务特点的不同,决定了其对大数据分析产品及服务的具体需求存在一定差异。
CCID统计,2021年我国大数据分析市场下游行业中,金融、政府、电信和互联网位居应用领域前四名,市场占比分别为19.1%、16.5%、15.2%和13.9%,合计超过60%;其他重点应用领域主要包括健康医疗、交通运输、工业、电力等。
2、细分市场一:金融大数据
——金融大数据需求:金融业务规模不断扩大,带动大数据需求提升
从金融领域需求来看,近年来,中国金融领域业务规模不断扩大,其中中国银行业金融机构不断积极拥抱金融科技,推动数字化转型,整体行业规模扩大;保险业和证券业的收入也随着市场经济的发展而提升。
近年来,随着新一代信息技术加速突破应用,以移动金融、互联网金融、智能金融等为代表的金融新业态、新应用、新模式正蓬勃兴起,我国金融业开始步入一个与信息社会和数字经济相对应的数字化新时代,金融数字化转型成为金融行业转型发展的焦点。2019年,人民银行印发《金融科技发展规划(2019-2021年)》,构建起金融科技“四梁八柱”的顶层设计,明确了金融科技发展方向和任务、路径和边界。2022年1月,人民银行再次发布《金融科技发展规划(2022-2025年)》明确提出,从战略、组织、管理、目标、路径以及考评等方面将金融数字化打造成金融机构的“第二发展曲线”。随着金融业务规模不断扩大,加之新一代信息技术的发展,大数据在金融领域的需求将不断提升。
——金融大数据应用场景
过去几年,金融大数据带来了重大的技术创新,为行业提供了便捷、个性化和安全的解决方案。目前,中国金融大数据典型的应用场景包括股票洞察、欺诈检测和预防、风险分析与金融服务领域。
3、细分市场二:政府大数据
——政府大数据需求:互联网政务服务用户规模不断提升
从政府领域需求来看,根据中国互联网络信息中心(CNNIC)发布的第49次《中国互联网络发展状况统计报告》数据显示,互联网政务服务发展展现出了巨大潜能。截至2021年12月,我国互联网政务服务用户规模达9.21亿,较2020年12月增长9.2%,占网民整体的89.2%。“十四五”规划纲要提出要“推进网络强国建设,加快建设数字经济、数字社会、数字政府,以数字化转型整体驱动生产方式、生活方式和治理方式变革”。2021年,我国各省市积极探索、持续推进互联网政务服务建设发展,努力提升公共服务、社会治理等数字化、智能化水平。截至2021年11月,全国已有20多个省(区、市)相继出台数字政府建设的有关规划,为我国互联网政务服务发展注入新的活力。
——政府大数据应用场景
中国政府大数据主要应用于信息共享、政务数据管理、城市网络管理与社会管理几大领域。加强电子政务建设,管理好政府的数据资产,完善政府决策流程,将是未来数年大数据在公共管理领域发展的重要方向。大数据将对政府部门的精细化管理和科学决策发挥重要作用,从而提高政府的服务水平。舆情监测、交通安防、医疗服务等将是公共管理领域重点应用领域。
4、细分市场三:互联网大数据
——互联网大数据需求:互联网行业规模不断提升
在人工智能、云计算、大数据等信息技术和资本力量的助推和国家各项政策的扶持下,2021年,互联网和相关服务业发展态势平稳向好。企业业务收入和营业利润保持较快增长;互联网平台服务和数据业务实现快速发展,信息服务收入较快增长;多省份保持增长态势。2021年我国规模以上互联网和相关服务企业完成业务收入15500亿元,同比增长21.2%。
2022年上半年,我国规模以上互联网和相关服务企业完成互联网业务收入7170亿元,同比增长0.1%。
注:2021年及以前年份,规模以上互联网和相关服务企业,指获得《增值电信业务经营许可证》在中国大陆境内经营全国或区域性增值电信业务、上年度互联网业务收入500万元及以上的企业。2022年,规模以上互联网和相关服务企业口径由互联网和相关服务收入500万元以上调整为2000万元及以上。
——互联网大数据应用场景
在互联网行业,除了社交、B2C业务之外,像在线音视频业务、广告监测、精准营销等等,也是未来潜在应用场景。
产业竞争格局
1、区域竞争:中国大数据企业主要分布在华南和华东沿海地区
根据企查猫数据,截止2022年9月23日,全国大数据产业中“存续”及“在业”的企业多集中分布在华南和华东沿海地区。其中,广东省的大数据企业最多。
2、企业竞争:技术领域创新和经验是关键,融合应用领域行业龙头更能获得青睐
根据大数据产业联盟调研和发布的2022大数据企业投资价值百强榜单来看,榜单共选取了10个细分领域,涉及大数据基础软件、数据治理与分析、数据安全、商业智能、营销大数据5个通用领域,以及政府大数据、金融大数据、工业大数据、健康医疗大数据、空间地理信息大数据5个融合应用领域。
大数据基础软件、数据治理与分析、数据安全、数据可视化等,是所有细分行业应用场景的基础支撑,体现了大数据技术价值和作用。在这些细分领域提供技术解决方案的企业中,技术创新能力较强、在各自的细分领域有较长时间技术积累的厂商是投资机构的关注重点。
政府大数据、金融大数据发展相对成熟,落地实践案例多和品牌知名度高的企业受市场关注程度较高。工业大数据、健康医疗大数据、空间地理信息大数据等市场仍处于待爆发阶段,在各自细分领域建立竞争优势的企业容易获得投资机构的青睐。
注:2022年大数据企业投资价值百强榜是从企业估值/市值、营收状况、创新投入、产品竞争力、细分市场潜力、领导层能力等多个维度进行综合评比,同时结合行业专家打分,评选出2022年度大数据领域最具投资价值的100家企业。
产业发展前景:大数据将继续保持高速增长
大数据作为新一代信息技术的重要标志,对生产制造、流通、分配、消费活动以及经济运行机制、社会生活方式和国家治理能力均产生重要影响。伴随国家快速推动数字经济、数字中国、智慧城市等发展建设,未来大数据行业对经济社会的数字化创新驱动、融合带动作用将进一步增强,应用范围将得到进一步拓宽,大数据市场也将保持持续快速的增长态势。预计2027年我国大数据市场规模将达到2930.9亿元,未来六年复合年增长率为22.6%。
更多本行业研究分析详见前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。。
⑶ 大数据 掌握话语权要关注基础技术
大数据:掌握话语权要关注基础技术
《2015年中国大数据交易白皮书》显示,预计到2020年,中国大数据产业市场规模将是2014年规模的10倍,由2014年的767亿元扩大至8228.81亿元。全球大数据市场高速增长,已经成为全球IT领域中的增长亮点。在中国尽管大数据仍处于起步阶段,但各地发展大数据的积极性较高,行业应用推广迅速。在这个热情高涨的大数据市场,中国要想进一步释放大数据的价值,掌控大数据的技术话语权,必须关注大数据的基础技术。
眼下,虽然中国对大数据的热情很高,但我们必须看到目前中国在大数据关键技术上的布局其实是有所欠缺的。目前世界各国都在抢先布局大数据的关键技术、基础技术,因为从目前的技术架构和技术基础来看,用现成的技术来解决大数据的问题还面临诸多的挑战。不久前,IBM中国研究院院长沈晓卫接受《中国电子报》记者采访时坦言,我们要想真正从数据中获得洞察、获得价值,需要更高效、更智能的数据处理和分析平台,以及相应的工具。其一,传统的IT技术,需要有更大的突破。比如物联网处理系统需要一秒钟处理上百万信息,比如对非结构化的数据进行存储和处理,需要新的技术。其二,需要引入物理模型来模拟物理世界。比如对天气的理解,比如对疾病的风险控制的理解,比如对智能工厂的理解,都需要构建大量的物理模型,并挑出更合适的模型,对物理世界作出更好的模拟和理解。其三,需要更强大的认知计算,要求认知计算有更强大的自然语言的能力、更强的机器学习能力等。
基于对市场需求和技术趋势的判断,事实上国外IT巨头在大数据的关键技术上投入了大量人力、物力和财力来进行关于大数据关键技术的研发。我们大家都知道现在谈及大数据的利用,一定都会提及开源的Hadoop技术,事实上对于大数据的利用仅仅依靠Hadoop是不够的。我们朝向产业互联网推进时面临非常多的挑战,我们的计算架构、计算模式也面临很大挑战。比如传统的计算机分析和数据整理方式,首先是收集数据,然后储存在数据库程序中,然后在收到请求后搜索这些数据。这是一个高效的处理方式,但却是一个紧绷的结构,而且通常会造成时间的浪费。而在流计算当中,高级软件的运算法则在接收流数据时就开始对其进行分析。流计算在实时数据分析领域具有巨大的应用空间,包括天气、江河、电力、股票交易等等。但目前,中国的IT产业在流计算方面并没有太多的话语权。面对大数据的挑战,有非常多类似流计算的新技术,关键技术都需要中国IT企业做更多的布局,只有这样,我们的大数据发展,大数据利用才不会变成“无根”的产业。
事实上不仅仅是在平台和工具等基础技术维度,中国要想在大数据领域拥有更大的话语权,更好地释放数据的价值,还必须在数据模型的维度、在数据科学家等维度进行大量的投入。目前全球前1500强的企业都有自己的数据科学家。据国外职业人士社交网站LinkedIn公布的2014年最受雇主喜欢、最炙手可热的25项技能,统计分析和数据挖掘技能位列榜首。研究机构Gartner预测,2015年,全球将新增440万个与大数据相关的工作岗位,25%的组织将设立首席数据官职位。
不久前,阿里云宣布启动阿里云大学合作计划AUCP,联合国内8所高校开设云计算与数据科学专业方向,目标是到大学里培养大数据的科学家。应该说阿里巴巴是国内企业中“大数据意识”觉醒比较早的企业。对于大数据这样的应用学科的人才培养,需要充分借助企业的资源。在国外企业中,IBM对于全球大数据的人才培养投入了巨大资源,已与全球1000多所大学一同合作,构建一个输送数据科学家的“通道”。
推进大数据应用需要大量的数据科学家,需要教育体系更重视大数据的人才培养,需要更多的领先企业参与进来,仅仅有阿里巴巴或者是IBM是远远不够的。
以上是小编为大家分享的关于大数据 掌握话语权要关注基础技术的相关内容,更多信息可以关注环球青藤分享更多干货
⑷ 大数据前景如何
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。从2019年的秋招情况来看,大数据开发岗位的数量明显比较多,而且不仅需要研发型人才,也需要应用型人才,所以本科生的就业机会也比较多。
当前大数据技术正处在落地应用的初期,所以此时人才招聘会更倾向于研发型人才,而且拥有研究生学历也更容易获得大厂的就业机会,所以对于当前大数据相关专业的大学生来说,如果想获得更强的岗位竞争力和更多的就业渠道,应该考虑读一下研究生。
读研之后在岗位选择上可以重点考虑一下大数据平台开发,在5G通信的推动下,未来云计算会全面向PaaS和SaaS领域覆盖,这个过程会全面促进大数据平台的发展。另外,由于人工智能平台的陆续推出,对于大数据平台也是一种促进。相比于大数据应用开发岗位来说,大数据平台开发岗位不仅薪资待遇更高,职业生命周期也会更长,而且未来也可以获得更多的发展机会,也会更容易进入云计算、人工智能等领域发展。
对于当前在读的本科生来说,如果不想读研,那么应该从以下三个方面来提升自身的就业竞争力:
第一:提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。
第二:掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。
第三:重视平台知识的积累。产业互联网时代是平台化时代,所以要想提升就业能力应该重视各种开发平台知识的积累,尤其是与行业领域结合比较紧密的开发平台。实际上,大数据和云计算本身就是平台,所以大数据专业的学生在学习平台开发时也会相对顺利一些。
⑸ 为破局而生,情报分析师决胜大数据
大数据时代,谁拥有数据,谁也就拥有财富。
数据服务产业的发展,提高数据的应用水平,所离不开的关键核心都是专业的情报分析师。
通常所说的大数据分为三种,企业数据、公权机构数据和开源网络数据。前两种可供挖掘和应用的价值有限,目前世界上各国所重视的都是开源网络数据。
挖掘大数据价值,获取目标对象(人物、事件、机构、项目等)精确可靠的信息,需要经由情报分析师充分利用自身的技术、方法、经验和手段,建立和理清调查任务内在的逻辑关系,通过综合研判,才能从纷繁冗余的数据中找出价值。
大数据是座挖不完的“钻石矿”,随着科学技术的发展,每个人的生活都与大数据息息相关,同时随着国家政策对于大数据等前沿技术的愈发重视,大数据行业已逐步形成了一个万亿级别的市场。
截至2018年底,致力于打造“中国数谷”的贵州省会贵阳正推动大数据与相关领域深度融合,全国人大代表、贵阳市市长陈晏表示,贵阳建成大数据产业园10个,大数据企业1632家,全年企业主营业务收入1000亿元人民币。在推动大数据与实体经济、社会治理等方面,贵阳市“融”出了新动能、新前景、新生活、新效率。贵阳市政府数据已实现100%共享交换,向社会免费开放618余万条数据。
基于大数据对各个行业的深入影响,近几年,美国、欧盟、日本等主要发达经济体都积极推进各自的大数据战略。2009年,美国科学家委员会(NSTC)就发布了《开发数字数据的威力》报告,初步提出发展大数据的框架,奥巴马政府亦对大数据行业大力支持,帮助美国取得世界领先地位。参考《大数据白皮书(2016)》,2016年全球大数据核心产业规模约为300亿美元,预计2020年有望达到近600亿美元。
中国亦将大数据视为新经济的重要支撑。2014年“大数据”首次出现在《政府工作报告》,奠定了行业快速发展的政策基础。2017 年,工信部印发了《大数据产业发展规划(2016-2020 年)》,全面部署“十三五”时期大数据产业发展工作。发改委、工信部及农业部、运输部等部委先后颁布相关后续政策,推动大数据产业发展。预计未来将有更多部门出台相应具体政策,推动大数据行业的发展。
根据中国信通院数据显示,2017年中国大数据产业规模(包括数据资源建设、大数据软硬件产品的开发、销售和租赁活动,以及相关信息技术服务)为4700亿元人民币,同比增长30%,且预计2020年这一规模有望赶超1万亿,年均复合增速近30%。其中,大数据核心产业规模2017年为234亿元,同比增长39%,预计2018年为329亿元。
目前中国金融数据体量位居全球第一,其中金融行业数据量是数据的重要贡献和使用机构,互联网金融占据相当大的比重,活跃的交易账户和交易事项为金融领域贡献了大量可供挖掘的有价数据。
受互联网金融的影响,金融行业大数据也迎来了迅速发展,大数据在金融行业正实现全面普及应用。大数据在金融行业的应用,除了传统的风险管理、运营管理及业务创新外,近年金融行业大数据应用呈现新的趋势,主要包括高频金融交易、小额信贷、P2P放款审核、客户管理、精准营销等。
随着大数据发展和应用的持续推进,未来金融大数据行业中的机构和企业将围绕建立新的金融环境而竞争,主要表现在围绕生态圈、战略和产品三个层面的竞争,并由此确定金融行业企业的市场地位及竞争力。因此,金融机构、互联网企业都不会局限于某一个层面的发展,更倾向于多维度、多层面的布局。
此外,A股上市公司在大数据产业的各个领域布局广泛,目前A股大数据概念板块中,有118个标的,但是在各个子版块中有较强变现能力的龙头企业的数量却很少,对于一些概念炒作,没有核心技术能力的公司,很容易因为一些市场环境的变化,产生大幅下跌,让投资者蒙受损失。
由此可见,大数据进一步发展急切需要综合解决方案提供商,专注于利用当代最先进的IT技术推动企业和政府部门在管理和商业模式上的创新发展,提供综合解决方案,包括运营支撑、大数据、移动互联网解决方案等。最终形成电信+政府+金融的大数据全面布局。
内生外延布局金融大数据,业务协同发展。在公共安全、运营商等传统大数据业务将大数据平台和应用技术研发落地,继而可将经验快速复制到金融、农业等其他领域。形成强协同效用。
大数据是未来的发展趋势,现今人人也都可以谈一点大数据,任何行业都可以直接间接的与大数据相关联,但是真正专业应用大数据技术的公司却也屈指可数,更难辨别出真正具有大数据业务变现能力的企业。
身处信息爆炸的时代,要想透过大数据去发现背后的真相,也并不是一件易事。
术业有专攻,作为企业方需要有意识培养大数据技术和情报分析师等专业人才,而作为个人也要有意识培养情报分析师思维,如此才能真正将大数据为己所用,如此也才能在未来市场的角逐中不被淘汰出局。
未来,每一个人都离不开对于数据的分析。
⑹ 数字经济发展现状及趋势是怎么样的
近些年来,我国数字经济迅猛发展,创新创业活跃,新业态、新模式层出不穷,成为推动中国经济高质量发展的新引擎。目前,数字技术与实体经济融合深入推进,数字经济正在加快向其他产业融合渗透,提升经济发展空间。
在数字经济领域,中美两国处于领跑地位。据浪潮信息联合国权威机构IDC发布的《2020全球计算力指数评估报告》显示,计算力与经济增长关系十分密切,调查显示,计算力指数平均提高1个百分点,数字经济和GDP将分别增长3.3%和1.8%。
并且AI计算占整体计算市场的比例每年都在提高,从2015年的7%增长到2019年的12%,专家预测到2024年将达到23%。而中国在全球对于数字经济的拉动作用最为明显,尤其是2015-2019年期间,在样本国家的AI计算市场支出增长中,有近50%来自于中国的贡献。
数字经济给经济发展带来了前所未有的机遇,因为它能够打破阻碍经济发展的瓶颈,突破障碍,充分证明了“科学技术是第一生产力”这一真理。虽然中国没有抓住前三次工业革命的机会,但是幸运的是,我国抓住了第四次工业革命的机遇。
⑺ 大数据未来的发展前景怎么样
从我国数据产量和存量来看,广东、北京、浙江、江苏、上海、等地区数据资源较为丰富,东部地区数据产量和存量均高于西部地区。从省际数据流量来看,东部地区月均互联网省际出口总流量占全国比重超过一半。
在以北上广为代表的东部地区数据资源丰富的背景下,其大数据产业发展水平快于其他地区省份。其中,北上广大数据企业数量占全国比重近70%,广东和北京大数据发展水平较高。
东部地区数据产量整体高于西部,省际数据流量远高于其他地区
2019年,我国数据产量总规模为3.9ZB。从数据产量的地区分布看,2019年全国数据产量排名前十位的省份为广东、北京、浙江、江苏、上海、山东、四川、河南、河北和湖南。
从人均数据产量来看,2019年人均数据产量排名前十位的省份分别是北京、上海、浙江、天津、广东、内蒙古、西藏、海南、江苏和辽宁。整体来看,东部地区数据产量和人均数据产量均高于西部地区。
—— 更多数据来请参考前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》