导航:首页 > 网络数据 > 大数据解决电商企业的问题研究

大数据解决电商企业的问题研究

发布时间:2023-12-29 01:30:21

『壹』 大数据时代的电子商务模式发展分析

大数据时代的电子商务模式发展分析

商务的复杂性和不断变化发展决定了电子商务没有一个或几个固定模式,各种各样的电子商务模式充分反映了市场变化的需要,赢利空间是判断电子商务模式好坏的基本依据。

一、电子商务

电子商务是利用微电脑技术和网络通讯技术进行的商务活动;以信息网络技术为手段,以商品交换为中心的商务活动;电子商务分为:ABC、B2B、B2C、C2C、B2M、M2C、B2A(即B2G)、C2A(即C2G)、O2O 等。

广义的电子商务是指利用各种信息技术所进行的经营管理活动,即利用整个工厂技术对整个商务活动实现电子化。

狭义的电子商务是指利用因特网开展的交易活动。

电子商务的目的是高效率、高效益、低成本地进行产品生产和服务,提高企业的整体竞争能力。

二、电子商务模式

电子商务模式,就是指在网络环境中基于一定技术基础的商务运作方式和盈利模式。研究和分析电子商务模式的分类体系,有助于挖掘新的电子商务模式,为电子商务模式创新提供途径,也有助于企业制定特定的电子商务策略和实施步骤。

电子商务在其发展的过程中,出现了各种各样的电子商务模式。电子商务模式可以从多个角度建立不同的分类框架,最简单的分类莫过于BtoB、BtoC、CtoC、OtoO、新型的BOB模式,这样的分类,但就各模式还可以再次细分。

二、电子商务模式的基本类型

1.企业与消费者之间的电子商务(Business to Consumer,即B2C)。B2C就是企业通过网络销售产品或服务给个人消费者。这是消费者利用因特网直接参与经济活动的形式,类同于商业电子化的零售商务。

2.企业与企业之间的电子商务(Business to Business,即B2B)。企业可以使用Internet或其他网络对每笔交易寻找最佳合作伙伴,完成从定购到结算的全部交易行为。

3.消费者与消费者之间的电子商务(Consumer to Consumer 即C2C)。C2C商务平台就是通过为买卖双方提供一个在线交易平台,使卖方可以主动提供商品上网拍卖,而买方可以自行选择商品进行竞价。

4.线下商务与互联网之间的电子商务(Online To Offline即O2O)。这样线下服务就可以用线上来揽客,消费者可以用线上来筛选服务,还有成交可以在线结算,很快达到规模。这种模式的关键是:在网上寻找消费者,然后将他们带到现实的商店中。

5.所谓BOB 是 Business-Operator-Business的缩写,意指供应方(Business)与采购方(Business)之间通过运营者(Operator)达成产品或服务交易的一种新型电子商务模式。

四、大数据时代电子商务模式分析

电子商务的发展经历了用户数量为王、销售量为王、数据为王的三大时代,大数据时代给电子商务发展带来的机遇和挑战,未来电子商务的竞争是数据的竞争。

(1)数据服务的变革

大数据背景下,把消费者分成很多群体,对每个群体甚至每个人提供针对性的服务。消费行为等数据量的增加为电商提供了精准把握用户群体和个体消费行为模式的基础。电商通过大数据应用,可以探索个性化、精准化和智能化广告推送和推广服务,创立比现有推广形式更好的全新商业模式。另外,电商也可以通过运用大数据,寻找更多更好地增加用户粘性、开发新产品和新服务、降低运营成本的途径和方法。

(2)数据化运营

电商运营更多地转变为数据驱动的运营,在企业内部所有环节都利用数据进行分析、评价、利用数据视图进行管理。以阿里为例,其对旗下的淘宝、天猫、阿里云、支付宝、万网等业务平台进行资源整合,形成了强大的电子商务客户群及消费者行为的全产业链信息。可进行运营分析、商品分析、营销效果分析、买家行为分析、订单分析、供应链分析、行业分析、财务分析和预测分析等。

(3)数据资产化

大数据背景下,“ 数据即资产”成为最核心的产业趋势。未来企业的竞争,将是规模和活性的竞争,数据的经济效益和作用将日渐引起企业重视,因而催生出许多关于数据的业务。“ 数据成为资产”是互联网泛在化的一种资本体现,他让互联网的作用不仅仅局限于应用和服务本身,而且具有了内在的“ 金融”价值。数据的功能不再只是体现于“ 使用价值”方面的产品,而成为实实在在的“ 价值”。

(4)个性化导购服务

在互联网普及的时代,为解决消费者信息超载的问题,引导消费者更便捷地购买商品,导购系统便成为众多电子商务企业提供的一种服务模式。所谓导购系统,就是一种根据消费者的需求、偏好、个人资料及历史消费行为,为消费者提供决策建议的软件系统,如推荐他们想要的商品或从哪里获得想要的商品。传统电子商务导购服务,或是基于消费者历史数据来抽取和推荐他们共同偏好的商品如热销商品推荐等,或是根据企业促销意图将其主打产品推送给顾客,如新品推荐、特价推荐等,能够为顾客提供较好的决策支持服务。

(5)数据产品服务

在大数据背景下,数据成为资产,所有电商企业都想获得并充分了解它们在运营中所获得的消费者的信息数据,但往往由于技术等原因无法对大数据进行分析、挖掘,因此对于具有平台以及技术等优势的电商企业可以利用这样优势,将获得的海量数据进行产品化的包装营销给需要的企业,从而开辟出一种新的电子商务服务模式。由于大数据背景下企业对数据有更深层次的需求,因此搭建数据构建需要与销售之间的桥梁,将为产生数据服务型的电子商务新模式。

(6)垂直细分领域服务

目前,淘宝等占据了国内的绝大部分电商市场份额。中小规模电商企业崛起难度很大。因此,在大数据时代下,把握每一个垂直细分领域,然后做得更精更专,这样才能赢得自己的一席之地。而且行为垂直细分类的电商平台规模较小、成本较低,能更好地挖掘分析消费者的信息数据,从而能更专注于专业特定的客户群体提供专业的产品和服务,更能了解产业链上客户的需求,也能容易完善自身的服务。

大数据背景下,爆发式的信息资源给电商企业带来了机遇和挑战,通过对数据的挖掘、分析运用必将带来更多的服务模式的革新,给消费者更好的服务体验。随着大数据的技术和运作的成熟,必将涌现出更多、更好的新的服务模式,从而促进电子商务的发展。

以上是小编为大家分享的关于大数据时代的电子商务模式发展分析的相关内容,更多信息可以关注环球青藤分享更多干货

『贰』 一个企业,特别是电商类的,如何进行大数据分析

大数据不仅仅意味着数据大,最重要的是对大数据进行分析,只有通过分析才能获取很多智能的、深入的、有价值的信息。下面介绍大数据分析的五个基本方面——
预测性分析能力:数据挖掘可以让分析员更好地理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
数据质量和数据管理:通过标准化的流程和工具对数据进行处理,可以保证一个预先定义好的高质量的分析结果。
可视化分析:不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求,可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
语义引擎:由于非结构化数据的多样性带来了数据分析的新的挑战,我们需要一系列的工具去解析、提取、分析数据,语义引擎需要被设计成能够从“文档”中智能提取信息。
数据挖掘算法:可视化是给人看的,数据挖掘就是给机器看的,集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值,这些算法不仅要处理大数据的量,也要处理大数据的速度。
据我所知多瑞科舆情数据分析站大数据分析还可以。针对单个网站上的海量数据,无遗漏搜集整理归档,并且支持各种图文分析报告;针对微博或网站或微信,活动用户投票和活动用户评论互动信息整理归档,统计分析精准预测制造新数据;针对某个论坛版块数据精准采集,数据归类,出分析报告,准确定位最新市场动态;针对某个网站监测用户的操作爱好,评定最受欢迎功能;针对部分网站,做实时数据抽取,预警支持关注信息的最新扩散情况;针对全网数据支持定向采集,设置关键词搜集数据,也可以划分区域或指定网站搜集数据针对电商网站实时监测评论,归类成文档,支持出报告。
大数据会影响整个社会的发展,主要看是想要利用数据做什么了

『叁』 大数据技术在网络营销中的策略研究论文

大数据技术在网络营销中的策略研究论文

从小学、初中、高中到大学乃至工作,说到论文,大家肯定都不陌生吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。那要怎么写好论文呢?以下是我帮大家整理的大数据技术在网络营销中的策略研究论文,欢迎阅读与收藏。

摘要:

当今,随着信息技术的飞速发展,互联网用户的数量日益增加,进一步促进了电子商务的快速发展,并使企业能够更准确地获取消费者数据,大数据技术应运而生。该技术已被一些企业用于网络营销,并取得了显着的营销效果。本文基于大数据的网络营销进行分析,分析传统营销存在的问题和挑战,并对大数据技术在网络营销中的作用进行研究,最后针对性地提出一些基于大数据的网络营销策略,以促进相关企业在大数据时代加强网络营销,并取得良好的营销效果。

关键词:

大数据;网络营销;应用策略;营销效果;

一、前言

现代社会已经完全进入了信息时代,在移动互联网和移动智能设备飞速发展与普及之下,消费者的消费数据都不断被收集、汇总并处理,这促进了大数据技术的发展。大数据技术可以精准的分析消费者的习惯,借助大数据技术,商家可以针对顾客进行个性化营销,极大地提高了精准营销的效果,传统的营销方式难以做到这一点。因此,现代企业越来越重视发展网络营销,并期望通过大数据网络营销以增加企业利润。

二、基于大数据的网络营销概述

网络营销是互联网出现之后的概念,初期只是信息爆炸式的轰炸性营销。后来随着移动智能设备的普及、移动互联网的发展以及网络数据信息的海量增长,大数据技术应运而生。大数据技术是基于海量的数据分析,得出的科学性的结果,出现伊始就被首先应用于网络营销之中。基于大数据的网络营销非常精准,是基于海量数据分析基础上的定向营销方式,因此也叫着数据驱动营销。其主要是针对性对顾客进行高效的定向营销,最为常见的就是网络购物App中,每个人得到的物品推荐都有所区别;我们浏览网络时,会不断出现感兴趣的内容,这些都是大数据营销的结果。

应用大数据营销,企业可以精准定位客户,并根据客户的喜好与类型对产品与服务进行优化[1],然后向目标客户精准推送。具体来说,基于大数据技术的精准网络营销过程涉及三个步骤:首先是数据收集阶段。企业需要通过微博、微信、QQ、企业论坛和网站等网络工具积极收集消费者数据;其次,数据分析阶段,这个阶段企业要将收集到的数据汇总,并进行处理形成大数据模型,并通过数据挖掘技术等高效的网络技术对数据进行处理分析,以得出有用的结论,比如客户的消费习惯、消费能力以及消费喜好等;最后,是营销实施阶段,根据数据分析的结果,企业要针对性地制定个性化的营销策略,并将其积极应用于网络营销以吸引客户进行消费。基于大数据的网络营销其基本的目的就是吸引客户主动参与到营销活动之中,从而提升营销效果和经济收益。

三、传统网络营销存在的一些问题

(一)传统网络营销计划主要由策划人主观决定,科学性不足

信息技术的迅速发展,使得很多企业难以跟上时代的步伐,部分企业思想守旧,没有跟上时代潮流并开展网络营销活动,而是仍然继续使用传统的网络营销模型和方式。即主要由策划人根据自己过去的经验来制定企业的营销策略,存在一定的盲目性和主观性,缺乏良好的信息支持[2]。结果,网络营销计划不现实,难以获得有效的应用,导致网络营销的效果不好。

(二)传统网络营销的互动性不足,无法进行准确的产品营销

传统的网络营销互动性较差,主要是以即时通信软件、邮箱、社交网站以及弹窗等推送营销信息,客户只能被动的接受信息,无法与企业进行良性互动和沟通,无法有效的表达自己的诉求,这导致了企业与客户之间的割裂,极大的影响了网络营销的效果。此外,即使一些企业获得了相关数据,也没有进行科学有效的分析,但却没有得到数据分析的结果,也没有根据客户的需求进行有效的调整,从而降低了营销活动的有效性。

(三)无法有效分析客户需求,导致客户服务质量差

当企业进行网络营销时,缺乏对相关技术的关注以及对客户需求的分析的缺乏会导致企业营销策略无法获得预期的结果。因此,企业只能指望出于营销目的向客户发布大量营销内容。这种营销效果非常糟糕。客户不仅将无法获得有价值的信息,而且此类信息的“轰炸”也会使他们感到烦躁和不耐烦,这将适得其反,并降低客户体验[3]。

四、将基于大数据的网络营销如何促进传统的网络营销

(一)使网络营销决策更科学,更明智

在传统的网络营销中,经理通常根据过去的经验来制定企业的营销策略,盲目性和主观性很多,缺乏可靠的数据。基于大数据的网络营销使用可以有效地收集有关市场交易和客户消费的数据,并利用数据挖掘技术等网络技术对收集到的数据进行全面科学的分析与处理,从中提取有用的相关信息,比如客户的消费习惯、喜好、消费水平以及行为特征等,从而制定针对客户的个性化营销策略,此外,企业还可以通过数据分析获得市场发展变化的趋势以及客户消费行为的趋势,从而对未来的市场形势作出较为客观的判断,进而帮助企业针对未来一段时间内的行为制定科学合理的'网络营销策略,提升企业的效益[4]。

(二)大大提高了网络营销的准确性

如今,大数据驱动的精准网络营销已成为网络营销的新方向。为了有效地实现这一目标,企业需要在启动网络营销之前依靠大数据技术来准确分析大量的客户数据,以便有效地捕获客户的消费需求,并结合起来制定准确的网络营销策略[5]。此外,在实施网络营销策略后,积极收集客户反馈结果并重新分析客户评论,使企业对客户的实际需求有更深刻的了解,然后制定有效的营销策略。如果某些企业无法有效收集客户反馈信息,则可以收集客户消费信息和历史消费信息,然后对这些数据进行准确的分析,从而改善企业的原始网络营销策略并进行促销以获取准确的信息,进而制定有效的网络营销策略。

(三)显着提高对客户网络营销服务水平

通过利用大数据进行准确的网络营销,企业可以大大改善客户服务水平。这主要体现在两个方面:一方面可以使用大数据准确地分析客户的实际需求,以便企业可以进行有针对性的的营销策略,可以大大提高客户服务质量。另一方面,使企业可以有效地吸收各种信息,例如客户兴趣、爱好和行为特征,以便向每个客户发布感兴趣的推送内容,以便客户可以接收他们真正需要的信息,提高客户满意度。

五、基于大数据的网络营销优势

(一)提高网络营销广告的准确性

在传统的网络营销中,企业倾向于使用大量无法为企业带来相应经济利益的网络广告进行密集推送,效率低下。因此,必须充分利用大数据技术来提高网络营销广告的准确性。首先,根据客户的情况制定策略并推送合适的广告,消费场景在很大程度上影响了消费者的购买情绪,并可以直接确定消费者的购买行为。如果客户在家中购买私人物品,则他们第二天在公司工作时,却同送前一天相关私人物品的各种相关的广告。前一天的搜索行为引起的问题可能会使消费者处于非常尴尬的境地,并影响他们的购买情绪。这表明企业需要有效地识别客户消费场景并根据这些场景发布更准确的广告[6]。一方面,通过IP地址来确定客户端在网络上的位置。客户在公共场所时,广告内容应简洁明了。另一方面,可以通过指定时间段来确定推送通知的内容。在正确的时间宣传正确的内容。其次,提高客户选择广告的自主权。在传统的网络营销中,企业通常采用弹出式广告,插页式广告和浮动广告的形式来强力吸引客户的注意力,从而引起强烈的客户不满。一些客户甚至会毫不犹豫地购买广告拦截软件,以防止企业广告。在这方面,大数据技术可用于改善网络广告的形式和内容并提高其准确性。

(二)提高网络营销市场的定位精度

在诸如电子邮件营销和微信营销之类的网络营销方法中,一个普遍现象是企业拥有大量的粉丝,并向这些粉丝发送了大量的营销信息,但是却没有得到较好的反馈,营销效果较差。造成这种现象的主要原因是企业产品的市场定位不正确。可以通过以下几个方面来提高网络营销市场中的定位精度:

1、分析客户数据并确定产品在市场上的定位:

首先,收集大量基本数据并创建客户数据库。在此过程中,应格外小心,以确保收集到的有关客户的信息是全面的。因此,可以使用各种方法和渠道来收集客户数据。例如,可以通过论坛、企业官方网站、即时通信软件以及购物网站等全面的收集客户的各种信息。收集完成后利用高效的数据分析处理技术对信息进行处理,并得出结果,包括客户的年龄、收入、习惯以及消费行为等结果,然后根据结果对企业的产品进行定位,并与客户的需求相匹配,进而明确市场[7]。

2、通过市场调查对产品市场定位进行验证:

在利用大数据及时对企业产品进行市场定位之后,有必要对进一步进行市场调查,以进一步清晰产品的市场定位,如果市场调查取得较为满意的效果,则表明网络营销策略较为成功,可以加大推广力度以促进产品的销售,如果效果不满意,则要积极分析问题,寻找原因并提出针对性的解决改进措施,以获得较为满意的结果[8]。

3、建立客户反馈机制:

客户反馈机制可以有效的帮助企业改进产品营销策略,主要体现有两个主要功能:一是营销产品在市场初步定为成功后可以通过客户反馈积极征询客户的意见,并进一步改进产品,确保产品更适应市场;二是如果营销产品市场定位不成功,取得的效果不佳,可以通过客户反馈概括定位失败的原因,这将有助于将来的产品准确定位。

(三)增强网络营销服务的个性化

为了增强网络营销服务的个性化,企业不仅必须能够使用大数据识别客户的身份,而且还必须能够智能地设计个性化服务。首先,通过大数据了解客户的身份。一方面,随着网络的日益普及,企业可以在网络上收集客户各个方面的信息。但是,众所周知,由于互联网管理的不规范与复杂性,大多数信息不是高度可靠的,甚至某些信息之间存在着极为明显的矛盾。因此,如果企业想要通过大数据来了解其客户的身份,则必须首先确保所收集的信息是可信且准确的。另一方面,企业必须能够从大量的客户信息中选择最能体现其个性的关键信息,并降低分析企业数据的成本[9]。二是合理设计个性化服务。个性化服务的合理设计要求企业在两个方面进行运营:一方面,由于现实环境的限制,企业无法一一满足所有客户的个性化需求。这就要求企业尽一切努力来满足一部分客户的个性化需求,并根据一般原则开发个性化服务。另一方面,如果完全根据客户的个人需求向他们提供服务,则企业的服务成本将不可避免地急剧上升。因此,企业应该对个性化客户服务进行详细分析,并尝试以适合其个人需求的方式为客户提供服务,而不会给企业造成太大的财务负担。

六、基于大数据网络营销策略

使用大数据的准确网络营销模型基本上包括以下步骤。首先,收集有关客户的大量信息;其次,通过数据分类和分析选择目标客户;第三,根据分析的信息制定准确的网络营销计划;第四,执行营销计划;第五,评估营销结果并计算营销成本;第六,在评估过程的基础上,进一步改善,然后更准确地筛选目标客户。在持续改进的过程中,上述过程可以改善网络营销。因此,在大数据时代,电子商务企业必须突破原始的广泛营销理念,并采用新的营销策略。

(一)客户档案策略

客户档案意味着在收集了有关每个人的基本信息之后,可以大致了解每个人的主要销售特征。客户档案是准确进行电子商务促销的重要基础,也是实现精确营销目标的极其重要的环节。电子商务企业利用客户档案策略可以获得巨大收益。首先,借助其专有的销售平台,电子商务企业可以轻松,及时且可靠地收集客户使用情况数据。其次,在传统模型中收集数据时,由于需要控制成本,因此经常使用抽样来评估数据的一般特征[10]。大数据时代的数据收集模型可以减少错误并提高数据准确性。当分析消费者行为时最好以目标消费者为目标。消费者行为分析是对客户的消费目的和消费能力的分析,可帮助电子商务企业更好地选择合适的目标客户。在操作中,电子商务企业需要在创建数据库后继续优化分析结果,以最大程度地分析消费者的偏好。

(二)满足需求策略

为了满足多数人的需求,传统的营销方法逐渐变得更加同质。结果,难以满足少数客户的特殊需求,并且导致利润损失。基于大数据客户档案技术的电子商务企业可以分析每个客户的需求,并采取差异化人群的不同需求最大化的策略,从而获取较大的利润。为了满足每个客户的需求,最重要的是实现差异化,而不仅仅是满足多数人的需求,因此必须准确地分析客户的需求,还必须根据客户的需求提供更多个性化的产品[11]。比如当前,定制行业非常流行,卖方可以根据买方提供的信息定制独特的产品,该产品的利润率远高于批量生产线。

(三)客户服务策略

随着网络技术的逐步发展,电子商务企业和客户可以随时进行通信,这基本上消除了信息不对称的问题,使客户可以更好地了解他们想要购买的产品以及遇到问题时的情况。当出现问题时,可以第一时间解决,提高交易速度。因此,当电子商务企业制定用于客户服务的营销策略时,一切都以客户为中心。为了更好地实施此策略,必须首先改善数据库并加深对客户需求的了解[12]。二是提高售前、售后服务质量,开展集体客户服务培训,缩短客户咨询等待时间,改善客户服务。最后,我们必须高度重视消费者对产品和服务的评估,及时纠正不良评论,并鼓励消费者进行更多评估,良好的服务态度和高质量的产品可以大大提高目标客户对产品的忠诚度,并且可以吸引消费者进行第二次购买。

(四)多平台组合策略

在信息时代,人们可以在任何地方看到任何信息,这也将分散他们的注意力,并且重新定向他们的注意力已经成为一个大问题。如果希望得到更多关注,则可以组合跨多个平台的营销策略,并在网络平台和传统平台上混合营销。网络平台可以更好地定位自己并吸引更多关注,而传统平台则可以更好地激发人们的购买欲望。平台融合策略可以帮助电子商务企业扩大获取客户的渠道,不同渠道的用户购买趋势不同,可以改善数据库[13]。

七、结语

总体而言,大数据时代不仅给网络营销带来了挑战,而且还带来了新的机遇。大数据分析不仅可以提高准确营销的效果,更好地服务消费者,改变传统的被动营销形式,并提升网络营销效果。

参考文献

[1]刘俭云.大数据精准营销的网络营销策略分析[J].环球市场,2019(16):98.

[2]栗明,曾康有.大数据时代下营业网点的精准营销[J].金融科技时代,2019(05):14-19.

[3]刘莹.大数据背景下网络媒体广告精准营销的创新研究[J].中国商论,2018(19):58-59.

[4]李研,高书波,冯忠伟.基于运营商大数据技术的精准营销应用研究[J].信息技术,2017(05):178-180.

[5]袁征.基于大数据应用的营销策略创新研究[J].中国经贸导刊(理论版),2017(14):59-62.

[6]邱媛媛.基于大数据的020平台精准营销策略研究[J].齐齐哈尔大学学报(哲学社会科学版),2016(12):60-62.

[7]张龙辉.基于大数据的客户细分模型及精确营销策略研究[J].河北工程大学学报(社会科学版),2017,34(04):27-28.

[8]李巧丹.基于大数据的特色农产品精准营销创新研究——以广东省中市山为例[J].江苏农业科学,2017,45(06):318-321.

[9]孙洪池,林正杰.基于大数据的B2C网络精准营销应用研究——以中国零售商品型企业为例[J].全国流通经济,2016(12):3-6.

[10]赵玉欣,王艳萍,关蕾.大数据背景下电商企业精准营销模式研究[J].现代商业,2018(15):46-47.

[11]张冠凤.基于大数据时代下的网络营销模式分析[J].现代商业,2014(32):59-60.

[12]王克富.论大数据视角下零售业精准营销的应用实现[J].商业经济研究,2015(06):50-51.

[13]陈慧,王明宇.大数据:让网络营销更“精准”[J].电子商务,2014(07):32-33.

;

『肆』 在电商行业如何进行大数据分析的

电商行业相对于传来统零售业自来说,最大的特点就是一切都可以通过数据化来监控和改进。通过数据可以看到用户从哪里来、如何组织产品可以实现很好的转化率、你投放广告的效率如何等等问题。
当用户在电商网站上有了购买行为之后,就从潜在客户变成了价值客户。
我们一般都会将用户的交易信息,包括购买时间、购买商品、购买数量、支付金额等信息保存在自己的数据库里,所以对于这些客户,我们可以基于网站的运营数据对他们的交易行为进行分析,以估计每位客户的价值,及针对每位客户扩展营销的可能性。

『伍』 大数据在电子商务中应用体现在哪些方面

1、通过大数据进行市场营销

通过大数据进行市场营销能够有效的节约企业或是电子商务平台的营销成本,还能够通过大数据来实现营销的精准化,达成精准营销。

通过分析大数据对消费者的消费偏好进行分析,在消费者输入关键词之后,提供与消费者消费偏好匹配程度较高的产品,节约了消费者的寻找商品的时间成本,使交易双方实现快速的对接。实现电子商务平台或是企业营销的高效化。在数据化时代,针对消费者进行针对性的营销能够实现精准营销,提升产品的下单率,提升电子商务 的营销效率。

2、实现导购服务的个性化

对于电子商务的平台来讲,往往都会针对用户提供一些推荐和导购服务。通过大数据的分析和挖掘能够实现导购服务的个性化。针对消费者的年龄、性别、职业、购买历史、购买商品种类、查询历史等信息,对消费者的消费意向、消费习惯、消费特点进行系统性的分析,根据大数据的分析针对消费者个人制定个性化的推荐和导购服务。

大数据的运用能够抵消电子商务虚拟性所带来的影响,提升竞争力,挖掘更多的潜在消费者。针对消费者的消费偏好,进行适宜的广告推广,提升产品的广告转化率,同时提供个性化的导购服务。

对于一些大型的电子商务平台来讲,产品种类繁多,想要提升消费者的消费量,提升消费者的下单率就要通过分析消费者的消费偏好,主动进行商品的推送。这种通过大数据进行分析的方式不仅仅能提升产品的浏览量,还能针对消费者的消费需求提供商品的推送,提升消费者的用户体验,进而提升消费者的忠诚度。

3、为商家提供数据服务

大数据的分析不仅仅能够帮助电子商务平台提升下单率和销售额,还能将大数据的分析作为产品和服务向中小型的电子商务商家进行销售。这样不仅仅能够提升平台的收益,还能帮助商家了解消费者的消费偏好、消费者对于该类 产品的喜好等信息,来帮助商家及时针对大部分消费者的消费偏好以及市场的动态,针对产品的性能等进行研发和调整。

(5)大数据解决电商企业的问题研究扩展阅读:

大数据的应用:

1、洛杉矶警察局和加利福尼亚大学合作利用大数据预测犯罪的发生。

2、google流感趋势(Google Flu Trends)利用搜索关键词预测禽流感的散布。

3、统计学家内特.西尔弗(Nate Silver)利用大数据预测2012美国选举结果。

4、麻省理工学院利用手机定位数据和交通数据建立城市规划。

5、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

6、医疗行业早就遇到了海量数据和非结构化数据的挑战,而近年来很多国家都在积极推进医疗信息化发展,这使得很多医疗机构有资金来做大数据分析。

『陆』 大数据背景下电商企业法律发展的问题

【摘要】大数据时代带给商务交易的改变是非常巨大的,电子商务依托于信息大数据环境存在,因此也会受到更多的挑战。在大数据时代,电子商务已经成为商务交易的主要形式,而民商法作为商务发展的重要法律基础,也需要进行不断的完善和优化,以适应大数据时代的新要求和新形势。
【关键词】大数据时代;电子商务;民商法;消费行为
民商法在电子商务交易领域,要结合大数据时代特点进行不断完善,净化交易环境,为消费者提供更好的保护,防止消费者在商务交易过程中所造成的损失。
一、大数据时代对商务发展与民商法的挑战
(一)电子商务售后法律规则欠缺
电子商务售后与普通商务售后的根本区别在于,大数据环境是虚拟的,销售方与购买方并不是面对面交易的,因此售后也保持一种非见面形式,在互联网这个虚拟环境当中,更多地需要销售方有较好的信誉保证,因为消费者不能像线下交易那样,对于商品质量、性能等有直观的认知和接触,所有的商品信息都来自于销售方的信息描述。消费者完成交易行为后,收到的商品可能与预想的不一致,从而就会出现售后行为[1]。但是商家信誉缺失时,消费者无法及时有效地联系商家完成售后,影响了消费者的商务交易体验,甚至部分商家为了获利,不能及时处理退货退换事宜,最终导致消费者承担经济损失。电子商务交易售后,需要有民商法作为法律保障,民商法规则目前对于电子商务层面的研究和完善还较为欠缺,法律规则不完善或者针对性不足,使得电子商务售后跟不上时代进步。
(二)电子商务交易凭证难以获取
大数据环境下,所有的电子商务交易凭证都是以数据信息形式存在的,与传统商务交易凭证有着很大的不同。传统交易凭证都是纸质媒介,消费者购买商品后,可以直接获得收据、发票等,这些凭证可以作为消费依据,当出现商品质量或者其他问题时,可以作为法律依据,但是在电子商务环境中,由于大数据与互联网形式的特殊性,交易凭证难以直接被获取。消费者在网络购物后,无法直接获得发票或者收据等,当出现商品问题时,如果消费者到有关部门进行反馈和投诉,无法拿出有效的凭证,证明自己与该商家有商务交易往来,也无法证实该商品是从某商家处购买的,因此相关部门无法进行立案调查,消费者很多时候无法对自己的正当消费权益进行维护[2]。民商法中对于商务交易的法律保护条例,主要停留在原有的实地商务层面,很多法律条文和内容也都是基于消费者能够获取交易凭证的基础之上,因此在电子商务模式下,民商法的适用范围就被大大限制,很多时候会在法律应用中感觉到力不从心或者无所适从,这也是民商法在电子交易环境中,应当进行重点探究的方面。
(三)电子商务交易环境安全薄弱
大数据时代,商务交易更加依赖于互联网环境,网络安全也必然会影响到商务交易安全。由于电子商务交易环境存在安全隐患,会造成消费者信息的暴露,被不法商务交易者窃取和倒卖等,从而给消费者带来不确定的隐患。电子商务的特点,就是从商品展示到交易完成,整个过程都是依赖于网络环境的。互联网这个虚拟环境,给商务交易带来便捷的同时,安全保证也成为巨大的挑战。互联网环境是开放的、共享等,所有人都可以进行参与,因此更容易被不法分子所利用。在目前的电子商务交易中,经常出现信息被盗取的情况,这就使得民商法在商务安全保障方面存在了明显的不足[3]。民商法的法律更多地倾向于现实商务环境的安全管理,对于网络虚拟环境的安全情况实践不足,造成消费者注册的个人信息,如地址、电话、姓名等被窃取,这对于消费交易隐私保护是极为不利的。
二、大数据时代电子商务发展与民商法的创新路径
(一)基于民商法完善电子商务售后管理
在电子商务交易过程中,要将售后作为交易的重要构成部分,通过在民商法内容中,增加专门针对于电子商务售后的法律条文,约束商务交易的行为。在民商法条例中,要对电子商务产品描述信息进行约定,如描述信息内容必须符合商品真实情况,杜绝夸大 宣传或者误导性描述。对于在电子商务交易中出现的一些售后问题,要进行针对性的法律约束[4]。如商品质量问题必须无条件予以退换货,在发生交易退款时,商家的退款期限必须在民商法中作出明确规定,如24小时退款或者48小时退款等,如果商家未按时间约定完成退款审批,则应当有电子商务平台进行退款垫付,然后再从商家缴纳的保证金中予以扣除,这样可以有效约束商家的售后管理行为,提高对消费者合法权益的保障力度。
(二)基于民商法维护电子商务维权管理
在电子商务环境下,民商法应当进行相应的调整,将电子凭证作为有效的交易凭证进行明确,当电子商务交易中出现维权情况,消费者可以出示电子交易凭证,证明交易存在以及出现的问题[5]。相关部门可以依据民商法补充的新条例,对电子交易行为予以认定和处理。在商务法的规定中,需要将电子凭证与实物凭证放在同等位置上对待,其法律效力是平等的,从而给相关部门以及消费者维权提供支持。
(三)基于民商法促进电子商务安全管理
民商法在促进电子商务发展时,依托于大数据时代的特点,要注重交易安全法律的制定和执行。电子商务过程中,需要基于民商法来优化相关的安全措施,通过大数据和互联网的安全技术,完善交易模块以及安全保护模式,当商务交易中存在安全隐患时,需要及时给予消费者必要的提醒,特殊情况下可以进行交易支付的中止和阻断,避免消费者遭受损失。
结束语:
电子商务发展中,受到大数据环境改变的影响,出现了很多涉及到商务交易的法律问题,这些问题都是民商法领域要进行深入探讨和研究的。

『柒』 "大数据"时代到来,电商行业企业该如何应对

电子商务大数据伴随着消费者和企业的行为实时产生,广泛分布在电子商务平台、社交媒体、智能终端、企业内部系统和其它第三方服务平台上。电子商务数据类型多种多样,既包含消费者交易信息、消费者基本信息、企业的产品信息与交易信息,也包括消费者评论信息、行为信息、社交信息和地理位置信息等。

想要将各个渠道来源的数据进行整合,就必须要深度分析和挖掘,形成智能化和快速化的数据化运营体系!

然而对于中小企业来说,数据化运营困难重重:

1、海量数据处理难:电子商务系统产生了海量数据且数据增长速度越来越快,导致数据查询及报表生成速度变慢,使用率也不高。

2、管理人员认知难:大多数传统ERP系统,订单系统,运维系统,供应链系统中,已有简单的分析统计图表,但数据格式比较单一,灵活性差,交互性低,管理者难以对全院数据有很好的认知。

3、管理决策难:不能迅速从底层数据中提取关键数据,以数据驱动运营方向,只能通过运营部门、订单部门,供应链部门的统计报表及各个离散系统中的统计报表进行管理决策。

数据类型及来源的多样性、数据产生与分析的实时性、数据的低价值密度等复杂特征日益显著,使用敏捷BI来协同运作成为了电商行业从业者无法避开的难题。

不过对于很多有潜力发展壮大但目前预算还不足以支撑购买企业级BI产品的电子商务公司来说,依然有不少可以选择的产品,这里比较推荐:Yonghong Desktop

桌面智能数据分析工具Yonghong Desktop

之所以推荐永洪BI不仅仅是因为它是国内首个完成全场景闭环的免费BI产品,更是因为永洪科技即将推出的同样免费的服务端产品,这两款产品完成了整个数据处理、分析与分享的闭环。

对于管理层和决策层来说,数据分析平台能够洞察全企业的状况。

对于业务部门来说,数据分析平台能满足实时探索的分析需求。

对于个体工作者来说,数据分析平台能做到秒级响应,基于明细数据能够帮助个体提高工作效率。

懂行的业务大神或者数据分析师可能已经在使用各个品牌BI产品了,作为电子商务企业,顺应数据化转型进程是企业能够保持生命力的重要动力。从产品本身来说,目前的业内市场主要比拼的是业态和服务,对于企业用户来讲,尤其是电子商务企业来讲,关键点在于如何能够完成使用场景的适配,让数据化成为企业运营的习惯性动作。

全球数据量正呈现出前所未有的爆发式增长态势,“大数据”时代下掌控数据才能带领企业不断前进,与君共勉。

阅读全文

与大数据解决电商企业的问题研究相关的资料

热点内容
js组合快捷键 浏览:174
linux系统盘默认挂在的文件夹 浏览:667
淘宝数据包如何操作上架 浏览:567
vb编程中输入cls是什么意思 浏览:81
linuxtime服务 浏览:184
疯狂安卓讲义第二版代码 浏览:420
老炮儿三小时版本下载 浏览:313
matlab怎么调试程序 浏览:2
winxp升级win7的危害 浏览:496
网络没连上却不可用是怎么回事 浏览:752
社区版本 浏览:738
怎么查微信公众号什么时候开通的 浏览:717
安装三菱编程闪退怎么回事 浏览:488
手机怎么创建word文件格式 浏览:694
c语言连接数据库 浏览:887
数据线粉色和白色哪个是正 浏览:775
vb编程应注意什么 浏览:855
js循环添加控件 浏览:615
学习计算机网络的作用 浏览:235
access数据库最新内容怎么调 浏览:203

友情链接