1. 大数据思维在金融学研究中的作用
大数据思维在金融学研究中的作用
如今,计算机信息技术的迅速发展迎来了大数据时代,大数据时代极大程度的改变了现有的市场环境,给许多经济主体活动既提供了发展机遇,又带来了些许挑战。现阶段,金融研究与大数据思维息息相关,在大数据的时代背景下,对于金融研究来说,应当积极抓住机遇,迎接挑战,金融研究人员可以利用大数据思维来为各项研究工作提供帮助,通过分析大数据的一些良好特征,优化相关技术,调整金融研究模式。
一、大数据与大数据思维概述
(一)大数据与大数据思维
数据量大、数据真实性高、高度运行是大数据的几大特征,这些也是大数据得以发展的基础,同时计算机信息技术的迅速发展,又为大数据的发展提供了技术支持。大数据的实现必须要依赖于新型数据的处理,只有这样,大数据的真实性才能得到提高,大数据是海量且高速增长的一种综合性信息资产[1]。大数据思维是大数据时代下的产物,在摆脱传统的思维模式的基础上,利用大数据思维分析问题,只有这样,决策才能更加科学合理。
(二)大数据的发展趋势
大数据的发展趋势的具体表现为:首先,随着计算机信息技术的不断发展,数据的种类与来源越来越多,这样一来就为大数据时代的发展增添了助力,如今,数据库已经渗透到了人们的生活与工作之中,它几乎囊括了人们生活与工作中的所有数据信息,这些数据信息给人们的生活与工作提供了极大的便利;其次,超级计算机的诞生为大数据时代的发展提供了设备支撑,数据的存储与分析更加迅速,开放式的数据平台分析能力为数据的工业运行提供了保障;再次,大数据时代下,数据的种类与数量均是非常丰富,为了能够尽量的给人们提供有用的信息,数据分析就显得越来越重要;最后,大数据时代下,数据库的发展势头强劲,但是由于数据库仍旧处于刚刚兴起阶段,国家在这方面的法律与法规体系并不健全,在这一背景下,很多大数据的建设开始受到政府部门的高度关注,国际层面的大数据建设计划也在不断推出[2]。
二、金融学研究中运用大数据思维的价值
大数据思维的价值在在金融学研究中的运用主要表现在两个方面,其一,大数据思维能够决定金融行业的兴衰,这并不是危言耸听,主要是因为金融分析不可能脱离数据而独立存在,数据获取量与主动权利直接挂钩,并有着正相关的关系,阿里巴巴和京东等能够在大数据的环境下发展自身的金融业务证实了该点;其二,大数据时代的来临给金融行业既带来了机遇,又带来了挑战,一方面大数据时代下金融行业的市场竞争越来越激烈,金融企业只有依赖于大数据的思维模式,优化对客户的服务,才能在激烈的市场竞争中占据优势地位,另一方面,大数据时代使得金融企业在市场的开拓上不再遥不可及,而是近在咫尺。
三、大数据思维在金融学研究中的具体运用
(一)完善数据平台建设
顾名思义,大数据的主要内容即是数据,为了大数据时代的良好发展,完善数据平台建设就显得非常有必要。完善数据平台首先要拓展数据来源,传统的金融数据来源主要为银行,而在网络得到普及后,网上银行、门户网站和很多的手机APP等类型的互联网产品都是不同数据的主要来源[3]。完善数据的平台建设的主要目的是为客户提供更加优质的服务,在完善数据平台的建设过程中,要特别注意应用大数据思维进行思考,从而完成数据的获取、存储以及分析,只有这样,才能有效避免传统数据的诸多不足,例如,数据丰富性和全面性缺失,也能够在极大限度上提升数据平台建设的科学性和合理性[4]。
(二)运用大数据思维提高风险管控能力
众所周知,所有金融产品在经营上均存在一定的风险,这种风险一旦危害到金融产品的经营,将会给金融企业造成很大损失,金融企业要想给自身的长远性发展提供保障,在大数据的时代背景下,运用大数据思维提高风险管控能力就显得非常有必要。研究表明,金融企业在产品的经营过程中,运用大数据思维,能够极大的提高决策的精准性,降低经营风险。比如,一些中小企业向银行寻求借贷时,银行可以利用大数据思维对这些企业的销售额、资金量和社会认可程度做出分析,从而决定是否放贷以及放贷的多少,这样银行在盈利的同时,也最大程度的降低了经营风险。与大数据思维相比,传统的数据统计形式有许多不足之处,在风险管控能力上更是不可同日而语,因此,金融企业无论出于何种考虑,在经营过程中,均需要运用大数据思维。
(三)促进互联网金融的发展
互联网金融是金融行业一种新兴产物,互联网金融的发展不仅离不开网络技术的支持,也离不开大数据的时代背景。互联网金融集数据行业与金融行业二者之长,在大数据的时代背景与网络技术的支持下,不断创新生产经营方式,发展势头良好。互联网金融始终建立在大数据的基础之上,大数据的金融模式是互联网金融得以高速发展的重要因素。
(四)大数据扩展了现代金融学的研究范围
现代金融学的研究几乎已经不能离开大数据思维,研究人员在获取样本信息时,通过实证分析与数据分析,在一定程度上能够一改传统分析模式的缺陷,拓展了对金融学的研究范围。大数据的分析方式通过开辟更多的研究思路拓展现代金融学的研究范围,主要表现在两个方面:其一,大量数据的支撑使得数据分析的准确性得到提升,取样数据的偶然性与随机性得到降低或是予以避免,这样数据分析结果的可信度与说服力大大提高;其二,大数据不仅数据数量多,而且数据种类丰富,利用数据库内部的数据进行金融学的研究,自然而然的扩大了研究范围,现阶段的数据库不仅拥有结构化数据,还拥有非结构化数据,这就使得金融企业特别关注图片信息以及视频信息。
四、金融界学习大数据思维的方式
大数据思维对于金融行业的发展具有独到的作用,但是不得不注意的是,金融界在对大数据思维的学习与应用存在许多不足之处,金融行业要想有长远性发展,必须要深入学习大数据的思维方式,具体可以从以下几个方面着手:首先,金融企业可以特别成立大数据研究部门,设立相关岗位,根据企业的发展现状进行大数据思维的学习研究。一些大中型金融企业成立了数据研究部门,主要负责信息数据的收集,分析数据信息,设立起参考的具体方案,利用互联网和电视媒体等形式做好数据的收集;其次,考虑到现阶段大数据处于刚刚起步阶段,虽说门槛较低,但由于资金的滞后,一些金融企业即使建立了自身的大数据研究部门,却缺乏硬件上的支持,使得大数据的研究受到严重阻碍,因此,对于一些中小型金融企业来说,大数据的研究并不一定完全需要自己着手进行,可以与专门从事大数据研究的机构取得联系,相互合作,共同进行大数据的研究;最后,金融企业对于大数据思维的学习要深入到日常工作中,在日常的金融研究中,要积极运用大数据的思维方式,必要时,可以借助相关培训,使得金融研究人员在对大数据思维的应用上养成一种良好的习惯。
五、在金融研究中运用大数据思维的方式
(一)挖掘自身以及相关领域
大数据金融研究的主要内容就是对数据的处理分析,实际研究过程中,运用大数据思维挖掘自身以及相关领域的数据,这样能够有效提高工作效率。通过这种应用大数据思维进行挖掘的形式,能够给我国的金融研究人员提供更加丰富的思想类型与依据,这样能够开发出更多种类型的适合客户需求的个性化服务,提高我国金融企业的市场竞争力。另外,挖掘自身以及相关领域的大数据,能够给金融企业自身提供参考,这样可以使得金融企业认清自身发展上存在的不足,预防一些安全隐患,促进自身的发展。
(二)参与大数据交易或者互换资源
在大数据时代之下,数据种类复杂,数量巨大,可以肯定的说,没有任何一个企业可以掌握所有的所有数据信息,企业要想获得更多的数据信息,进行大数据的交易或者互换资源是一种非常方便、高效的方式,这种方式也必然会成为大数据未来发展的重要走向。对于金融企业来说,在激烈的市场竞争环境下,任何一个企业不可能脱离其它企业而独立存在,因此,合作共赢就显得非常重要,各金融企业通过参与大数据交易或者互换资源,可以得到更多对自身发展有用的信息,在这一情况下,大数据交易中心平台应运而生,它可以有效的搜集到企业发展所需的数据信息,促进金融企业之间的协同合作。
(三)使用大数据为自身发展服务
对于任何一个企业来说,使用大数据均是为自身发展服务。金融企业可以根据自身的发展现状,利用大数据传达的信息,及时发现自身发展中存在的问题并予以规避,完善生产经营模式,降低发展风险,促进自身的长远性发展。
六、结语
综上所述,大数据时代是未来社会发展的重要走向,金融学的研究离不开大数据思维,金融企业只有足够重视大数据的思维方式,将其运用到具体事项中,实现大数据的价值,提升对客户的服务水平,金融企业才能在激烈的市场竞争中游刃有余的发展下去。
2. 金融大数据是什么样的专业
金融大数据是近几年才又火爆的概念。之所以说是又火爆是因为金融大数据的概念不是从今天开始的,从十年前就已经开始,从所有银行的核心系统升级改造时就已经开始注重了大数据的积累。那时候的系统改进和升级就要求新的系统要满足大数据积累的需要。
3. 大数据和金融哪个专业难
都很难。大数据专业要学课程有基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。金融的基础课程有《税收学》、《公司金融学》、《国际金融学》、《金融会计学》、《金融计量学》、《证券经济学》、《金融建模》、《金融衍生产品》、《模拟银行业务》、《银行会计学》,然后根据不同的金融分支科目再学20本科目。所以这两个专业都很难。
4. 上海财经大学金融大数据统计学习理论与方法及互联网金融中的应用项目
上海财经大学的“金融大数据统计学习理论与方法及在互联网金融中的应用”项目是重大研究计划“大数据驱动的管理与决策研究”的重点支持项目。该项目拥有一支经验丰富、工作高效并具有国际影响力的学术研究团队。
上海财经大学有法学、中国语言文学、外国语言文学、新闻传播学、农林经济与管理、公共管理、理论经济学、应用经济学、工商管理、管理科学与工程、统计学、马克思主义理论等一级学科硕士学位授权点。
近年来,“大数据”已成为互联网、新闻媒体、学术机构、政府企业管理人员等多方关注的热点。随着现代科学技术姿者尤其是计算机、网络信息、生物工程等技术的发展,大量的数据出现在许多不同的自然科学和人文科学领域,包括生物学、医学、信息技术、经济、金融,环境科学等,并以前所未有的速度产生和积累。大数据涵盖的数据量大、包罗万象、变化速度快、存在的形式多种多首姿样,可以是包括文字、图片、视频等多种信息的集合。在新一轮科技和产业竞争中,大数据已经是与自然资源、人力资源一样重要的战略资源,著名管理公司麦肯锡声称,“数据已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。”在这样的背景下,美国政府2012年宣布投资2亿美元启动“大数据研究和发展计划”,这是继1993年美国宣布“信息高速公路”计划后的又一次重大科技发展部署。
大数据潮流使得我们获得了海量的数据,但掌握这些海量的数据本身并无意义。真正的意义体现在对于含有信息的数据进行专业化的处理。加强大数据科学研究和促进大数据应用开发将为未来我国在大数据领域掌握竞争主动权奠定基础,是关系我国国家和社会稳定、提高科技创新水平、推动国民经济可持续发展、提升社会管理服务能力的重大需求。可以预见未来国家之间的经济与政治竞争将是大数据引领的竞争。
随着互联网金融的蓬勃发展,大数据技术逐渐成为其与传统金融行业抗衡的保证。然而互联网金融与传统金融虽然形式上有区别,但其背后的金融“契约”本质并没有大的改变,风险测迹芹薯度和管理依旧是重中之重。本课题以“互联网金融风险”为核心研究对象,以各类不同发展的业务模式为研究场景,深入讨论对于互联网金融风险的计量和管理,促进虚拟经济发展和实体经济结构转型,并总结和规划未来发展导向,更好地为政府指导和监管决策,为虚拟经济健康发展、实体经济升级调整提出参考意见和建议。
项目负责人、上海财经大学统计与管理学院院长周勇教授表示,面对大数据应用的快速发展、国家经济和金融安全所提出的迫切需求,我们面临着大数据分析方法瓶颈与挑战,需要发展大数据基础分析的理论方法和技术,同时应用这些理论方法研究大数据下的数据降维技术和算法,深入研究互联网金融风险管理、高频海量数据市场行为和管理决策等前沿问题。
“金融大数据统计学习理论与方法及在互联网金融中的应用项目将对金融大数据统计推断理论及其应用等重大问题展开研究,研究内容的核心是金融大数据计量建模和快速算法的提出。我们希望通过相关研究,一方面,能在大数据金融计量理论和方法上进行创新,走向本领域学科研究的国际前沿。另一方面,也能为我国金融体系的安全运行提供深刻的实证依据和切实可行的政策建议。”
考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:https://www.87dh.com/yjs2/
5. 大数据在金融行业的应用与挑战
大数据在金融行业的应用与挑战
A 具有四大基本特征
金融业基本是全世界各个行业中最依赖于数据的,而且最容易实现数据的变现。全球最大的金融数据公司Bloomberg在1981年成立时“大数据”概念还没有出现。Bloomberg的最初产品是投资市场系统(IMS),主要向各类投资者提供实时数据、财务分析等。
随着信息时代降临,1983年估值仅1亿美元的Bloomberg以30%股份的代价换取美林3000万美元投资,先后推出Bloomberg Terminal、News、Radio、TV等各类产品。1996年Bloomberg身价已达20亿美元,并以2亿美元从美林回购了10%的股份。2004年Bloomberg在纽约曼哈顿中心建成246米摩天高楼。到2008年次贷危机,美林面临崩盘,其剩余20%的Bloomberg股份成为救命稻草。Bloomberg趁美林之危赎回所有股份,估值跃升至225亿美元。2016年Bloomberg全球布局192个办公室,拥有1.5万名员工,年收入约100亿美元,估值约1000亿美元,超过同年市值为650亿美元的华尔街标杆高盛。
大数据概念形成于2000年前后,最初被定义为海量数据的集合。2011年,美国麦肯锡公司在《大数据的下一个前沿:创新、竞争和生产力》报告中最早提出:大数据指大小超出典型数据库软件工具收集、存储、管理和分析能力的数据集。
具体来说,大数据具有四大基本特征:
一是数据体量大,指代大型数据集,一般在10TB规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量。
二是数据类别大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。现在的数据类型不仅是文本形式,更多的是图片、视频、音频、地理位置信息等多类型的数据。
三是处理速度快,在数据量非常庞大的情况下,也能够做到数据的实时处理。数据处理遵循“1秒定律”,可从各种类型的数据中快速获得高价值的信息。
四是数据的真实性高,随着社交数据、企业内容、交易与应用数据等新数据源的兴起,传统数据源的局限被打破,信息的真实性和安全性显得极其重要。
而相比其他行业,金融数据逻辑关系紧密,安全性、稳定性和实时性要求更高,通常包含以下关键技术:数据分析,包括数据挖掘、机器学习、人工智能等,主要用于客户信用、聚类、特征、营销、产品关联分析等;数据管理,包括关系型和非关系型数据、融合集成、数据抽取、数据清洗和转换等;数据使用,包括分布式计算、内存计算、云计算、流处理、任务配置等;数据展示,包括可视化、历史流及空间信息流展示等,主要应用于对金融产品健康度、产品发展趋势、客户价值变化、反洗钱反欺诈等监控和预警。
B 重塑金融行业竞争新格局
“互联网+”之后,随着世界正快速兴起“大数据+”,金融行业悄然出现以下变化:
大数据特征从传统数据的“3个V”增加到“5个V”。在数量(Volume)、速度(Velocity)、种类(Variety)基础上,进一步完善了价值(Value)和真实性(Veracity),真实性包括数据的可信性、来源和信誉、有效性和可审计性等。
金融业按经营产品分类变为按运营模式分类。传统金融业按经营产品划分为银行、证券、期货、保险、基金五类,随着大数据产业兴起和混业经营的发展,现代金融业按运营模式划分为存贷款类、投资类、保险类三大类别。
大数据市场从垄断演变为充分市场竞争。全球大数据市场企业数量迅速增多,产品和服务的差异增大,技术门槛逐步降低,市场竞争日益激烈。行业解决方案、计算分析服务、存储服务、数据库服务和大数据应用成为市场份额排名最靠前的五大细分市场。
大数据形成新的经济增长点。Wikibon数据显示,2016年,全球大数据硬件、软件和服务整体市场增长22%达到281亿美元,预计到2027年,全球在大数据硬件、软件和服务上的整体开支的复合年增长率为12%,将达到大约970亿美元。
数据和IT技术替代“重复性”业务岗位。数据服务公司Eurekahedge通过追踪23家对冲基金,发现5位对冲基金经理薪金总额为10亿美元甚至更高。过去10年,靠数学模型分析金融市场的物理学家和数学家“宽客”一直是对冲基金的宠儿,其实大数据+人工智能更精于此道。高盛的纽约股票现金交易部门2000年有600名交易员而如今只剩两人,其任务全由机器包办,专家称10年后高盛员工肯定比今天还要少。
美国大数据发展走在全球前列。美国政府宣称:“数据是一项有价值的国家资本,应对公众开放,而不是将其禁锢在政府体制内。”作为大数据的策源地和创新引领者,美国大数据发展一直走在全球最前列。自20世纪以来,美国先后出台系列法规,对数据的收集、发布、使用和管理等做出具体的规定。2009年,美国政府推出Data.gov政府数据开放平台,方便应用领域的开发者利用平台开发应用程序,满足公共需求或创新创业。2010年,美国国会通过更新法案,进一步提高了数据采集精度和上报频度。2012年3月,奥巴马政府推出《大数据研究与开发计划》,大数据迎来新一轮高速发展。
英国是欧洲金融中心,大数据成为其领先科技之一。2013年,英国投资1.89亿英镑发展大数据。2015年,新增7300万英镑,创建了“英国数据银行”data.gov.uk网站。2016年,伦敦举办了超过22000场科技活动,同年,英国数字科技投资逾68亿英镑,而收入则超过1700亿英镑。另外,英国统计局利用政府资源开展“虚拟人口普查”,仅此一项每年节省5亿英镑经费。
C 打造高效金融监管体系
大数据用已发生的总体行为模式和关联逻辑预测未来,决策未来,作为现代数字科技的核心,其灵魂就是——预测。
侦测、打击逃税、洗钱与金融诈骗
全球每年因欺诈造成的经济损失约3.7万亿美元,企业因欺诈受损通常为年营收额的5%。全球最大软件公司之一美国SAS公司与税务、海关等政府部门和全球各国银行、保险、医疗保健等机构合作,有效应对日益复杂化的金融犯罪行为。如在发放许可之前,通过预先的数据分析检测客户是否有过行受贿、欺诈等前科,再确定是否发放借贷或海关通关。SAS开发的系统已被国际公认为统计分析的标准软件,在各领域广泛应用。英国政府利用大数据检测行为模式检索出200亿英镑的逃税与诈骗,追回了数十亿美元损失。被福布斯评为美国最佳银行的德克萨斯资本银行(TCBank),不断投资大数据技术,反金融犯罪系统与银行发展同步,近3年资产从90亿美元增至210亿美元。荷兰第三大人寿保险公司CZ依靠大数据对骗保和虚假索赔行为进行侦测,在支付赔偿金之前先期阻断,有效减少了欺诈发生后的司法补救。
大数据风控建立客户信用评分、监测对照体系
美国注册舞弊审核师协会(ACFE)统计发现,缺乏反欺诈控制的企业会遭受高额损失。美国主流个人信用评分工具FICO能自动将借款人的历史资料与数据库中全体借款人总体信用习惯相比较,预测借款人行为趋势,评估其与各类不良借款人之间的相似度。美国SAS公司则通过集中浏览和分析评估客户银行账户的基本信息、历史行为模式、正在发生行为模式(如转账)等,结合智能规则引擎(如搜索到该客户从新出现的国家为特有用户转账,或在新位置在线交易等),进行实时反欺诈分析。
美国一家互联网信用评估机构通过分析客户在Facebook、Twitter等社交平台留下的信息,对银行的信贷和投保申请客户进行风险评估,并将结果出售给银行、保险公司等,成为多家金融机构的合作伙伴。
D 数据整合困难
应用经济指标预测系统分析市场走势
IBM使用大数据信息技术成功开发了“经济指标预测系统”,该系统基于单体数据进行提炼整合,通过搜索、统计、分析新闻中出现的“新订单”等与股价指标有关的单词来预测走势,然后结合其他相关经济数据、历史数据分析其与股价的关系,从而得出行情预测结果。
追踪社交媒体上的海量信息评估行情变化
当今搜索引擎、社交网络和智能手机上的微博、微信、论坛、新闻评论、电商平台等每天生成几百亿甚至千亿条文本、音像、视频、数据等,涵盖厂商动态、个人情绪、行业资讯、产品体验、商品浏览和成交记录、价格走势等,蕴含巨大财富价值。
2011年5月,规模为4000万美元的英国对冲基金DC Markets,通过大数据分析Twitter的信息内容来感知市场情绪指导投资,首月盈利并以1.85%的收益率一举战胜其他对冲基金仅0.76%的平均收益率。
美国佩斯大学一位博士则利用大数据追踪星巴克、可口可乐和耐克公司在社交媒体的围观程度对比其股价,证明Facebook、Twitter和 Youtube上的粉丝数与股价密切相关。
提供广泛的投资选择和交易切换
日本个人投资理财产品Money Design在应用程序Theo中使用算法+人工智能,最低门槛924美元,用户只需回答风险承受水平、退休计划等9个问题,就可使用35种不同货币对65个国家的1.19万只股票进行交易和切换,年度管理费仅1%。Money Design还能根据用户投资目标自动平衡其账户金额,预计2020年将超过2万亿美元投资该类产品。
利用云端数据库为客户提供记账服务
日本财富管理工具商Money Forward提供云基础记账服务,可管理工资、收付款、寄送发票账单、针对性推送理财新项目等,其软件系统连接并整合了2580家各类金融机构的各类型帐户,运用大数据分析的智能仪表盘显示用户当前财富状况,还能分析用户以往的数据以预测未来的金融轨迹。目前其已拥有50万商家和350万个体用户,并与市值2.5万亿美元的山口金融集团联合开发新一款APP。
为客户定制差异化产品和营销方案
金融机构迫切需要掌握更多用户信息,继而构建用户360度立体画像,从而对细分客户进行精准营销、实时营销、智慧营销。
一些海外银行围绕客户“人生大事”,分析推算出大致生活节点,有效激发其对高价值金融产品的购买意愿。如一家澳大利亚银行通过大数据分析发现,家中即将诞生婴儿的客户对寿险产品的潜在需求最大,于是通过银行卡数据监控准妈妈开始购买保胎药品和婴儿相关产品等现象,识别出即将添丁的家庭,精准推出定制化金融产品套餐,受到了客户的积极响应,相比传统的短信群发模式大幅提高了成功率。
催生并支撑人工智能交易
“量化投资之王”西蒙斯被公认为是最能赚钱的基金经理人,自1988年创立文艺复兴科技公司的旗舰产品——大奖章基金以来,其凭借不断更新完善的大数据分析系统,20年中创造出35%的年均净回报率,比索罗斯同期高10%,比股神巴菲特同期高18%,成为有史以来最成功的对冲基金,并于1993年基金规模达2.7亿美元时停止接受新投资。在美国《Alpha》杂志每年公布的对冲基金经理排行榜上,西蒙斯2005年、2006年分别以15亿美元、17亿美元净收入稳居全球之冠,2007年以13亿美元位列第五,2008年再以25亿美元重返榜首。
推动金融产品和服务创新
E 面临三大挑战
目前,全球各行业数据量的增长速度惊人,在我国尤其集中在金融、交通、电信、制造业等重点行业,信息化的不断深入正在进一步催生更多新的海量数据。
据统计,2015年中国的数据总量达到1700EB以上,同比增长90%,预计到2020年这一数值将超过8000EB。以银行业为例,每创收100万元,银行业平均产生130GB的数据,数据强度高踞各行业之首。但在金融企业内部数据处于割裂状态,业务条线、职能部门、渠道部门、风险部门等各个分支机构往往是数据的真正拥有者,缺乏顺畅的共享机制,导致海量数据往往处于分散和“睡眠”状态,虽然金融行业拥有的数据量“富可敌国”,但真正利用时却“捉襟见肘”。
数据安全暗藏隐患
大数据本质是开放与共享,但如何界定、保护个人隐私权却成为法律难题。大数据存储、处理、传输、共享过程中也存在多种风险,不仅需要技术手段保护,还需相关法律法规规范和金融机构自律。多项实际案例表明,即使无害的数据大量囤积也会滋生各种隐患。安全保护对象不仅包括大数据自身,也包含通过大数据分析得出的知识和结论。在线市场平台英国Handshake.uk.com就尝试允许用户协商个人数据被品牌分享所得的报酬。
人才梯队建设任重道远
人才是大数据之本。与信息技术其他细分领域人才相比,大数据发展对人才的复合型能力要求更高,需要掌握计算机软件技术,并具备数学、统计学等方面知识以及应用领域的专业知识。
6. 金融与大数据分析专业好吗
金融与大数据分析专业好。根据查询相关资料信显示,大数据未来的就业前景好,大数据人才主要分布在移动互联网行业,其次是金融互联网、企业服务、游戏、教育等行业。
7. 大数据金融专业就业前景怎么样
就目前的市场发展趋势,和热度来看,建议你可以学习一下大数据。我们可以从两个方面来看一下大数据的发展趋势。