Ⅰ “大数据架构”用哪种框架更为合适
个完整的大数据平台应该提供离线计算、即席查询、实时计算、实时查询这几个方面的功能。
hadoop、spark、storm无论哪一个,单独不可能完成上面的所有功能。
hadoop+spark+hive是一个很不错的选择.hadoop的HDFS毋庸置疑是分布式文件系统的解决方案,解决存储问题;hadoopmaprece、hive、sparkapplication、sparkSQL解决的是离线计算和即席查询的问题;sparkstreaming解决的是实时计算问题;另外,还需要HBase或者Redis等NOSQL技术来解决实时查询的问题。
除了这些,大数据平台中必不可少的需要任务调度系统和数据交换工具;
任务调度系统解决所有大数据平台中的任务调度与监控;数据交换工具解决其他数据源与HDFS之间的数据传输,比如:数据库到HDFS、HDFS到数据库等等。关于大数据平台的架构技术文章,可搜索"lxw的大数据田地",里面有很多。
Ⅱ mpp架构数据库有哪些
MPP的代表产品有:Vertica/Redshift(Paracel,被Amazon买买下了源码的license后变成Redshift)/Greenplum。仔细观察不难发现,这三者其版实有非常很多相权同点:
1.全部基于PostgreSQL
2.都是基于列的存储(Columnar Storage)
3.操作都是以Scan为基础,依赖Compression来提供性能的优化
Ⅲ 大数据方面核心技术有哪些
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式回存储、数据库、答数据仓库、机器学习、并行计算、可视化等。
1、数据采集与预处理:
Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;
Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。
2、数据存储:
Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。
HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算
4、数据查询分析:
Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。
Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。
Ⅳ mpp数据库适合哪些应用场景
MPP数据库主要适合查询统计、分析研判等大数据处理场景,主要特点是整体架版构呈现纯扁平化,权不存在单点性能瓶颈,基于开放式标准X86 PC服务器构建,采用分布式架构设计,灵活实现按需部署,具备灵活的系统伸缩性,支持系统的纵向扩展和横向扩展。
国内的产品主要是南大通用的GBase 8a MPP Cluster,是面向大数据、云计算场景自主研发的大规模并行数据库集群产品,在海量数据高速处理的场景下具有高性能、低成本、高可靠、易使用等诸多优势,国外的如GreenPlum、Vertica等。
Ⅳ 比较smp 、ssmp 、cc -numa 、基于集群的mpp 及dsm 在体系结构的异同点
NUMA全称为Non-Uniform Memory Access,是主流服务服务器为了提高SMP的可扩展性而采用的一种体系结构。主流服务器一般由多个NUMA节点组成,每个NUMA节点是一个SMP结构,一般由多个CPU组成,并且具有本地内存和IO设备。NUMA节点可以直接访问本地内存,也可以通过NUMA互联模块访问其他NUMA节点的内存,但是访问本地内存的速度远远高于远程访问速度,因此,开发程序要尽量减少不同NUMA节点之间的信息交互。MPP是一种海量数据实时分析架构。 MPP作为一种不共享架构,每个节点运行自己的操作系统和数据库等,节点之间信息交互只能通过网络连接实现。MPP架构目前被并行数据库广泛采用,一般通过scan、sort和merge等操作符实时返回查询结果。目前采用MPP架构的实时查询系统有EMC Greenplum、HP Vertica和Googl jdjdzj e Dremel,这些都是实时数据处理领域非常有特点的系统,尤其是Dremel可以轻松扩展到上千台服务器,并在数秒内完成TB级数据的分析。Hadoop作为一个开源项目群本身和MPP并没有什么直接关系,Hadoop中的子项目MapRece虽然也是做数据分析处理的,但是一般只适用于离线数据分析,区别与MPP较为明显。因为Map和Rece两个过程涉及到输出文件的存取和大量网络传输,因此往往达不到实时处理的要求。与MapRece 相似的系统还有Microsoft Dryad和Google pregel。综上所述,NUMA是一种体系结构,MPP是一种实时海量数据分析架构,而Hadoop是一个关于数据存储处理的项目群,其中的MapRece是一种离线海量数据分析架构。实测对比GreenPlum和Hive,GP比Hive性能高出至少一个数量级,但是大部分场景下,依然是秒级甚至分钟级的延迟,距离具体通常意义的实时毫秒级,差距巨大。另外说一句,广义的Hadoop包括 Impala, Presto Distributed SQL Query Engine for Big Data 这些MPP架构的SQL引擎。Hadoop社区还在持续发展,Spark还在持续给人们带来惊喜,开源软件的迷人之处也在于此。
Ⅵ 大数据存储与应用特点及技术路线分析
大数据存储与应用特点及技术路线分析
大数据时代,数据呈爆炸式增长。从存储服务的发展趋势来看,一方面,对数据的存储量的需求越来越大;另一方面,对数据的有效管理提出了更高的要求。大数据对存储设备的容量、读写性能、可靠性、扩展性等都提出了更高的要求,需要充分考虑功能集成度、数据安全性、数据稳定性,系统可扩展性、性能及成本各方面因素。
大数据存储与应用的特点分析
“大数据”是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享,交叉复用形成的智力资源和知识服务能力。其常见特点可以概括为3V:Volume、Velocity、Variety(规模大、速度快、多样性)。
大数据具有数据规模大(Volume)且增长速度快的特性,其数据规模已经从PB级别增长到EB级别,并且仍在不断地根据实际应用的需求和企业的再发展继续扩容,飞速向着ZB(ZETA-BYTE)的规模进军。以国内最大的电子商务企业淘宝为例,根据淘宝网的数据显示,至2011年底,淘宝网最高单日独立用户访问量超过1.2亿人,比2010年同期增长120%,注册用户数量超过4亿,在线商品数量达到8亿,页面浏览量达到20亿规模,淘宝网每天产生4亿条产品信息,每天活跃数据量已经超过50TB.所以大数据的存储或者处理系统不仅能够满足当前数据规模需求,更需要有很强的可扩展性以满足快速增长的需求。
(1)大数据的存储及处理不仅在于规模之大,更加要求其传输及处理的响应速度快(Velocity)。
相对于以往较小规模的数据处理,在数据中心处理大规模数据时,需要服务集群有很高的吞吐量才能够让巨量的数据在应用开发人员“可接受”的时间内完成任务。这不仅是对于各种应用层面的计算性能要求,更加是对大数据存储管理系统的读写吞吐量的要求。例如个人用户在网站选购自己感兴趣的货物,网站则根据用户的购买或者浏览网页行为实时进行相关广告的推荐,这需要应用的实时反馈;又例如电子商务网站的数据分析师根据购物者在当季搜索较为热门的关键词,为商家提供推荐的货物关键字,面对每日上亿的访问记录要求机器学习算法在几天内给出较为准确的推荐,否则就丢失了其失效性;更或者是出租车行驶在城市的道路上,通过GPS反馈的信息及监控设备实时路况信息,大数据处理系统需要不断地给出较为便捷路径的选择。这些都要求大数据的应用层可以最快的速度,最高的带宽从存储介质中获得相关海量的数据。另外一方面,海量数据存储管理系统与传统的数据库管理系统,或者基于磁带的备份系统之间也在发生数据交换,虽然这种交换实时性不高可以离线完成,但是由于数据规模的庞大,较低的数据传输带宽也会降低数据传输的效率,而造成数据迁移瓶颈。因此大数据的存储与处理的速度或是带宽是其性能上的重要指标。
(2)大数据由于其来源的不同,具有数据多样性的特点。
所谓多样性,一是指数据结构化程度,二是指存储格式,三是存储介质多样性。对于传统的数据库,其存储的数据都是结构化数据,格式规整,相反大数据来源于日志、历史数据、用户行为记录等等,有的是结构化数据,而更多的是半结构化或者非结构化数据,这也正是传统数据库存储技术无法适应大数据存储的重要原因之一。所谓存储格式,也正是由于其数据来源不同,应用算法繁多,数据结构化程度不同,其格式也多种多样。例如有的是以文本文件格式存储,有的则是网页文件,有的是一些被序列化后的比特流文件等等。所谓存储介质多样性是指硬件的兼容,大数据应用需要满足不同的响应速度需求,因此其数据管理提倡分层管理机制,例如较为实时或者流数据的响应可以直接从内存或者Flash(SSD)中存取,而离线的批处理可以建立在带有多块磁盘的存储服务器上,有的可以存放在传统的SAN或者NAS网络存储设备上,而备份数据甚至可以存放在磁带机上。因而大数据的存储或者处理系统必须对多种数据及软硬件平台有较好的兼容性来适应各种应用算法或者数据提取转换与加载(ETL)。
大数据存储技术路线最典型的共有三种:
第一种是采用MPP架构的新型数据库集群,重点面向行业大数据,采用Shared Nothing架构,通过列存储、粗粒度索引等多项大数据处理技术,再结合MPP架构高效的分布式计算模式,完成对分析类应用的支撑,运行环境多为低成本 PC Server,具有高性能和高扩展性的特点,在企业分析类应用领域获得极其广泛的应用。
这类MPP产品可以有效支撑PB级别的结构化数据分析,这是传统数据库技术无法胜任的。对于企业新一代的数据仓库和结构化数据分析,目前最佳选择是MPP数据库。
第二种是基于Hadoop的技术扩展和封装,围绕Hadoop衍生出相关的大数据技术,应对传统关系型数据库较难处理的数据和场景,例如针对非结构化数据的存储和计算等,充分利用Hadoop开源的优势,伴随相关技术的不断进步,其应用场景也将逐步扩大,目前最为典型的应用场景就是通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑。这里面有几十种NoSQL技术,也在进一步的细分。对于非结构、半结构化数据处理、复杂的ETL流程、复杂的数据挖掘和计算模型,Hadoop平台更擅长。
第三种是大数据一体机,这是一种专为大数据的分析处理而设计的软、硬件结合的产品,由一组集成的服务器、存储设备、操作系统、数据库管理系统以及为数据查询、处理、分析用途而特别预先安装及优化的软件组成,高性能大数据一体机具有良好的稳定性和纵向扩展性。
以上是小编为大家分享的关于大数据存储与应用特点及技术路线分析的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅶ 数据平台建设的方案有哪几种
1、常规数据仓库
数据仓库的重点,是对数据进行整合,同时也是对业务逻辑的一个梳理。数据仓库虽然也可以打包成SAAS那种Cube一类的东西来提升数据的读取性能,但是数据仓库的作用,更多的是为了解决公司的业务问题。
2、敏捷型数据集市
数据集市也是常见的一种方案,底层的数据产品与分析层绑定,使得应用层可以直接对底层数据产品中的数据进行拖拽式分析。数据集市,主要的优势在于对业务数据进行简单的、快速的整合,实现敏捷建模,并且大幅提升数据的处理速度。
3、MPP(大规模并行处理)架构
进入大数据时代以来,传统的主机计算模式已经不能满足需求了,分布式存储和分布式计算才是王道。大家所熟悉的Hadoop MapRece框架以及MPP计算框架,都是基于这一背景产生。
MPP架构的代表产品,就是Greenplum。Greenplum的数据库引擎是基于Postgresql的,并且通过Interconnnect神器实现了对同一个集群中多个Postgresql实例的高效协同和并行计算。
4、Hadoop分布式系统架构
当然,大规模分布式系统架构,Hadoop依然站在不可代替的关键位置上。雅虎、Facebook、网络、淘宝等国内外大企,最初都是基于Hadoop来展开的。
Hadoop生态体系庞大,企业基于Hadoop所能实现的需求,也不仅限于数据分析,也包括机器学习、数据挖掘、实时系统等。企业搭建大数据系统平台,Hadoop的大数据处理能力、高可靠性、高容错性、开源性以及低成本,都使得它成为首选。
关于数据平台建设的方案有哪几种,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅷ 大数据和大数据开发有什么区别
大数据指纯粹的大量数据;大数据开发指从大量数据中找到有用的信息加以开发利用。