『壹』 云计算和大数据的区别
云计算和大抄数据的区别或关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。 什么是云服务? A:通过使计算分布在大量的分布式计算机上,而非本地计算机或远程服务器中,企业数据中心的运行将更与互联网相似。这使得企业能够将资源切换到需要的应用上,根据需求访问计算机和存储系统。--bihadoop提供解答
『贰』 云计算和大数据是一样的吗
不等同 是不同的概念
一、云计算
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
对云计算的定义有多种说法。对于到底什么是云计算,至少可以找到100种解释。现阶段广为接受的是美国国家标准与技术研究院(NIST)定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。
二、大数据
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
三、二者关系:
大数据的重点是数据,大量的数据,需要将大数据成功的分析出应有的价值,大数据提供的是分析价值,云计算是将很多东西利用云端集合起来,提供一个让很多人都能用的服务。云计算提供的是使用价值。两者是密不可分的,云端产生的数据量非常巨大,要想让庞大的数据产生价值就需要大数据分析。
『叁』 大数据和云计算的区别是什么啊
一、大数据与云计算的概念及特点
大数据:在维基网络中,大数据(big data)是用于数据集的一个术语,是指大小超出了常用软件工具在运行时间内可以承受的收集,管理和处理数据能力的数据集。与传统海量数据相比,它不仅在数据规模上呈几何倍数的增长,还在于它集收集,分类,处理,分析于一体,能够充分挖掘出一份数据的潜在价值。
云计算:根据美国国家标准与技术研究院定义:云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问,进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投人很少的管理工作,或与服务供应商进行很少的交互。也就是说云计算既是一种商业模式,也是一种计算模式。
二、大数据和云计算的区别及联系
云计算是一种商业模式,也是一种计算模式。所以,云计算是在大数据的基础上进行的,大数据的目的主要是通过海量数据发现潜在价值,使人们更好的理解和把握信息,云计算更倾向于提供服务,二者相互关联。
1、大数据和云计算的区别
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
2、大数据和云计算的联系
大数据和云计算的相同点在于它们都是数据存储和处理服务,都需要占用大量的存储和计算资源,因而都要用到海量数据存储技术、海量数据管理技术等/随着数据量的递增、数据处理复杂程度的增加,相应的性能和扩展瓶颈将会越来越大。在这种情况下,云计算所具备的弹性伸缩和动态调配、资源的虚拟化,按需使用,以及绿色节能等基本要素正好契合了新型大数据处理技术的需求。在数据量爆发增长以及对数据处理要求越来越高的先当下,实现大数据和云计算的结合,才能最大程度上发挥二者的优势,满足用户的需求,带来更高的商业价值。
三、如何理解大数据与云计算的关系
简单来说就是,大数据的超大容量自然需要容量大,速度快,安全的存储,满足这种要求的存储离不开云计算。高速产生的大数据只有通过云计算的方式才能在可等待的时间内对其进行处理。同时,云计算是提高对大数据的分析与理解能力的一个可行方案。大数据的价值也只有通过数据挖掘才能从低价值密度的数据中发现其潜在价值,而大数据挖掘技术的实现离不开云计算技术。总之,云计算是大数据处理的核心支撑技术,是大数据挖掘的主流方式。没有互联网,就没有虚拟化技术为核心的云计算技术,没有云计算就没有大数据处理的支撑技术。
其实,云计算是工业时代的电,大数据就是福特生产线,云存储就是钢铁工业。也就是说,没有钢铁,就没有电,就不会有大规模工业化生产。没有云计算,大数据不会出来,如果云计算没有解决云存储的问题,也不会出来。
四、大数据和云计算的发展前景
1、提升网络质量。随着互联网以及移动互联网的持续发展网络将会更加繁忙,用于监测网络状态的信令数据也会快速增长。通过对海量运维信息以及信令数据的智能分析,能够提高网络维护的实时性,预测网络流量峰值,预警异常流量。从而有效地防止网络拥塞和系统宕机,从而提高网络服务质量,提升用户体验。
2、提升客户价值通过使用大数据分析、数据挖掘等工具和方法,企业能够整合来自市场部门、销售部门、服务部门的数据,从各种不同的角度全面了解自己的客户,对客户形象进行精准刻画,以寻找目标客户,制定有针对性的营销计划、产品组合或商业决策,提升客户价值。
3、提升行业信息化水平。智慧城市的发展以及教育、医疗、交通、环境保护等关系到国计民生的行业,都具有极大的信息化需求。
4、提高用户体验。高速的信息处理,更优质的服务,能够更好地满足用户需要,使用户能够以最廉价的成本为生活带来更好的便利,最大程度上提高了用户的生活学习工作质量。
『肆』 云计算与大数据是什么与什么的关系
大数据和云计算的区别:
1)目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2)对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3)背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4)价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
不看现在云计算发展情况,未来的趋势是:云计算作为计算资源的底层,支撑着上层的大数据处理,而大数据的发展趋势是,实时交互式的查询效率和分析能力,借用Google一篇技术论文中的话:“动一下鼠标就可以在妙极操作PB级别的数据”,确实让人兴奋不能止。
大数据分析经常和云计算联系到一起,因为实时的大型数据集分析需要像MapRece一样的框架来向数十数百或甚至数千的服务器分配工作,大数据需要特殊的技术,以有效地处理大量数据。适用大数据的技术,包括大规模并行处理数据库、数据挖掘电网、分布文件系统、分布式数据库、计算平台、互联网和可扩展的存储系统,大数据指的海量的数据一般日处理PB级别以上,一般用于挖掘,分析,做一些智能性商业板块。
大数据必然与云计算有相关(大数据和云计算没有必然的联系,你要作大数据,可以用云计算,也可不用)数据中心是云计算基础,从技术上来看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分,大数据必然无法用单台的计算机进行处理,必须采用分布式的架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算分布式处理、分布式数据库和云存储、虚拟化等技术,随着云时代的来临,大数据也吸引了越来越多的关注。
『伍』 什么叫大数据,与云计算有何关系。
大数据技术是一种新一代技术和构架,它以成本较低、以快速的采集、处理和分析专技术,从各种超属大规模的数据中提取价值。大数据技术不断涌现和发展,让我们处理海量数据更加容易、更加便宜和迅速,成为利用数据的好助手,甚至可以改变许多行业的商业模式。
大数据(big data)是这样的数据集合:数据量增长速度极快,用常规的数据工具无法在一定的时间内进行采集、处理、存储和计算的数据集合。
云计算是一种基于因特网的超级计算模式,在远程的数据中心里,成千上万台电脑和服务器连接成一片电脑云。因此,云计算甚至可以让你体验每秒10万亿次的运算能力,拥有这么强大的计算能力可以模拟核爆炸、预测气候变化和市场发展趋势。用户通过电脑、笔记本、手机等方式接入数据中心,按自己的需求进行运算。
云计算的就业前途,某种意义上也可以理解为云计算为我们提供的服务,存在一定的必然性,也就是说云计算对于社会、云计算使用者有哪些优势,也同时可以理解为,云计算的优势就是云计算的就业优势。
『陆』 云计算与大数据的区别是什么
云计算抄有两个含义。云计算第一个含义也是最常见的含义,是指在云计算提供商的数据中心(也称为“公共云”)中通过互联网远程运行用户的工作负载。而亚马逊网络服务(AWS)、Salesforce公司的CRM系统,以及Microsoft Azure等目前流行的公共云产品,都体现了人们所熟悉的云计算概念。如今,大多数企业采用多云模式,这意味着他们使用多种公共云服务。
大数据,通常指海量的数据,即无法通过常规软件工具分析和处理的数据集合,具体定义,各家略有不同。
两者区别
第一,在概念上两者有所不同,云计算改变了IT,而大数据则改变了业务。然而大数据必须有云作为基础架构,才能得以顺畅运营。
第二,大数据和云计算的目标受众不同,云计算是CIO等关心的技术层,是一个进阶的IT解决方案。而大数据是CEO关注的、是业务层的产品,而大数据的决策者是业务层。
『柒』 大数据和云计算的区别
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的回采集、整理、存储、安全、答分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。
大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
二者关系:
大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。
可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。
『捌』 大数据、云计算、数据中心这三者之间有什么区别和联系
不少人把数据中心、云计算数据中心、大数据搞混淆,觉得这三者是一样的产品,其实有显著的区别,数据中心机房是一整套复杂的设施,如今,云计算即将成为信息 社会 的公共资源,而数据中心则是支撑云计算服务的基础设施,所以自从云计算横空出世,一切信息技术都开始围着它转,云计算有如神一样地存在着,下面看看数据中心、云计算、大数据之间有什么区别和联系?
一、大数据
1、 大数据(Big Data)又称为巨量资料,指需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产,“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
2、大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
3、移动互联网的大数据主要来自四个方面
(1)、内容数据:
Web2.0时代以后,每个人都成为了媒体,都在网络上生产内容,包括文字、图片、视频等等。
(2)、电商数据:
随着电子商务的发展,线上交易量已经占据整个零售业交易的大部分。每一笔交易都包含了买家、卖家以及商品背后的整条价值链条的信息。
(3)、社交数据:
随着移动社交成为最主要的社交方式,社交不仅仅只有人与人之间的交流作用,社交数据中包括了人的喜好、生活轨迹、消费能力、价值取向等各种重要的用户画像信息。
(4)、物联网数据:
各行各业都出现了物联网的需求和解决方案,每时每刻都在产生巨量的监测数据。那么如此之多的数据,包含着很多有价值的信息,这些信息并不是以直观的形式呈现出来的,需要有办法对这些数据进行处理,无论是计算、存储还是通信,都提出了很高的要求,云计算的相关技术就是对巨量数据的计算、存储和通信的解决方案。
二、云计算
云计算是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。典型的云计算提供商往往提供通用的网络业务应用,可以通过浏览器等软件或者其他Web服务来访问,而软件和数据都存储在服务器上。云计算服务通常提供通用的通过浏览器访问的在线商业应用,软件和数据可存储在数据中心。
三、数据中心
数据中心是全球协作的特定设备网络,用来在internet网络基础设施上传递、加速、展示、计算、存储数据信息,数据中心大部分电子元件都是由低压直流电源驱动运行的。数据中心面临的物理问题是服务器本身和用来连接这些服务器到其他应用环境的电缆。
四、三者之间的联系:
1、大数据和云计算的概念区别:
大数据说的是一种移动互联网和物联网背景下的应用场景,各种应用产生的巨量数据,需要处理和分析,挖掘有价值的信息;云计算说的是一种技术解决方案,就是利用这种技术可以解决计算、存储、数据库等一系列IT基础设施的按需构建的需求,两者并不是同一个层面的东西。
2、大数据与云计算的关系,以上介绍了大数据和云计算的区别,两者之间又有着非常紧密的联系,大数据是云计算非常重要的应用场景,而云计算则为大数据的处理和数据挖掘都提供了最佳的技术解决方案。
3、大数据必然与云计算相关(大数据和云计算没有必然联系,你要作大数据,可以用云计算,也可以不用),数据中心是云计算的基础,从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分,大数据必然无法用单台的计算机进行处理,必须采用分布式架构。它的特色在于对海量数据进行分布式数据挖掘,但它必须依托云计算的分布式处理、分布式数据库和云存储、虚拟化技术,随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。
4、数据中心是云计算的基础设施,我们通常讲到的服务器资源分配,带宽分配,业务支撑能力,流量防护和清洗能力,都是基于数据中心的大小,和其带宽的容量,数据中心分布在不同的核心城市,辐射到周边城市,提供基础支撑,其一般都符合国家机房一级标准,具备极强的容灾能力,多数厂商会选择两地三中心等方式来架设机房,云计算是在数据中心的基础上提供的从基础服务到增值服务的一种闲置资源利用。
5、但有一点不变的是,不管云计算怎样去变化,必然需要依托数据中心实现落地。可以说,数据中心是云计算的根,云计算是数据中心“叶子”,云计算通过“光合作用”促进数据中心的发展,而数据中心得壮大又为云计算发展提供了坚实的基础,这三者起到相互依存,互相促进的作用。
『玖』 数据仓库,大数据和云计算有什么区别和联系
您好,上海蓝盟为您解答。
首先简单的看一下云计算与大数据的概念.
1)云计算:云计算本质上是一种计算资源集中分布和充分共享的效用计算模式,其中集中是为了计算资源的集约化管理,分布是便于扩展计算能力.集中分布式是针对云服务提供商的,充分共享是针对用户,在云计算中,虽然对于每个云用户来说都拥有一台超级计算机,但本质上,这些用户是充分共享了云服务商所提供的计算服务.而效用计算更多的是一种商业模式,就是用户按所需服务来付费.
2)在前面的博文中,对大数据有个讨论,简单的说,大数据的特点就是数据量大(虽然很多人都把大数据定义在T级别以上,其实我觉得这是有问题的,大数据的大其实应该是个相对概念,是相对于当前的存储技术和计算能力的),数据应用需求大,计算量大.数据量大是最基本的,需求大其实包含了需求的数量、多样性和实时性.计算量大是因为数据量大和需求量大和算法复杂(检索,推荐,模式识别)所致.大数据的这种特点使得我们很难找到通用的处理模式来解决大数据所面临的问题,我们只能针对不同的需求采用不同的处理方法,这也是大数据处理比较困难的症结所在。无论是传统的数据库还是最近兴起的NoSQL数据库,在大数据存储和处理方面其实都是有非常大的局限性的,所以分布式计算才在大数据处理中大兴其道。Hadoop虽然提供了比较完整的一套处理模式,但相对于大数据所面临的应用需求的多样性而言,能处理的问题域也是十分有限的。
数据库和数据仓库的概念,大家google一下就可以了,接下来,我们看看它们之间的关系:
1)数据库和数据仓库都是数据的一种存储方式,大数据处理更多的是一种需求(问题),而云计算是一种比较综合的需求(问题)解决方案。
2)由于云计算本身的特性,天生就面临大数据处理(存储、计算等)问题,因为云计算的基本架构模式是C/S模式,其中S相对集中,而C是广泛分布。所有用户的数据和绝大部分的计算都是在S端完成的(数据量大,计算量大),加上用户也天然具有多样性(地域,文化,需求,个性化等),因此需求(也包括计算量)就非常大。
3)云计算当然会涉及到数据的存储技术,但数据库技术对于云计算来说要视具体的情况来分析:
A)对于IaaS而言,数据库技术不是必需的,也不是必备的功能;
B)对于PaaS来说,数据库功能应该是必备的功能
C)对于SaaS而言,必然会用到数据库技术(包括传统关系数据库和NoSQL数据库)。
而对于数据仓库技术,并不是云计算所必需的,但由于云数据的信息价值极大,类似一座金矿,我想云服务商是不可能放过从这些金矿中提取金子的.
4)大数据首先所面临的问题就是大数据的存储问题,一般都会综合运用各种存储技术(文件存储,数据库存储),当然,你完全用文件存储或者数据库存储来解决,也是没问题的。与云计算类似,数据仓库技术不是必需的,但对于数据仓库技术对于结构化数据进行淘金还是非常有用的,当然,你不用数据仓库技术也可以,比如Hadoop模式。
在云计算和大数据处理中,最基础的技术其实是分布式计算技术。而对于构建分布式计算而言,多线程,同步,远程调用(RPC,RMI等),进程管理与通信是其基本技术点。分布式计算编程是一种综合性应用编程,不仅需要有基本的技术点,还需要一定的组织管理知识。
就目前来说,云计算和大数据处理其实都没有形成一个统一的标准和定义。希望我的回复对您有所帮助。